JPS61235079A - Output control device for welding power source - Google Patents

Output control device for welding power source

Info

Publication number
JPS61235079A
JPS61235079A JP7670285A JP7670285A JPS61235079A JP S61235079 A JPS61235079 A JP S61235079A JP 7670285 A JP7670285 A JP 7670285A JP 7670285 A JP7670285 A JP 7670285A JP S61235079 A JPS61235079 A JP S61235079A
Authority
JP
Japan
Prior art keywords
welding
voltage
mode
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7670285A
Other languages
Japanese (ja)
Other versions
JPH0635059B2 (en
Inventor
Takaaki Ogasawara
小笠原 隆明
Tokuji Maruyama
徳治 丸山
Masaharu Sato
佐藤 正晴
Yukio Toida
樋田 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP60076702A priority Critical patent/JPH0635059B2/en
Publication of JPS61235079A publication Critical patent/JPS61235079A/en
Publication of JPH0635059B2 publication Critical patent/JPH0635059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable a stabilized welding immediately after the actuation by controlling specifically a high frequency invertor in the welding power source to impress between a welding wire and welding base metal via a DC reactor after the DC conversion the output of the high frequency invertor. CONSTITUTION:An electric power is impressed between output terminals via a high frequency invertor 4 and DC reactor 7. A welding current I and the voltage V between terminals are detected by detectors 12, 11 and compared with the set short circuit current I0 of setters 13, 15 and a set arc voltage V0 by respectively error amplifiers 14, 16. The threshold value voltage E of a mode identifying voltage generator 17 is compared by the output mode discriminator 18 of the detector 11 and the discriminator 18 generates the output of H, L level to show an arc mode and short circuit mode respectively in case of the former being smaller, larger than the latter. This output closes switch 19a, 19b in case of its H level. A comparator 22 makes a continuity width controlling signal Y by comparing the error signal of the amplifiers 16, 14 with the reference signal of the generator 21 respectively via switches 19a, 19b. The circuit 23 gives a base driving signal to the invertor 4 to control the continuity width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶接ワイヤを送給しつつ行う消耗電極式アーク
溶接に用いられる溶接電源の出力制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the output of a welding power source used in consumable electrode arc welding while feeding a welding wire.

〔従来の技術〕[Conventional technology]

従来の、この種の溶接電源としては、商用交流を直流変
換した後、高周波数インバータで高周波電力に変換し、
咳高周波電力を全波整流したのち直流リアクトルを介し
て溶接ワイヤー溶接母材間に供給するようにしたものが
ある。
Conventional welding power sources of this type convert commercial alternating current to direct current, then convert it to high-frequency power using a high-frequency inverter.
There is a method in which the high-frequency power is full-wave rectified and then supplied between the welding wire and the welding base material via a DC reactor.

この種の溶接電源では、上記のようにその出力回路に直
流リアクトルを挿入して溶接ワイヤと溶接母材との短絡
時に、溶融金属が溶融池に円滑に吸収されるように電流
の急激な変化を抑制するようにしており、この為、溶接
電源の設定電圧をVo、上記出力回路の抵抗をRs、直
流リアクトルのインダクタンスをLとした場合、上記短
絡時の電流IsはV/Rsに向かって時定数L / R
sで、第8図に示すように指数関数的に上昇する。
In this type of welding power source, as mentioned above, a DC reactor is inserted into the output circuit so that when the welding wire and the welding base metal are short-circuited, the molten metal is smoothly absorbed into the molten pool so that the current changes rapidly. For this reason, when the set voltage of the welding power source is Vo, the resistance of the output circuit is Rs, and the inductance of the DC reactor is L, the current Is at the time of the short circuit is directed toward V/Rs. Time constant L/R
s, it increases exponentially as shown in FIG.

