JPS61235535A - Alloy for lead frame - Google Patents
Alloy for lead frameInfo
- Publication number
- JPS61235535A JPS61235535A JP7613185A JP7613185A JPS61235535A JP S61235535 A JPS61235535 A JP S61235535A JP 7613185 A JP7613185 A JP 7613185A JP 7613185 A JP7613185 A JP 7613185A JP S61235535 A JPS61235535 A JP S61235535A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- thermal expansion
- lead frame
- point
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49579—Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体機器のリードフレーム材料に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to lead frame materials for semiconductor devices.
半導体装置をパッケージ材質で分類すると、大きくプラ
スチ、ツクパッケージとセラミックパッケージとに分け
られ、このうちセラミツクツ母ツケージは航空機、原子
力、大型コンピューター等の高信頼度を要求される分野
に多用されている。このパッケージのセラミックは大半
がアルミナ系セラミックであり、リードフレーム材とし
ては熱膨張整合性の点からFa−29Ni−17Co合
金が主に使われている。Semiconductor devices are classified by package material into plastic packages, solid packages, and ceramic packages. Among these, ceramic packages are widely used in fields that require high reliability, such as aircraft, nuclear power, and large computers. The ceramic of this package is mostly alumina-based ceramic, and the lead frame material is mainly Fa-29Ni-17Co alloy from the viewpoint of thermal expansion matching.
半導体装置のパッケージ用材料に要求される特性として
は
(1)熱膨張係数が小さいこと(81チツグの熱膨張に
近いこと)
(11)熱伝導性が良いこと(siチッグの発熱を効率
良く放散すること)
01D強度が高いこと
などが挙げられるが、アルミナ系セラミックの熱膨張は
6.0X10 7℃と51fyグO3,5X107’C
にくらべると大きく、また熱伝導度も0.037CI1
1− ’ll!e−’℃−1と低(81チツプとの熱膨
張整合性あるいは熱放散の点でまだ不充分である。Characteristics required for packaging materials for semiconductor devices are (1) a small coefficient of thermal expansion (close to the thermal expansion of 81 chips) (11) good thermal conductivity (efficient dissipation of heat generated by silicon chips) 01D The thermal expansion of alumina ceramic is 6.0X107℃ and 51fygO3,5X107'C.
It is larger than that, and its thermal conductivity is 0.037CI1.
1-'ll! It is still insufficient in terms of thermal expansion matching or heat dissipation with low (81) chips at e-'°C-1.
そこで近年熱伝導度を0.6 altα−1式−1℃−
1と高め、さらに熱膨張係数はSlチッグと同等の3,
5X 10−’/l?:と低くしたSiC系セラミック
が開発嘔れ実用化が進められている。このSICセラミ
ック用のリードフレーム材として従来のF・−29Ni
−17Coを考えた場合、熱膨張係数は5.QxlO/
’Cと大き過ぎまた、半導体装置の熱サイクルテスト(
−55℃〜+150℃)時に低温でマルテンサイト変態
を生じ易く、その場合熱膨張係数増大のためノ等ツケー
ジクラックの原因となる等の問題を有している。Therefore, in recent years, the thermal conductivity has been changed to 0.6 altα-1 formula-1℃-
1, and the thermal expansion coefficient is 3, which is the same as that of Sl Chig.
5X 10-'/l? :SiC ceramics with low energy consumption have been developed and are being put into practical use. Conventional F-29Ni is used as the lead frame material for this SIC ceramic.
When considering -17Co, the thermal expansion coefficient is 5. QxlO/
'C is too large and the thermal cycle test of semiconductor devices (
-55°C to +150°C), martensitic transformation tends to occur at low temperatures, and in this case, the coefficient of thermal expansion increases, causing problems such as cage cracks.
