JPS61235656A - Heat pump device for heat recovery - Google Patents

Heat pump device for heat recovery

Info

Publication number
JPS61235656A
JPS61235656A JP60075001A JP7500185A JPS61235656A JP S61235656 A JPS61235656 A JP S61235656A JP 60075001 A JP60075001 A JP 60075001A JP 7500185 A JP7500185 A JP 7500185A JP S61235656 A JPS61235656 A JP S61235656A
Authority
JP
Japan
Prior art keywords
heat
heat pump
steam
pump device
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60075001A
Other languages
Japanese (ja)
Other versions
JPH0437345B2 (en
Inventor
熊谷 孝雄
忠昭 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kimura Chemical Plants Co Ltd
Original Assignee
Kimura Chemical Plants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimura Chemical Plants Co Ltd filed Critical Kimura Chemical Plants Co Ltd
Priority to JP60075001A priority Critical patent/JPS61235656A/en
Publication of JPS61235656A publication Critical patent/JPS61235656A/en
Publication of JPH0437345B2 publication Critical patent/JPH0437345B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Central Heating Systems (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化学プラントにおける省エネルギー技術の一環
として比較的低温の熱エネルギーの回収に関し、詳しく
は蒸発、蒸留操作によって発生する蒸気の廃熱を回収す
るにあたり、これを低温熱源とするヒートポンプを構成
し、高温熱源として後続の他装置に供給するようにした
回収熱の有効利用に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to the recovery of relatively low-temperature thermal energy as part of energy saving technology in chemical plants, and more specifically, to the recovery of waste heat from steam generated by evaporation and distillation operations. This relates to the effective use of recovered heat by configuring a heat pump using this as a low-temperature heat source and supplying it to other subsequent devices as a high-temperature heat source.

従来の技術 ヒートポンプ装置は圧縮式と吸収式を原理とするものが
知られており、これを用いた熱回収の方式として熱交換
器を用い、熱圧縮機に吸引させエンタルピーを上昇させ
て熱源とする再使用方式が行われている。その際に熱交
換器として液膜流下式加熱缶を使用し、シェル側に廃熱
を供給し、チューブ側には熱媒の水を循環させて水蒸気
を発生させ、水蒸気を機械式圧縮機に送るものがすでに
提案されていて、廃熱の保有する潜熱は間接的に水蒸気
に転換されて回収されている。一方、吸収式ヒートポン
プの方式では機械式圧縮機に代えて第2攬吸収ヒートポ
ンプによる構成も可能である。
Conventional technology Heat pump devices are known to be based on the compression type and absorption type, and the heat exchanger is used as a method of heat recovery using this, and the enthalpy is increased by suction into the heat compressor, which is used as a heat source. A reuse method is in place. At that time, a liquid film falling type heating can is used as a heat exchanger, and waste heat is supplied to the shell side, water as a heat medium is circulated to the tube side to generate steam, and the steam is sent to a mechanical compressor. It has already been proposed that the latent heat contained in the waste heat is indirectly converted into water vapor and recovered. On the other hand, in the absorption heat pump system, a configuration using a second absorption heat pump in place of the mechanical compressor is also possible.