この短絡時に直流リアクトルに蓄積されたエネルギーは
アーク発生後徐々に放出さるが、アーク長に比例する抵
抗をRaをすると、電流1aは■/Raに向かって非常
に長い時定数L / Raで指数的に減衰し、その間に
アーク力によって溶接ワイヤ先端に溶融金属が形成され
ると共に溶接母材に溶融池が形成される。通常、溶融池
が安定した状態では、上記の現象が繰り返され、非常に
安定した溶接が行える。
The energy stored in the DC reactor during this short circuit is gradually released after the arc occurs, but if Ra is the resistance proportional to the arc length, the current 1a will increase exponentially towards ■/Ra with a very long time constant L/Ra. During this period, molten metal is formed at the tip of the welding wire by the arc force, and a molten pool is formed in the weld base metal. Normally, when the molten pool is stable, the above phenomenon is repeated and very stable welding can be performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記直流リアクトルがあることにより、アーク
期間における電流1aの電流変化率(従来は、約60〜
130  (A/ms) )が小さくなるので、アーク
長が激しく変動する起動直後では電流変化が該アーク長
変化に追随しきれずに電圧が第9図に示す如く大きく変
動し、短絡回数も上記定常溶接時のほぼ1/2程度に減
少しており、定常溶接時の短絡回数に回復するまでに数
秒を要するので、その間のビード形状は第10図(a)
及びfb)に示すように定常溶接時に比し広巾で余盛も
大き(なってしまう。
However, due to the presence of the DC reactor, the current change rate of the current 1a during the arc period (conventionally, the rate of change of the current 1a is approximately 60~
130 (A/ms)) becomes small, so immediately after startup when the arc length fluctuates rapidly, the current change cannot follow the change in arc length, and the voltage fluctuates greatly as shown in Figure 9, and the number of short circuits also decreases to the above-mentioned steady state. The number of short circuits has decreased to approximately 1/2 of that during welding, and it takes several seconds to recover to the number of short circuits during steady welding, so the bead shape during that time is shown in Figure 10 (a).
As shown in Figs. and fb), the width is wider and the excess welding becomes larger than during steady welding.

このため、溶接長が短い場合には、所望のビード形状が
得られないまま溶接が終了してしまうと云う問題があっ
た。
For this reason, when the welding length is short, there is a problem in that welding ends without obtaining the desired bead shape.

また、高速溶接を行う場合には、アークスタート直後だ
けでな(、常に、溶融池などが不安定な状態にあり、電
圧波形は常に乱れた状態となっているので、上記従来の
溶接電源では安定した高速溶接を行うことは難しいと云
う問題があった。
In addition, when performing high-speed welding, the molten pool is always in an unstable state, and the voltage waveform is always in a disordered state, so the conventional welding power source described above is There was a problem in that it was difficult to perform stable high-speed welding.

〔発明の目的〕[Purpose of the invention]

本発明は上記従来の問題を解消するためになされたもの
で、短絡時の溶接電流の急激な立上りを抑制し、しかも
アーク時における電流変化率を高くすることができ、起
動直後からの安定した溶接を可能にする溶接電源の出力
制御装置を得ることを目的とする。
The present invention was made to solve the above-mentioned conventional problems, and it is possible to suppress the sudden rise of welding current during short circuit, and to increase the rate of current change during arcing, so that it is possible to stabilize the welding current immediately after starting. The object of the present invention is to obtain an output control device for a welding power source that enables welding.

〔問題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するため、短絡モードとアーク
モードとを識別するモード判別器を設け、アークモード
時にはアーク電圧を設定値と比較して設定電圧になるよ
うに高周波数インバータを制御し、短絡時には溶接電流
を設定値と比較して設定値になるように高周波インバー
タを制御する構成としたものである。
In order to achieve the above object, the present invention provides a mode discriminator that distinguishes between short circuit mode and arc mode, and when in arc mode, compares the arc voltage with a set value and controls the high frequency inverter so that the set voltage is reached. In the event of a short circuit, the welding current is compared with a set value and the high frequency inverter is controlled so that the welding current reaches the set value.

