JPS61234581A - Frequency stabilized laser having single frequency - Google Patents

Frequency stabilized laser having single frequency

Info

Publication number
JPS61234581A
JPS61234581A JP7732785A JP7732785A JPS61234581A JP S61234581 A JPS61234581 A JP S61234581A JP 7732785 A JP7732785 A JP 7732785A JP 7732785 A JP7732785 A JP 7732785A JP S61234581 A JPS61234581 A JP S61234581A
Authority
JP
Japan
Prior art keywords
perturbation
resonator
resonator length
control system
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7732785A
Other languages
Japanese (ja)
Inventor
Norito Suzuki
範人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP7732785A priority Critical patent/JPS61234581A/en
Publication of JPS61234581A publication Critical patent/JPS61234581A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To set the length of a resonator, which is kept constant, at an arbitrary point, by applying perturbation, whose speed is less than a constant value. CONSTITUTION:A second resonator-length control system comprises a comparator 11, a flip-flop 12, a perturbation-direction determining circuit 7 and a perturbation applying circuit 8. The fact that the length of the resonator is kept constant by a first resonator-length control system is confirmed, and operation is started. Perturbation, by which the resonator length is gradually increased by the heat generated by a discharge tube, is applied. With respect to the negative perturbation, the sign is determined by the perturbation-direction determining circuit 7. A signal, which is outputted from the perturbation applying circuit 6, is additionally applied to an additive amplifier 5. The resonator length is gradually increased. The signal of light intensity passes the maximum point and minimum point. The flip-flop 12 is operated at this time, and the positive and negative signs of the perturbation-direction determining circuit 7 are reversed. A reversing amplifier 10 is inserted into the first resonator-length control system by using a signal switching circuit 13, and the output of the amplifier is reversed. Thus the instability of the system is prevented.

Description

【発明の詳細な説明】 a)産業上の利用分野 本発明は発振周波数を安定化したレーデ−装置に関する
DETAILED DESCRIPTION OF THE INVENTION a) Industrial Application Field The present invention relates to a radar device with a stabilized oscillation frequency.

b)従来の構成とその問題点 従来の気体レーザーの!5N!振周波数の安定化の方法
は次の2つに大別されていた。その1つは、レーザー管
に磁場を印加して得られる2周波発振光の間に発生する
光ビートの周波数が一定になるようレーザー共振器長を
制御するものであり、他の1つはレーザー発振光の隣り
合った縦モードの偏光が互いに直行しているという現象
、ならびに隣り合った縦モードの発振光の強度比が共振
器長によって変化するという現象を利用し、レーザー発
振光の互いに直交した2つの偏光成分を検知して、2つ
の偏光の強度の比が一定の値となるように共振器長を制
御するという方法が用いられていた。
b) Conventional configuration and its problems Conventional gas laser! 5N! Methods for stabilizing the vibration frequency were broadly divided into the following two types. One is to control the laser resonator length so that the frequency of the optical beats generated during the two-frequency oscillation light obtained by applying a magnetic field to the laser tube is constant. By utilizing the phenomenon that the polarization of adjacent longitudinal modes of oscillated light is orthogonal to each other, and the phenomenon that the intensity ratio of oscillated light of adjacent longitudinal modes changes depending on the cavity length, laser oscillation light can be made orthogonal to each other. A method has been used in which the two polarized light components are detected and the resonator length is controlled so that the ratio of the intensities of the two polarized lights becomes a constant value.

以上の従来の2つの方法は1次のような欠点を有してい
る。@者の光ビートを用いる方法においては、磁場によ
りレーザー放1!管の陰極に衝突するイオン密俄の一様
性がくずれ、そのためスパッタリングが一様に発生しな
いため、D極の損傷が局所的に発生する可能性があり、
不純物等陰極材料にわずかでも不備があると、レーザー
のノ?命が短かくなるという欠点を右している。また後
者の直交する偏光の強度比を一定とする方法においては
安定性の向上のため、2つ゛の偏光の強度がほぼTしく
なるよう強度比を選び、レーザーの使用に際しては、2
つの偏光のうち一方の偏光のみを取り出すのが佇通であ
り、そのため・使用できる光の強度がレーザー発振光の
半分になり、損失が大きいという欠点を有している。
The above two conventional methods have the following drawbacks. In @'s method using optical beats, a laser is emitted by a magnetic field! The uniformity of the ion density that collides with the cathode of the tube is disrupted, and as a result, sputtering does not occur uniformly, and damage to the D electrode may occur locally.
Even the slightest defect in the cathode material, such as impurities, can cause damage to the laser. The drawback is that life is shortened. In addition, in the latter method of keeping the intensity ratio of orthogonal polarized lights constant, in order to improve stability, the intensity ratio is selected so that the intensity of the two polarized lights is approximately T, and when using a laser, the intensity ratio of the two polarized lights is
It is a method that extracts only one of the two polarized lights, and as a result, the intensity of the usable light is half that of laser oscillation light, which has the drawback of large losses.