発明が解決しようとする問題点 上述のようなヒートポンプ装置を化学プラントのシステ
ム中に組込み、第1の装置での発生熱を熱源として回収
し、第2の装置への加熱源とする場合には両装置間の運
転操作条件を調和させる必要があり、例えば両装置が同
種の蒸留塔であっても両塔の運転温度条件で中間に接続
されるヒートポンプ装置の作動条件や作動効率が左右さ
れ、プラントシステムとしても影響を受ける。このよう
な観点から中間のヒートポンプの作動に着目すると、前
段蒸留塔々頂のベーパ量が増減すると、蒸留塔々頂の圧
力は一定であるから、水蒸発器の蒸発温度が変化するこ
とにより、圧縮機の吸込量が変動し不安定な状態となる
。逆に圧縮機の吐出側の後段の条件変動が吸込側へ影響
を生ずることは見のがしてはならない事項となっている
。とくに前段蒸留塔のベーパ量が低減すると、水蒸発器
の温度が上昇するため、′負荷低減以上に圧縮機の吸込
容量が減少するから、サージング域に近づき、不安定な
状態で圧縮機が運転されることになる。
Problems to be Solved by the Invention When a heat pump device as described above is incorporated into a chemical plant system, and the heat generated in the first device is recovered as a heat source and used as a heat source for the second device, It is necessary to harmonize the operating conditions between both devices; for example, even if both devices are distillation columns of the same type, the operating conditions and operating efficiency of the heat pump device connected in between will be affected by the operating temperature conditions of both columns. Plant systems are also affected. Focusing on the operation of the intermediate heat pump from this perspective, if the amount of vapor at the tops of the front distillation columns increases or decreases, the pressure at the tops of the distillation columns is constant, so the evaporation temperature of the water evaporator changes, The suction amount of the compressor fluctuates and becomes unstable. On the other hand, it must not be overlooked that fluctuations in conditions on the downstream stage of the discharge side of the compressor will have an effect on the suction side. In particular, when the amount of vapor in the first stage distillation column decreases, the temperature of the water evaporator increases, and the suction capacity of the compressor decreases more than the load reduction, which approaches the surging region and causes the compressor to operate in an unstable state. will be done.

また、水蒸発器の伝熱効率は前段装置からのベーパ中に
含まれる化学物質がチューブ外面にスケールを生成して
総括的な伝熱係数の低下となって現われることから、ヒ
ートポンプの安定した作動が得られないという欠点もあ
った。
In addition, the heat transfer efficiency of the water evaporator is affected by the chemical substances contained in the vapor from the previous stage equipment forming scale on the outer surface of the tube, resulting in a decrease in the overall heat transfer coefficient, which makes stable operation of the heat pump difficult. There was also the drawback that it was not available.

問題点を解決するための手段 そこで、本発明ではプラントシステムに組込まれるヒー
トポンプ装置の安定した運転と、前後段の装置の運転条
件を調和させることを目的とし、ヒートポンプ装置内に
水蒸発器の制御装置を組込むものであって、水蒸発器の
熱媒の循環管路に温度または圧力検知器を設け、調節計
によって循環管路の制御弁を開閉制御することを要旨と
するものであり、ヒートポンプ装置を熱回収のみに設置
するのではなく、システム内の装置のマツチングの機能
をも持たせるようにするものである。即ち、水蒸発器の
交換熱量はQ=A−U・ΔTで表わされる。
Means for Solving the Problems Therefore, the present invention aims to achieve stable operation of the heat pump device incorporated in the plant system and to harmonize the operating conditions of the devices in the front and rear stages. The device incorporates a temperature or pressure sensor in the heat medium circulation line of the water evaporator, and a controller controls the opening and closing of the control valve in the circulation line. The device is not installed only for heat recovery, but also has the function of matching devices within the system. That is, the amount of heat exchanged by the water evaporator is expressed as Q=A-U·ΔT.

ここでQが変化するとき圧縮機の吸込圧力を一定にする
ために、液膜流下式熱交換器の総括伝熱係数Uが管内の
境膜伝熱係数が律速で決定される場合、液膜流下水量が
増加するとUが減少するという特性を利用してU値を調
整することを特徴とするものである。
Here, in order to keep the suction pressure of the compressor constant when Q changes, the overall heat transfer coefficient U of the liquid film falling heat exchanger is determined by the rate-determining film heat transfer coefficient in the pipe, and the liquid film The feature is that the U value is adjusted by utilizing the characteristic that U decreases as the amount of flowing sewage increases.

実施例 以下本発明の好適な実施例をフローシートで示す図面に
もとづいて説明する。
EXAMPLES Hereinafter, preferred examples of the present invention will be explained based on flow sheet drawings.