〔実施例〕〔Example〕

第1図は本発明の一実施例をブロック図で示したもので
ある。同図において、1は3相の商用交流電源、2はダ
イオード全波整流器、3は平滑回路、4は高周波インバ
ータ、5は変圧器、6はダイオード全波整流器、7は直
流リアクトルであり、1〜7により溶接電源が構成され
ている。高周波インバータ(トランジスタインバータ)
4は平滑回路3で平滑された整流出力を高周波電力(1
、5k Hz以上)に変換し、政商周波電力は変圧器5
で所定の電圧に変圧された後、ダイオード全波整流器6
で直流電力に変換され、直流リアクトル7を介して出力
される。8は給電チップ、9は溶接ワイヤ、10は溶接
母材である。
FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, 1 is a three-phase commercial AC power supply, 2 is a diode full-wave rectifier, 3 is a smoothing circuit, 4 is a high-frequency inverter, 5 is a transformer, 6 is a diode full-wave rectifier, 7 is a DC reactor, 1 ~7 constitute a welding power source. High frequency inverter (transistor inverter)
4 converts the rectified output smoothed by the smoothing circuit 3 into high frequency power (1
, 5kHz or higher), and the political and commercial frequency power is converted to transformer 5.
After being transformed to a predetermined voltage by the diode full-wave rectifier 6
The DC power is converted into DC power and output via the DC reactor 7. 8 is a power supply tip, 9 is a welding wire, and 10 is a welding base material.

11は電圧検出器であって、溶接ワイヤ9と溶接母材1
0間の電圧を検出する。12は電流検出器であって、溶
接電流を検出する。13は短絡電流設定器であって、こ
こで設定された設定短絡電流値ioと電流検出器12が
検出した溶接電流Iは誤差増幅器14で比較される。1
5はアーク電圧設定器であって、ここで設定された設定
アーク電圧Voと電圧検出器11が検出した電圧■は誤
差増幅器16で比較される。17はモード識別用しきい
値電圧設定器であって、ここで設定されたしきい値電圧
E(Vo’>E>短絡時の電圧)は電圧検出器11の出
力とモード判別器(比較器)18で比較され、該モード
判別器は前者が後者より小さい時にはアークモードであ
ることを表すI(レベルの出力を発生し、逆の場合には
短絡モードであることを表すLレベルの出力を発生する
。このモード判別器18の出力は、直接、スイッチ19
aに、また、反転器20を介してスイッチ19 bに開
閉信号として供給される。スイッチ19a、19bは供
給される開閉信号がHレベルである時に閉路する。21
は三角波信号を発生する基準信号発生器、22は比較器
、23は置局インバータ4のベース駆動回路である。比
較器22はスイッチ19aを介して誤差増幅器16が出
力する誤差信号を受け、これを基準信号発生器21が出
力する第2図の三角波信号Xと比較して導通小制御信号
(平均電圧制御信号)Yを作成し、また誤差増幅器14
が送出する誤差信号をスイッチ19bを介して受け、こ
れを上記三角波信号と比較して導通小制御信号(平均電
圧制御信号)Yを作成する。ベース駆動回路23は上記
導通小制御信号Yを受けて高周波インバータ4を構成す
るトランジスタにベース駆動信号を供給しその導通中を
制御する。
Reference numeral 11 is a voltage detector, which detects the welding wire 9 and the welding base material 1.
Detects voltage between 0 and 0. 12 is a current detector that detects welding current. Reference numeral 13 denotes a short-circuit current setting device, and an error amplifier 14 compares the set short-circuit current value io set here with the welding current I detected by the current detector 12. 1
Reference numeral 5 denotes an arc voltage setter, and an error amplifier 16 compares the set arc voltage Vo set here with the voltage (2) detected by the voltage detector 11. 17 is a threshold voltage setting device for mode discrimination, and the threshold voltage E set here (Vo'>E>voltage at the time of short circuit) is determined by the output of the voltage detector 11 and the mode discriminator (comparator). ) 18, and when the former is smaller than the latter, the mode discriminator generates an output of level I (indicating arc mode), and in the opposite case, outputs level L (indicating short circuit mode). The output of this mode discriminator 18 is directly sent to the switch 19.
a, and is also supplied as an open/close signal to the switch 19b via the inverter 20. The switches 19a and 19b are closed when the supplied open/close signal is at H level. 21
2 is a reference signal generator that generates a triangular wave signal, 22 is a comparator, and 23 is a base drive circuit for the station inverter 4. The comparator 22 receives the error signal output from the error amplifier 16 via the switch 19a, compares it with the triangular wave signal X of FIG. 2 output from the reference signal generator 21, and generates a conduction small control signal (average voltage control signal ) Y and also the error amplifier 14
receives the error signal sent out by the switch 19b, and compares it with the triangular wave signal to create a small conduction control signal (average voltage control signal) Y. The base drive circuit 23 receives the small conduction control signal Y and supplies a base drive signal to the transistors constituting the high frequency inverter 4 to control their conduction.