C)発明の目的 本発明は前記のような従来の周波数安定化レーザーの欠
点を除去した。長寿命、低損失の周波数安定化レーザー
を実現するためのものである。
C) Object of the Invention The present invention obviates the drawbacks of conventional frequency stabilized lasers as mentioned above. The purpose is to realize a frequency-stabilized laser with long life and low loss.

D)発明の構成 内部共振器を有するレーザーにおいては、放電管の温度
を変化させることにより、共振器長を変化させることが
できる。光ビート周波数や発振光の強度がレーザー共振
器長の変化に応じて変化する場合、光ビート周波数や発
振光の強度が一定になるようにレーザー放電管の温度を
制御することにより、共振器長を一定に保ち発振周波数
の安定化が行なわれることはよく知られている。しかし
D) Structure of the Invention In a laser having an internal resonator, the resonator length can be changed by changing the temperature of the discharge tube. When the optical beat frequency and the intensity of the oscillated light change according to changes in the laser resonator length, the resonator length can be changed by controlling the temperature of the laser discharge tube so that the optical beat frequency and the intensity of the oscillated light are constant. It is well known that the oscillation frequency is stabilized by keeping it constant. but.

この制御は極めて微妙な熱のバランスにもとづいており
、制御ループには綱渡り的な調整を必要とするのが常で
ある。
This control is based on an extremely delicate thermal balance, and often requires tightrope adjustments in the control loop.

本発明は上記の微妙な熱バランスを行なっている制御ル
ープに対し、一定の速度以下であれば熱バランスをくづ
すことなく摂動を加え得るという事実の発見にもとづく
もので、該摂動を用い、前記の一定に保たれた共振=長
を希望する任意の点に設定するものである。
The present invention is based on the discovery that perturbations can be applied to the control loop that maintains the delicate heat balance described above without destroying the heat balance at speeds below a certain level, and the present invention uses the perturbations to , the above-mentioned constant resonance length is set at any desired point.

以下図面を用いて本発明の説明を行なう。The present invention will be explained below using the drawings.

レーザー共振器長をLとするとレーザーの縦モード間隔
はC/21ヘルツであり、隣り合ったモードの偏光は圧
いに直交している。共振器長しが変化すると、第1図に
示すごとく各モードの光の強度はレーザー利得曲線gに
従って変化する。
When the laser resonator length is L, the longitudinal mode spacing of the laser is C/21 hertz, and the polarizations of adjacent modes are substantially orthogonal. When the resonator length changes, the intensity of light in each mode changes according to the laser gain curve g, as shown in FIG.

従って、前述のように第1図aのごとく、2つのモード
を偏光によって分離し、それぞれの強度が等しくなるご
とく制御することにより安定な2モードの発振を得るこ
とができ、すでに実用されているが、実用に際して必要
な光は2モードではなく単モードであるので、一方のみ
を取り出すため損失が大きい。
Therefore, as mentioned above, as shown in Figure 1a, stable two-mode oscillation can be obtained by separating the two modes by polarization and controlling their respective intensities to be equal, and this is already in practical use. However, in practical use, the light required is not two modes but a single mode, so only one mode is extracted, resulting in a large loss.

本発明は発振が第1図す、のような状態で行なわれるよ
う制御を行ない、損失を最小にしようとするものである
。つまりピーク位置に制御点を設定しようとするもので
ある0元来、ピーク設定の制御は信号に交流変調信号を
重ねて行なうのが常であるが、レーザーにおいては交流
変調は大きな欠点となるので1本発明はこれを避け、前
記の摂動を用いてピーク設定を行なうものである。
The present invention attempts to minimize loss by controlling the oscillation to occur in the state shown in FIG. 1. In other words, the purpose is to set a control point at the peak position.Originally, peak setting control is usually carried out by superimposing an AC modulation signal on the signal, but AC modulation is a major drawback in lasers. 1. The present invention avoids this and uses the above-mentioned perturbation to set the peak.