第1図において全般的に10で示すのは液膜流下式熱交
換器である。この熱交換器は公知のものであって、たて
長のシェル11と、その上下で支持される多数の伝熱管
からなるチューブ12と、シェルの下部と連通ずる蒸発
缶13とからなり、シェル11の下部14から循環ポン
プ15を経てシェル11の頂部16にかけて熱媒である
水の循環管路1Tが構成されている。1Bは前段の装置
工からの蒸気の導入口、19は蒸気の凝縮液の排出口で
あって装置Iへ戻されている。
Shown generally at 10 in FIG. 1 is a falling film heat exchanger. This heat exchanger is a known one, and consists of a vertically long shell 11, tubes 12 consisting of a large number of heat transfer tubes supported above and below the shell, and an evaporator 13 communicating with the lower part of the shell. A circulation pipe 1T of water, which is a heat medium, is configured from the lower part 14 of the shell 11 to the top 16 of the shell 11 via the circulation pump 15. 1B is an inlet for steam from the equipment in the previous stage, and 19 is an outlet for steam condensate, which is returned to equipment I.

次に20は電動モータMで駆動されるターボ式蒸気圧縮
器であって、その吸込側が蒸発缶13の頂部21と管2
2で接続されており、吐出側は管23によって次段の装
置■に接続される。24は管22の1部に圧縮機20の
補機として増設される場合の第2種吸収ヒートポンプを
示す。そしてこの熱圧縮機20そのものも第2種吸収ヒ
ートポンプと置き換えることが可能であって、この場合
には吸収式ヒートポンプを形成するが、上述のヒートポ
ンプの構成は公知のものである。
Next, 20 is a turbo vapor compressor driven by an electric motor M, and its suction side is connected to the top 21 of the evaporator 13 and the pipe 2.
2, and the discharge side is connected to the next stage device 2 through a pipe 23. Reference numeral 24 indicates a second type absorption heat pump which is added to a part of the pipe 22 as an auxiliary machine to the compressor 20. The thermal compressor 20 itself can also be replaced with a second type absorption heat pump, and in this case an absorption heat pump is formed, but the structure of the above-mentioned heat pump is a known one.

本発明では上記の構成に調節計が付加されている。即ち
、調節計は前記循環管路17の熱媒水の流路中間に設け
た調節弁Vと、これを制御する温度指示調節計TICと
、センサーSとからなり、センサーSは蒸発缶13内の
蒸発温度を検知し、調節計TICはセンサーSの値にも
とづいて弁Vの開閉制御をする。温度調節計は圧力検出
型のものとすることもでき、その場合センサーSは圧力
を検知し、温度指示調節計TICは圧力指示調節計PI
Cにおきかえられて弁Vを制御する。
In the present invention, a controller is added to the above configuration. That is, the controller consists of a control valve V provided in the middle of the heat medium water flow path of the circulation pipe 17, a temperature indicating controller TIC for controlling the control valve V, and a sensor S. The controller TIC controls the opening and closing of the valve V based on the value of the sensor S. The temperature controller can also be of the pressure sensing type, in which case the sensor S detects the pressure and the temperature indicating controller TIC is the pressure indicating controller PI.
C is replaced to control valve V.

作用 本発明の構成は上記のようであるから、以下に本装置の
運転の具体的な態様によって本発明の詳細な説明する。
Operation Since the structure of the present invention is as described above, the present invention will be explained in detail below by referring to specific aspects of the operation of the present apparatus.