この構成においては、溶接ワイヤ9と溶接母材10との
間にアークが発生しているアーク期間になると、モード
判別器18がアークモードであることを判別してHレベ
ルの出力を送出するので、スイッチ19aが閉成され、
電圧検出器11を介して取出されたアーク電圧Vaと設
定アーク電圧■0との誤差信号ε=Va−Voが比較器
22に入力される。比較器22は高周波インバータ4の
導通中を誤差信号εの大きさに比例して増減する導通小
制御信号Yを送出するので、アーク電圧は設定アーク電
圧vOに維持される。
In this configuration, during the arc period when an arc is generated between the welding wire 9 and the welding base metal 10, the mode discriminator 18 determines that it is the arc mode and sends out an H level output. , switch 19a is closed,
An error signal ε=Va−Vo between the arc voltage Va taken out via the voltage detector 11 and the set arc voltage 0 is input to the comparator 22. Since the comparator 22 sends out a small conduction control signal Y that increases or decreases in proportion to the magnitude of the error signal ε while the high frequency inverter 4 is conductive, the arc voltage is maintained at the set arc voltage vO.

また、溶接ワイヤ9と溶接母材10とが接触して短絡す
ると、モード判別器18が短絡モードであることを判別
してLレベルの出力を発生するので、今度は、スイッチ
19bが閉成され電流検出器12により検出された短絡
電流1sと設定短絡電流■0との誤差信号εiが比較器
22に入力される。比較器22高周波インバータ4の導
通中をこの誤差信号ε1=Is−Ioの大きさに比例し
て増減する導通小制御信号を送出するので、上記アーク
時と同様に、短絡電流は設定短絡電流に維持される。尚
、短絡期間は、通常、3msからlQmsであり、直流
リアクトルを小さくしても素子を破壊することなくこの
期間を安定して制御するためには、高周波インバータの
スイッチング周波数を1.5 k Hz以上とすること
が望ましい。
Furthermore, when the welding wire 9 and the welding base metal 10 come into contact and short-circuit, the mode discriminator 18 determines that the short-circuit mode is present and generates an L-level output, so the switch 19b is closed this time. An error signal εi between the short circuit current 1 s detected by the current detector 12 and the set short circuit current 0 is input to the comparator 22. Since the comparator 22 sends out a small conduction control signal that increases or decreases in proportion to the magnitude of the error signal ε1=Is-Io while the high-frequency inverter 4 is conductive, the short-circuit current is equal to the set short-circuit current as in the case of the arc described above. maintained. Note that the short circuit period is normally 3ms to 1Qms, and in order to stably control this period without destroying the elements even if the DC reactor is made small, the switching frequency of the high frequency inverter must be set to 1.5 kHz. It is desirable to set the above.