本発明はかかる点に鑑みFe−29Nl−17Coよシ
も更に低熱膨張で、しかもマルテンサイト変態の生じK
〈い安定した熱膨張特性を有する新規な低膨張リードフ
レーム材を提供するものである。In view of these points, the present invention has a lower thermal expansion than Fe-29Nl-17Co, and also has a K
<The present invention provides a novel low-expansion lead frame material with stable thermal expansion characteristics.
本発明者らは前述のような問題点を解決すべくFel
−Ni−Co系合金の熱膨張特性ならびにマルテンサイ
ト変態開始温度(Mn点)の変動を詳細に調べた結果、
重量%にてNi30(30チを含まず)〜34%、Co
8〜13%、残部Feより成る合金で、30℃〜350
℃の平均熱膨張係数が概略3刈0−6/℃〜4.5 X
10”/℃程度、M1点が一55℃以下の低膨張合金
が得られることを見出し本発明に到ったものである。In order to solve the above-mentioned problems, the present inventors developed Fel
-As a result of detailed investigation of the thermal expansion characteristics of Ni-Co alloys and fluctuations in martensitic transformation start temperature (Mn point),
Ni30 (excluding 30%) to 34% by weight, Co
An alloy consisting of 8 to 13% Fe and the balance at 30°C to 350°C.
The average coefficient of thermal expansion in °C is approximately 30-6/°C ~ 4.5
The inventors have discovered that a low expansion alloy having an M1 point of about 10''/°C and an M1 point of 155°C or less can be obtained, leading to the present invention.
本系合金のMfi点はNl量によシ左右され、第1図に
示すようにNi量の増加にともないM一点は急激に低下
する。Ni量が30%以下ではMn点が一55℃よシも
高くなり低温で熱膨張の大きいマルテンサイトを生じや
すく、逆に34%を超えると合金の熱膨張が大きくなり
過ぎるためNi量は30(30%を含まず)〜34チに
限定した。The Mfi point of the present alloy depends on the amount of Nl, and as shown in FIG. 1, the Mfi point rapidly decreases as the amount of Ni increases. When the Ni content is less than 30%, the Mn point becomes higher than 155°C, which tends to cause martensite, which has a large thermal expansion at low temperatures.On the other hand, when the Ni content exceeds 34%, the thermal expansion of the alloy becomes too large, so the Ni content is 30%. (excluding 30%) - limited to 34 inches.
また熱膨張特性はNi量とCo量との兼ね合いで決まる
ものであり、第2図に一例を示すようにNi32チ近辺
では、Co 13〜13%で熱膨張は最小(4,5X1
0 7c以下)となシ、これをはずれるCo量では熱膨
張が大きくなり過ぎる。従ってC。Thermal expansion characteristics are determined by the balance between the amount of Ni and the amount of Co. As an example is shown in Figure 2, in the vicinity of 32% Ni, the thermal expansion is minimal (4.5X1
If the amount of Co exceeds this value, the thermal expansion will become too large. Therefore C.
量は8〜13%とした。The amount was 8-13%.
さらに、本合金は、変移点(低膨張域から高膨張域へ変
移する温度)が350℃近辺に存在し、この変移点は(
Nl+Co)量により変動し第3図のような関係にある
。封止ガラスとの熱膨張整合性の点で変移点は高い方が
有利であり、できれば(Ni+CO)量は41%以上に
管理することが望ましいO
がお、本系合金は合金溶解時の脱酸脱硫元素としてSi
、Mn、At等を添加することがあシ、これらの元素を
若干量含有することは本合金の特許性にがんら影響をお
よぼすものではかく含有することができる。Furthermore, this alloy has a transition point (temperature at which it transitions from a low expansion region to a high expansion region) around 350°C, and this transition point is (
The relationship varies depending on the amount of Nl+Co) as shown in FIG. In terms of thermal expansion compatibility with the sealing glass, it is advantageous to have a higher transition point, and if possible, it is desirable to control the amount of (Ni+CO) to 41% or more. Si as an acid desulfurization element
, Mn, At, etc. may be added, but the inclusion of small amounts of these elements will greatly affect the patentability of the present alloy, so they can be included.