前述の装置工は合成繊維プラントにおける醋酸の回収塔
30で示され、装置■はメタノールの蒸留塔40で示さ
れている。回収塔30の塔頂31から有機溶剤の蒸気が
排出され、そのベーパーが保有する熱量が熱交換器10
のシェル110111へ上部18から導入され、チュー
ブ12の伝熱管内を流れる水を昇温させ、溶剤は凝縮し
てシェルの下部19から回収塔30へ戻される。熱交換
器10内ではチューブ12を通る水が管壁で蒸発し、下
部の液溜に噴出し蒸発缶13において気液分離する。水
蒸気は蒸発缶13の上部21から管22を経て蒸気圧縮
機20に送られ、溶剤ベーパの保有熱は圧縮機へ送られ
ることになる・ 一方、液溜14の凝縮水はポンプ15を介してシェル1
1の上部16へ送られチューブ12内を薄膜で流下し、
循環管路17を循環して熱交換している。この間にシェ
ル11を通過する溶剤ベーパはその負荷が低減するとベ
ーパ量が減少するので、水蒸発器の水の沸点が高(なり
、ベーパの比容積が小さくなるため、負荷の減少割合以
上に圧縮機の吸込ベーパ容量が減少して圧縮機サージン
グ域に近づき吸込側の条件変動となる。
The equipment described above is shown as an acetic acid recovery column 30 in a synthetic fiber plant, and the equipment (2) is shown as a methanol distillation column 40. Organic solvent vapor is discharged from the top 31 of the recovery tower 30, and the amount of heat held by the vapor is transferred to the heat exchanger 10.
The solvent is introduced into the shell 110111 from the upper part 18 to raise the temperature of the water flowing inside the heat transfer tube of the tube 12, and the solvent is condensed and returned to the recovery column 30 from the lower part 19 of the shell. In the heat exchanger 10, water passing through the tubes 12 is evaporated on the tube walls, and is ejected into a liquid reservoir at the bottom, where it is separated into gas and liquid in the evaporator 13. The water vapor is sent from the upper part 21 of the evaporator 13 to the vapor compressor 20 via the pipe 22, and the heat retained in the solvent vapor is sent to the compressor. shell 1
It is sent to the upper part 16 of 1 and flows down inside the tube 12 in a thin film,
The heat is exchanged by circulating through the circulation pipe 17. During this period, the amount of solvent vapor passing through the shell 11 decreases as the load decreases, so the boiling point of the water in the water evaporator becomes high (and the specific volume of the vapor decreases, so it is compressed more than the rate of load decrease). The suction vapor capacity of the machine decreases and approaches the compressor surging region, causing a change in conditions on the suction side.

このようなときに温度指示調節計TICはセンサーSの
温度の変化を検知し、制御信号を出力して調節弁Vの開
度を大きくするから、循環水量が多くなるように調節さ
れて、水蒸発器のU値が低減し、蒸発器の水の沸点は一
定となり、圧縮機20の吸込側の条件を一定側に戻して
安定させることになる。
In such a case, the temperature indicating controller TIC detects the change in the temperature of the sensor S and outputs a control signal to increase the opening degree of the control valve V. Therefore, the amount of circulating water is adjusted to increase, and the water is The U value of the evaporator decreases, the boiling point of water in the evaporator becomes constant, and the conditions on the suction side of the compressor 20 are returned to the constant side and stabilized.

このような伝熱の熱交換の変化は回収塔30の時々刻々
の運転の変動に伴う有機溶剤ベーパ量変化によって発生
するばかりでな(、比較的長期のスケール生成に伴う変
動によっても発生するが、同様に調節計により弁Vの開
または閉として両方向に制御が可能である。
Such changes in heat exchange occur not only due to changes in the amount of organic solvent vapor due to fluctuations in the operation of the recovery tower 30 from time to time (but also due to fluctuations associated with relatively long-term scale formation). , Similarly, the valve V can be controlled in both directions as opening or closing using a controller.

また、メタノールの蒸留塔40側の変動についても同様
に調節計が開、閉の方向に作動する。即ち、圧縮機20
の吐出側で条件が変化すると、この変動はモータMの負
荷の変動に現われ、吸込側に変化をおこすから、管22
を介して蒸発缶13内の蒸気条件が変化し、同様に調節
計で検出制御されることになる。
Further, regarding fluctuations on the methanol distillation column 40 side, the controller similarly operates in the open and close directions. That is, the compressor 20
If the conditions change on the discharge side of the pipe 22, this fluctuation will appear as a change in the load of the motor M, causing a change on the suction side.
The steam conditions inside the evaporator 13 change via the evaporator, and are similarly detected and controlled by the controller.