このように、本実施例では、短絡電流の大きさを設定短
絡電流値に定電流制御することができるので、直流リア
クトルのりアクドル値を低く設定してアーク期間におけ
る電流変化率を高めることが可能となる。
In this way, in this embodiment, the magnitude of the short-circuit current can be controlled at a constant current to the set short-circuit current value, so it is possible to set the DC reactor flux value low and increase the current change rate during the arc period. becomes.

なお、この装置において、無負荷電圧を60ボルト、設
定アーク電圧■0を40ボルトとした場合、直流リアク
トルの値を100マイクロ・ヘンリーとすることにより
、はぼ200アンペア/ミリ秒のと電流変化率を得た。
In addition, in this device, if the no-load voltage is 60 volts and the set arc voltage 0 is 40 volts, by setting the DC reactor value to 100 micro-henries, the current change will be approximately 200 amperes/millisecond. Got the rate.

次に、実施イ列の装置の効果を実験結果に基づき具体的
に説明する。
Next, the effects of the apparatus of implementation series A will be specifically explained based on experimental results.

本発明者等は、アークスタート直後から定常状態に移行
するまでの電圧波形を数多く観測したところ、アーク期
間中の電圧波形が安定するのに伴い、短絡回数も増加し
て定常的な短絡回数に収束することを見い出した。
The present inventors observed numerous voltage waveforms from immediately after arc start until transition to a steady state, and found that as the voltage waveform during the arc period stabilized, the number of short circuits increased and reached a steady state. It was found that the results converged.

そこで、アーク期間中の電圧Vaを第4図に一線で示す
ように設定し、電流変化率を種々変化させて、アークス
タート直後1秒間の短絡回数が定常溶接中の短絡回数に
比べてどの程度になっているかを、下記溶接使用のもの
について実験・測定したところ、 溶接ワイヤ径:1.2mm、 溶接母材板厚:2.3mm、 溶接速度: 1,5m/m i n 電源:320アンペア、26ボルト 重ねスミ肉溶接 第3図に示す結果を得た。
Therefore, we set the voltage Va during the arc period as shown by the line in Figure 4, and varied the current rate of change to find out how much the number of short circuits in one second immediately after arc start compared to the number of short circuits during steady welding. We conducted experiments and measurements on the following welding devices: Welding wire diameter: 1.2mm, Welding base material plate thickness: 2.3mm, Welding speed: 1.5m/min Power source: 320 amperes , 26-volt overlap fillet welding The results shown in FIG. 3 were obtained.

この図から、アークスタート直後1秒間の短絡回数は、
電流変化率が200A/msのところでは定常溶接時の
約90%に達し、300A/ms以上ではアークスター
ト直後から定常溶接時と殆ど変わらない短絡回数が得ら
れることが分かる。
From this figure, the number of short circuits in 1 second immediately after arc start is:
It can be seen that when the current change rate is 200 A/ms, it reaches about 90% of that during steady welding, and at 300 A/ms or more, the number of short circuits is almost the same as that during steady welding immediately after arc start.

また、アークスタート直後1秒間の短絡回数が定常溶接
時の約90%以上に達していると、ビードの外観も定常
溶接時のものと殆ど同じであることが観察された。
It was also observed that when the number of short circuits in one second immediately after arc start reached approximately 90% or more of that during steady welding, the appearance of the bead was almost the same as that during steady welding.

第5図は上記実験において測定したアーク期間中の電圧
・電流波形を図示したもので、同図(a)は上記実施例
の装置を使用して電流変化率を800A / m sと
した時の電圧・電流波形であり、この図から、アーク発
生直後から次の短絡発生時までという非常に短い期間に
おいても、電圧波形が安定し、アーク長変動が速い電流
変化率で吸収されているのが分かる。同図(b)は前記
した従来の電流変化率の場合の電圧・電流波形であり、
アーク長変動が吸収されず、アーク電圧は不安定である
Figure 5 shows the voltage and current waveforms during the arc period measured in the above experiment, and Figure (a) shows the waveforms when the current change rate is 800 A/m s using the device of the above example. These are voltage and current waveforms, and this figure shows that even in a very short period of time, from just after an arc occurs until the next short circuit occurs, the voltage waveform is stable and arc length fluctuations are absorbed by a fast current change rate. I understand. Figure (b) shows the voltage and current waveforms in the case of the conventional current change rate mentioned above,
Arc length fluctuations are not absorbed and the arc voltage is unstable.