次に本発明を実施例により説明する。 Next, the present invention will be explained by examples.
第1表に示す9種類の合金を真空誘導溶解炉により溶解
・鋳造したのち、熱間圧延にて厚さ3露の板材に仕上げ
、このものから試験片を切り出し900℃XIHrの焼
鈍を行ったのち、熱膨張特性およびMn点の測定を行っ
た。その結果を第1表にあわせて示す。The nine types of alloys shown in Table 1 were melted and cast in a vacuum induction melting furnace, then hot rolled into a plate with a thickness of 3 dew, and test pieces were cut from this plate and annealed at 900°C x Ihr. Thereafter, thermal expansion characteristics and Mn point were measured. The results are also shown in Table 1.
第1表より明らかなように、本発明合金の熱膨張係数は
従来のFe−29Ni−17Co合金よりも小さく、S
iチップあるいはSICセラミックに極めて近い値を有
していることおよびN8点が低く低温での合金の組織安
定性が高いことがわかる。As is clear from Table 1, the thermal expansion coefficient of the alloy of the present invention is smaller than that of the conventional Fe-29Ni-17Co alloy, and S
It can be seen that the alloy has a value extremely close to that of i-chip or SIC ceramic, and has a low N8 point and high structural stability of the alloy at low temperatures.
以上説明したように本発明合金はNi30 (30チを
含まず)〜34%、 Co 8〜13%、残部実質的に
F・よりなるもので30〜350℃の平均熱膨張係数が
4.5 X 16”−’/’C以下となり81チツプお
よびSiCセラミックに極めて近く、またN8点が一5
5℃以下となりICの熱サイクルテスト時に合金の組織
変化が生じに<<、低温まで安定した熱膨張特性を示す
。したがって本合金より成るリードフレームをSICセ
ラミックパッケージ用に用いればチングーパッケージ−
リードフレーム間の熱膨張差が極めて小さくなりICの
信頼性は一段と向上するものである。As explained above, the alloy of the present invention consists of 30 to 34% Ni (excluding 30%), 8 to 13% Co, and the remainder substantially F, and has an average thermal expansion coefficient of 4.5 at 30 to 350°C. X 16"-'/'C or less, very close to 81 chip and SiC ceramic, and N8 point is 15"
The alloy exhibits stable thermal expansion characteristics even at low temperatures of 5° C. or lower, and changes in the structure of the alloy occur during IC thermal cycle tests. Therefore, if a lead frame made of this alloy is used for a SIC ceramic package,
The difference in thermal expansion between the lead frames is extremely small, and the reliability of the IC is further improved.
第1図は本系合金のNi含有量とN8点との関係を示す
図、第2図はNiキ32%の場合のCo含有量と熱膨張
係数との関係を示す図、第3図はNi−)C。
含有量と変移点との関係を示す図である。
第1図
第2図
(xICr’ ]
ω(wt%)
第3図
Ni+Co(wtに〕Figure 1 shows the relationship between the Ni content and the N8 point of this alloy, Figure 2 shows the relationship between the Co content and the coefficient of thermal expansion when Ni is 32%, and Figure 3 Ni-)C. It is a figure showing the relationship between content and transition point. Figure 1 Figure 2 (xICr'] ω (wt%) Figure 3 Ni+Co (in wt)
Claims (1)
Co8〜13%、残部が実質的にFeより成ることを特
徴とするリードフレーム用合金。 2、特許請求の範囲第1項記載の合金であり、30〜3
50℃の平均熱膨張係数が4.5×10^−^6/℃以
下、マルテンサイト変態開始温度(M_2点)が−55
℃以下であることを特徴とするリードフレーム用合金。[Claims] 1. Ni30 (excluding 30%) to 34% by weight,
An alloy for lead frames, characterized in that it consists of 8 to 13% Co and the remainder substantially Fe. 2. The alloy according to claim 1, which is 30 to 3
The average coefficient of thermal expansion at 50℃ is 4.5 x 10^-^6/℃ or less, and the martensitic transformation start temperature (M_2 point) is -55
An alloy for lead frames characterized by a temperature below ℃.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7613185A JPS61235535A (en) | 1985-04-10 | 1985-04-10 | Alloy for lead frame |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7613185A JPS61235535A (en) | 1985-04-10 | 1985-04-10 | Alloy for lead frame |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61235535A true JPS61235535A (en) | 1986-10-20 |