同様にして、この制御装置の作動はシステム内の変動条
件に対応するばかりでなく、ヒートポンプ装置自体また
はこれを含むプラントシステム自体の運転条件に対して
も有効に作動する。即ちプラントの環境条件ことに季節
ごとの長期の設定制御にともなう急激な局部的変動に対
しても安定性を保持できる。
Similarly, the operation of this control device not only responds to varying conditions within the system, but also operates effectively with respect to the operating conditions of the heat pump device itself or the plant system containing it. In other words, stability can be maintained even against sudden local fluctuations caused by long-term seasonal setting control in plant environmental conditions.

発明の効果 本発明は上述のようにヒートポンプ装置の循環駆動部に
制御装置を加えた簡単な構成になるものでありながら、
本来の熱回収の目的に万全なヒートポンプ装置であるば
かりでな(、前段と後段に接続される装置間にあって自
体が調和機能を有し、しかもプラントの環境条件を含め
、前後段の多様の変動に伴う外的な条件に対しても常に
マツチングをとって安定したプラント運転を可能にずろ
ものである。
Effects of the Invention Although the present invention has a simple configuration in which a control device is added to the circulation drive section of the heat pump device as described above,
It is not only a heat pump device that is perfect for its original purpose of heat recovery (but also has a harmonizing function between the devices connected to the front and rear stages, and is capable of handling various fluctuations in the front and rear stages, including the environmental conditions of the plant). It is designed to constantly match the external conditions associated with the plant to ensure stable plant operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の好適な実施例をフローシートで示すもの
であって熱回収の熱源側と供給側とを加えてプラントシ
ステムの一部として表現しである。 10・・・液膜流下式熱交換器、水蒸発器11・・・シ
ェル、 12・・・チューブ、 13・・・蒸発缶、 
 15・・・循環ポンプ、  17・・・循環管路、2
0・・・蒸気圧縮機、  22.23・・・管、TIC
・・・温度指示調節計、 ■・・・調節弁、  S・・
・センサー、 工・・・前段の装置、 ■・・・後段の
装置代理人 三  宅  正  夫 他1名αQ
The drawing shows a preferred embodiment of the present invention in the form of a flow sheet, and represents it as part of a plant system including a heat source side and a supply side for heat recovery. 10... Liquid film falling type heat exchanger, water evaporator 11... Shell, 12... Tube, 13... Evaporator,
15...Circulation pump, 17...Circulation pipe, 2
0...vapor compressor, 22.23...pipe, TIC
...Temperature indicating controller, ■...Control valve, S...
・Sensor, engineering...Previous stage equipment, ■...Later stage equipment agent Masao Miyake and one other person αQ

Claims (4)