また、第6図に、上記実施例の装置を使用して電流変化
率を800A/msとした時の起動直後の電圧・電流波
形を示す。該電圧・電流波形を第9図の従来の起動直後
の電圧電流波形と比較すると、アーク長変動が殆ど吸収
され、電圧が安定していることが分かる。
Further, FIG. 6 shows voltage and current waveforms immediately after startup when the device of the above embodiment is used and the current change rate is 800 A/ms. Comparing this voltage/current waveform with the conventional voltage/current waveform immediately after startup shown in FIG. 9, it can be seen that most arc length fluctuations are absorbed and the voltage is stable.

また、第7図(a)に、高速溶接において、電流変化率
を800A/msとした場合の溶接部の状態を示し、第
7図(b)に、同じ高速溶接において、電流変化率を3
000A/msとした場合の溶接部の状態を示す。なお
、溶接仕様は下記の通りである。
In addition, Fig. 7(a) shows the state of the welded part when the current change rate is 800 A/ms in high-speed welding, and Fig. 7(b) shows the state of the welded part when the current change rate is 300 A/ms in the same high-speed welding.
The state of the welded part is shown at 000 A/ms. The welding specifications are as follows.

ワイヤ径:l、2mmソリッド 溶接母材板厚:2.3mm 溶接速度:3.Om/mm CO2ガスシールド 電圧、電流:360アンペア、26ポルト尚、上記測定
によれば、電流変化率が3000A / m sを越え
ると、溶接ワイヤ先端に大きな溶滴が形成されてスパッ
タとして吹き飛ばされる現象、高速溶接の場合に、溶接
母材への溶着量が不足しアンダーカットやハンピングビ
ードが発生する現象が強く現れ、電流変化率を更に高め
るに従い溶接欠陥の発生数が急増する。
Wire diameter: l, 2mm Solid welding base material plate thickness: 2.3mm Welding speed: 3. Om/mm CO2 gas shield voltage, current: 360 amperes, 26 ports According to the above measurements, when the current change rate exceeds 3000 A/m s, large droplets are formed at the tip of the welding wire and are blown off as spatter. In the case of high-speed welding, the phenomenon of undercuts and humping beads occurring due to an insufficient amount of welding to the weld base metal appears strongly, and as the current rate of change is further increased, the number of welding defects increases rapidly.

以上の実験結果から、アーク期間の電流変化率として、
200A/ms〜3000A/msという高電流変化率
を与えることにより、安定した良好な溶接が実現される
ことは明らかであり、実施例の装置によれば、短絡時の
溶接電流の時定数を所望の値にして容易に上記高電流変
化率を与えることができる。
From the above experimental results, as the current change rate during the arc period,
It is clear that stable and good welding can be achieved by providing a high current change rate of 200 A/ms to 3000 A/ms, and according to the apparatus of the example, the time constant of the welding current at the time of short circuit can be adjusted to the desired value. The above-mentioned high current change rate can be easily provided by setting the value of .