Family
ID=13596387
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7613185A Pending JPS61235535A (en) | 1985-04-10 | 1985-04-10 | Alloy for lead frame |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61235535A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232631A (en) * | 1985-08-05 | 1987-02-12 | Hitachi Ltd | Integrated circuit package |
US5573860A (en) * | 1993-12-27 | 1996-11-12 | Sumitomo Special Metals Co., Ltd. | Bimetal |
WO2019044721A1 (en) * | 2017-09-01 | 2019-03-07 | 新報国製鉄株式会社 | Low thermal expansion alloy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198741A (en) * | 1983-04-25 | 1984-11-10 | Nippon Gakki Seizo Kk | Lead frame member for semiconductor integrated circuit |
-
1985
- 1985-04-10 JP JP7613185A patent/JPS61235535A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59198741A (en) * | 1983-04-25 | 1984-11-10 | Nippon Gakki Seizo Kk | Lead frame member for semiconductor integrated circuit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6232631A (en) * | 1985-08-05 | 1987-02-12 | Hitachi Ltd | Integrated circuit package |
JPH0431187B2 (en) * | 1985-08-05 | 1992-05-25 | ||
US5573860A (en) * | 1993-12-27 | 1996-11-12 | Sumitomo Special Metals Co., Ltd. | Bimetal |
WO2019044721A1 (en) * | 2017-09-01 | 2019-03-07 | 新報国製鉄株式会社 | Low thermal expansion alloy |
JPWO2019044721A1 (en) * | 2017-09-01 | 2019-11-07 | 新報国製鉄株式会社 | Low thermal expansion alloy |
US11371123B2 (en) | 2017-09-01 | 2022-06-28 | Shinhokoku Material Corp. | Low thermal expansion alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6756969B2 (en) | Sealing material | |
JPS61235535A (en) | Alloy for lead frame | |
JPH0127982B2 (en) | ||
US4711826A (en) | Iron-nickel alloys having improved glass sealing properties | |
JPS64817B2 (en) | ||
JPH0425336B2 (en) | ||
JPH02252637A (en) | Heat-resistant crystallized glass sealing material having low expansion coefficient | |
JP2004149381A (en) | Ceramic material having superelasticity, shape memorizability or high damping capacity, and method for producing the same | |
JP2523677B2 (en) | Low thermal expansion lead frame material | |
JP2004115905A (en) | Low thermal expansion alloy, and low thermal expansion alloy sheet | |
JPS61227972A (en) | Silicon carbide ceramics-metal joined body | |
JPH02185950A (en) | Low thermal expansion alloy excellent in brazeability | |
Harner | Selecting controlled expansion alloys | |
JPS6232631A (en) | Integrated circuit package | |
JPS6025262A (en) | Lead frame for integrated circuit | |
JPH09324243A (en) | Low thermal expansion alloy having coefficient of thermal expansion approximate to that of si | |
JPS60177667A (en) | Semiconductor device | |
JPS5916352A (en) | Semiconductor device | |
CN114477993A (en) | ZnO material and basic property research method and application thereof | |
JP3002241B2 (en) | Sealing alloy for hard glass | |
JPS6247457A (en) | Low thermal expansion alloy | |
KR100281991B1 (en) | Low Melting Point Glass Composition Using Composite Filler | |
Harner | The use of Fe-29 Ni-17 Co alloy in the electronics industry | |
JPH05148051A (en) | Joined material of silicon nitride ceramics | |
JPS61259555A (en) | Cu alloy bonding wire for semiconductor device |