【特許請求の範囲】[Claims] (1)前段装置からの蒸気の保有熱を液膜流下式熱交換
器のシェル側に導入し、チューブ側で発生する水蒸気の
保有熱に置換して間接的に回収し、その回収水蒸気を蒸
気圧縮機で昇温し、後段の他装置の加熱源とするように
したヒートポンプ装置であつて、該熱交換器は水蒸発器
であり、そのチューブ側に循環熱媒管路を設け、該管路
に挿入した制御弁と水蒸発器の蒸気温度を検知するセン
サーを有する温度調節計とからなる制御装置を設けたこ
とを特徴とする熱回収用ヒートポンプ装置。
(1) The heat retained in the steam from the previous stage device is introduced into the shell side of the falling film heat exchanger, and is indirectly recovered by replacing it with the retained heat in the steam generated on the tube side, and the recovered steam is converted into steam. It is a heat pump device in which the temperature is raised by a compressor and used as a heat source for other devices in the subsequent stage, and the heat exchanger is a water evaporator, and a circulating heat medium pipe is provided on the tube side of the heat pump, and the heat exchanger is a water evaporator. 1. A heat pump device for heat recovery, characterized in that it is equipped with a control device consisting of a control valve inserted in a passageway and a temperature controller having a sensor for detecting the steam temperature of a water evaporator.
(2)水蒸発器の蒸気排出側と蒸気圧縮機の吸込口との
間に第2種吸収式ヒートポンプを介在させた特許請求の
範囲第1項に記載のヒートポンプ装置。
(2) The heat pump device according to claim 1, wherein a second type absorption heat pump is interposed between the vapor discharge side of the water evaporator and the suction port of the vapor compressor.
(3)蒸気圧縮機に代えて第2種吸収ヒートポンプを設
置した特許請求の範囲第1項に記載のヒートポンプ装置
(3) The heat pump device according to claim 1, wherein a second type absorption heat pump is installed in place of the vapor compressor.
(4)制御装置が制御弁と、水蒸発器缶内圧力を感知す
る圧力調節計とからなる特許請求の範囲第1項に記載の
ヒートポンプ装置。
(4) The heat pump device according to claim 1, wherein the control device comprises a control valve and a pressure regulator that senses the pressure inside the water evaporator.
JP60075001A 1985-04-09 1985-04-09 Heat pump device for heat recovery Granted JPS61235656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075001A JPS61235656A (en) 1985-04-09 1985-04-09 Heat pump device for heat recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075001A JPS61235656A (en) 1985-04-09 1985-04-09 Heat pump device for heat recovery

Publications (2)

Publication Number Publication Date
JPS61235656A true JPS61235656A (en) 1986-10-20
JPH0437345B2 JPH0437345B2 (en) 1992-06-19

Family

ID=13563531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075001A Granted JPS61235656A (en) 1985-04-09 1985-04-09 Heat pump device for heat recovery

Country Status (1)

Country Link
JP (1) JPS61235656A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869149A (en) * 1971-12-21 1973-09-20
JPS5440520U (en) * 1977-08-26 1979-03-17
JPS5511096A (en) * 1978-06-28 1980-01-25 Mccord James W Steam generation and recovery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869149A (en) * 1971-12-21 1973-09-20
JPS5440520U (en) * 1977-08-26 1979-03-17
JPS5511096A (en) * 1978-06-28 1980-01-25 Mccord James W Steam generation and recovery device

Also Published As

Publication number Publication date
JPH0437345B2 (en) 1992-06-19

Similar Documents

Publication Publication Date Title
US4505123A (en) Absorption heat pump system
US4596122A (en) Sorption heat pump
US4018583A (en) Refrigeration heat recovery system
US4878457A (en) Zero flash closed condensate boiler feedwater system
JPS61235656A (en) Heat pump device for heat recovery
US4270522A (en) Solar heat collection and transfer system
KR100437669B1 (en) Heat pump system for a bathhouse
JPS5939680B2 (en) Cooling tower control method
JPS61237903A (en) Controller for water level in drain tank for feedwater heater
KR100342459B1 (en) Storage heat device using waste heat
JPH029841Y2 (en)
JP2001113183A (en) Steam heater
JPS6125887B2 (en)
JP3341209B2 (en) Steam heating device
JPS5842777Y2 (en) Condensate pressurization equipment for power generation plants
KR900006071B1 (en) Concentrating device
JPS6144260A (en) Controller for absorption heat pump
JPH0353544B2 (en)
JP2901430B2 (en) Control method of absorption heat pump
JPH0894001A (en) Steam generator
CA1294565C (en) Heating system with gas jet driven circulation flow for high pressure well head separator
RU2075009C1 (en) Boiler plant
JPS6045243B2 (en) Wet type dehumidification equipment for blast furnace air
JPH01102202A (en) Drain controller for feedwater heater
JP3394929B2 (en) Steam heating device