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通り、直流リアクトルの値を従来
に比し小さくしてアーク期間における電流変化率を大幅
に高めることができるので、起動直後から安定した溶接
を可能とし、また、安定した高速溶接を実現をする利点
がある。
As explained above, the present invention makes it possible to significantly increase the rate of change in current during the arcing period by reducing the value of the DC reactor compared to the conventional one, making it possible to perform stable welding immediately after startup, and also to achieve stable, high-speed welding. There are advantages to realizing welding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
上記実施例における各部波形図、第3図は電流変化率と
短絡回数との関係を示す測定図、第4図は上記測定に使
用したアーク電圧の特性図、第5図(a)は上記実施例
による電圧・電流波形図、第5図(b)は従来装置によ
る電圧・電流波形図、第6図は上記実施例による起動直
後の電圧・電流波形図、第7図(a)及び(b)は上記
実施例による溶接部の写真図、第8図は従来の問題点を
説明するための定常溶接時の電圧・電流波形図、第9図
は従来問題点を説明するための起動直後の電圧・電流波
形図、第10図(a)及び(b)は従来の問題点を説明
するためのビード形状を示すそれぞれ平面図及び側面図
である。 4−高周波インバータ、7−直流リアクトル、13−短
絡電流設定器、14.16−誤差増幅器、15−・アー
ク電圧設定器、17−モード識別電圧発生器、I EL
−−−−[−−ド判別器、19a、19b−スイッチ、
21・・−基準信号発生器、22−比較器、23−ベー
ス駆動回路。
Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a waveform diagram of each part in the above embodiment, Fig. 3 is a measurement diagram showing the relationship between the current change rate and the number of short circuits, and Fig. 4 is the above Characteristic diagram of the arc voltage used in the measurement. Figure 5(a) is a voltage/current waveform diagram according to the above embodiment. Figure 5(b) is a voltage/current waveform diagram using a conventional device. Figure 6 is a diagram of the voltage/current waveform according to the above embodiment. Figure 7 (a) and (b) are photographs of the welded area according to the above embodiment, and Figure 8 is a diagram of the voltage and current waveforms during steady welding to explain the problems of the conventional method. Current waveform diagram, Figure 9 is a voltage/current waveform diagram immediately after startup to explain conventional problems, and Figures 10 (a) and (b) show bead shapes to explain conventional problems. They are a top view and a side view. 4-High frequency inverter, 7-DC reactor, 13-Short circuit current setting device, 14.16-Error amplifier, 15--Arc voltage setting device, 17-Mode identification voltage generator, IEL
-----[--Do discriminator, 19a, 19b-switch,
21--Reference signal generator, 22-Comparator, 23-Base drive circuit.

Claims (1)

【特許請求の範囲】[Claims] 高周波インバータの出力を直流電力に変換したのち直流
リアクトルを介して出力端子間に挿入される溶接ワイヤ
・溶接母材間に印加する消耗電極式溶接電源において、
上記出力端子間の電圧が入力されこれを設定アーク電圧
と比較する第1の誤差増幅器、上記出力端子を通して流
れる溶接電流が入力されこれを設定短絡電流と比較する
第2の誤差増幅器、上記出力端子間の電圧が入力されこ
れをモード識別用設定電圧と比較して短絡モード・アー
クモードを判別するモード判別器、該モード判別器のア
ークモード判別時に閉路されて上記第1の誤差増幅器の
誤差信号を比較器に入力するスイッチ、該モード判別器
の短絡モード判別時に閉路されて上記第2の誤差増幅器
の誤差信号を上記比較器に入力するスイッチを備え、上
記比較器が、入力される上記誤差信号を基準信号と比較
して該誤差信号の増減に対応して増減する周波数制御信
号を作成し、該周波数制御信号を上記高周波インバータ
の駆動回路に供給することを特徴とする溶接電源の出力
制御装置。
In a consumable electrode type welding power source that converts the output of a high frequency inverter into DC power and then applies it between the welding wire inserted between the output terminals via a DC reactor and the welding base metal,
A first error amplifier receives the voltage between the output terminals and compares it with the set arc voltage; a second error amplifier receives the welding current flowing through the output terminal and compares it with the set short-circuit current; and the output terminal A mode discriminator receives a voltage between the two and compares it with a set voltage for mode discrimination to discriminate between short circuit mode and arc mode, and when the mode discriminator discriminates the arc mode, the circuit is closed to generate an error signal of the first error amplifier. a switch that inputs the error signal of the second error amplifier to the comparator when the mode discriminator determines the short circuit mode, and a switch that inputs the error signal of the second error amplifier to the comparator; Output control of a welding power source, characterized in that the signal is compared with a reference signal, a frequency control signal that increases or decreases in response to an increase or decrease in the error signal is created, and the frequency control signal is supplied to a drive circuit of the high frequency inverter. Device.
JP60076702A 1985-04-12 1985-04-12 Output control device for welding power source Expired - Lifetime JPH0635059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60076702A JPH0635059B2 (en) 1985-04-12 1985-04-12 Output control device for welding power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60076702A JPH0635059B2 (en) 1985-04-12 1985-04-12 Output control device for welding power source

Publications (2)

Publication Number Publication Date
JPS61235079A true JPS61235079A (en) 1986-10-20
JPH0635059B2 JPH0635059B2 (en) 1994-05-11

Family

ID=13612840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60076702A Expired - Lifetime JPH0635059B2 (en) 1985-04-12 1985-04-12 Output control device for welding power source

Country Status (1)

Country Link
JP (1) JPH0635059B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018831A (en) * 2012-07-18 2014-02-03 Daihen Corp Power supply device for welding, and method for controlling the same
WO2015011882A1 (en) * 2013-07-23 2015-01-29 パナソニックIpマネジメント株式会社 Welding device
US10610945B2 (en) 2012-10-01 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681949B (en) * 2019-09-03 2020-07-10 华中科技大学 Method, system and application for identifying arc welding current or voltage peak value and basic value states

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159977A (en) * 1982-03-19 1983-09-22 Matsushita Electric Ind Co Ltd Dc arc welding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58159977A (en) * 1982-03-19 1983-09-22 Matsushita Electric Ind Co Ltd Dc arc welding machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018831A (en) * 2012-07-18 2014-02-03 Daihen Corp Power supply device for welding, and method for controlling the same
US10610945B2 (en) 2012-10-01 2020-04-07 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method
WO2015011882A1 (en) * 2013-07-23 2015-01-29 パナソニックIpマネジメント株式会社 Welding device
CN105142840A (en) * 2013-07-23 2015-12-09 松下知识产权经营株式会社 Welding device
JPWO2015011882A1 (en) * 2013-07-23 2017-03-02 パナソニックIpマネジメント株式会社 Welding equipment
CN105142840B (en) * 2013-07-23 2017-05-10 松下知识产权经营株式会社 Welding device
US10239144B2 (en) 2013-07-23 2019-03-26 Panasonic Intellectual Property Management Co., Ltd. Welding device

Also Published As

Publication number Publication date
JPH0635059B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
JP4916759B2 (en) Polarity switching control method for consumable electrode AC pulse arc welding
JP4652825B2 (en) Arc start control method for AC arc welding
JP5038206B2 (en) Constriction detection control method for consumable electrode arc welding
JPS61235079A (en) Output control device for welding power source
JP3458632B2 (en) Welding voltage detection method and arc welding machine
JP4643113B2 (en) Welding method and power supply device for welding
CN214350181U (en) Argon arc welding device
JP2022099368A (en) Pulse arc welding power supply
JPS61235078A (en) Consumable electrode type arc welding
JP2854613B2 (en) AC arc welding method and apparatus for consumable electrode type gas shielded arc welding
JP2686183B2 (en) AC TIG welding machine
JP2711138B2 (en) AC TIG welding method and apparatus
JPS6240974A (en) Welding control method
JP7429598B2 (en) arc welding power supply
JP4440358B2 (en) Power supply for welding
KR950003575B1 (en) Output control method and device of welding electric power
JP2023183972A (en) Arc start control method
JP3013290B2 (en) AC / DC dual-purpose welding power supply
JPH01197068A (en) Welding arc starting device
JP2022134272A (en) arc welding equipment
JP2023180286A (en) Ac pulse arc welding control method
JP2022045137A (en) Welding power source system
JP2022080330A (en) Consumable electrode arc welding power source
JPS61286068A (en) Power source for arc welding
JP2023108709A (en) Arc-welding method