第3図のごとく、レーザー 1の発振光のうち1つの偏
光を偏光子20によって選び検知器2で検出すると、検
出された光強度の信号は共振器長りの変化に従って第2
図aのように変化する。従って検知器2で得られる信号
を増幅器4で増幅し、バイアスの加算の可能な加1を増
幅器5でバイアスを加え、温度制御用のファン3あるい
はヒーターを駆動すれば共振器長をある一定値例えば第
2図のLOの点に固定することができる0以上に対し、
摂動方向つまり、共振器長を長くする方向に摂動を加え
るか、短くする方向に摂動を加えるかを決める摂動方向
決定回路7で指令を出し、摂動方向決定回路の指令に基
づき、熱バランスをくづさないという条件を満しつつ摂
動を加える機能を有する摂動印加回路Bの出力を、加算
増幅器5に追印加することにより、熱バランスを保った
まま徐々に共振器長を変化させることができる。
As shown in Fig. 3, when one polarized light of the oscillation light of the laser 1 is selected by the polarizer 20 and detected by the detector 2, the detected light intensity signal changes to the second polarized light according to the change in the resonator length.
It changes as shown in figure a. Therefore, if the signal obtained by the detector 2 is amplified by the amplifier 4, the possible bias addition is added by the amplifier 5, and the fan 3 or heater for temperature control is driven, the resonator length is set to a certain value. For example, for 0 or more, which can be fixed at the LO point in Figure 2,
The perturbation direction determining circuit 7 issues a command to determine the perturbation direction, that is, whether to apply perturbation in the direction of lengthening or shortening the resonator length, and the heat balance is determined based on the command of the perturbation direction determination circuit. By additionally applying to the summing amplifier 5 the output of the perturbation applying circuit B, which has the function of applying perturbation while satisfying the condition that the temperature does not increase, the resonator length can be gradually changed while maintaining the thermal balance.

この共振器長の変化の方向の選択が任意であることを利
用して、発振光の強度の極大点あるいは極小点に相当す
る共振器長に徐/?に接近せしめ、極大点あるいは極小
点を通過すると共振器長の変化の方向を逆転せしめ、常
に共振器長が極大点あるいは極小点の近傍に存在するご
とく制御することができる。
Taking advantage of the fact that the direction of change in the resonator length can be arbitrarily selected, the resonator length is gradually adjusted to the maximum or minimum point of the oscillation light intensity. When the resonator length approaches the maximum point or minimum point, the direction of change in the resonator length is reversed, making it possible to control the resonator length so that it always exists near the maximum point or minimum point.

第4図は本発明の実施例である。FIG. 4 shows an embodiment of the present invention.

本実施例においては、偏光子20で選定されたレーザー
lの発振光の1つの偏光成分の強度は検知器2で検知さ
れ増11塁4で増幅される。該増幅された信号の極大値
あるいは極小値はピークホルダー 8でピーク値として
記憶され該ピーク値とある時点の信号値の差が差増幅器
3の出力となって現われる。この信号値の差を加算増幅
器5でバイアスを加え、加算増幅器5の出力を温度mI
IrI器3に印加して熱バランスを取り、共振器長を一
定値(第2図a、Lo)に保つ、このループをfjSl
の共振器長制御系と呼ぶ、第2の共振器長制御系はコン
パレーター It、フリップフロップ + 2 、 摂
動方向決定回路7.摂動印加回路B、からなる。第2の
共振器長制御系は第1の共振器長制御系により共振器長
が一定に保たれたことを確認して動作に入る。まづ、共
振器長が放電管の発生熱により徐々に増加するような摂
動を加える。以下この方向の摂動を負の摂動と呼び、共
振器長が徐々に減少するような摂動を正の摂動と呼ぶ、
負の摂動は。
In this embodiment, the intensity of one polarized component of the oscillation light of the laser 1 selected by the polarizer 20 is detected by the detector 2 and amplified by the amplifier 4. The maximum value or minimum value of the amplified signal is stored as a peak value in the peak holder 8, and the difference between the peak value and the signal value at a certain point in time appears as the output of the difference amplifier 3. A summing amplifier 5 applies a bias to the difference in signal values, and the output of the summing amplifier 5 is set at a temperature mI.
fjSl
The second resonator length control system, called the resonator length control system, includes a comparator It, a flip-flop +2, and a perturbation direction determining circuit7. It consists of a perturbation applying circuit B. The second resonator length control system starts operation after confirming that the resonator length is kept constant by the first resonator length control system. First, a perturbation is applied so that the resonator length gradually increases due to the heat generated by the discharge tube. Hereinafter, perturbations in this direction will be referred to as negative perturbations, and perturbations in which the resonator length gradually decreases will be referred to as positive perturbations.
Negative perturbation is.

摂動方向決定回路7で符号の決定を行ない、その符号の
決定に基き摂動印加回路6により出される信号が、加算
増幅!15に追印加されることにより行なわれる。負の
摂動が実施されると、共振器長は徐々に増加し、それに
併なって光強度の信号は極大あるいは極小(第2図a、
LC)点を通過する。極大あるいは極小点を通過したこ
とは、差増幅器8の出力の零からのずれをコンパレータ
ー11で検知することにより知ることができる。コンパ
レーター 11 で極大あるいは極小点の通過が確認さ
れるとフリップフロップ12を動作せしめ、摂動方向決
定回路7の正負を逆転せしめると共に信号vJ科回路1
3を用いて第1の共振器長制御系に反転増幅B10を挿
入することにより第1の共振器長制御系の増幅器の出力
をtIS2図すのごとく反転して系の不安定化を防止す
る。摂動が負から正に変ると光強度の信号は再び極大あ
るいは極小点を通過するが、この点の通過がコンパレー
ター11で確認されると再び摂動方向の反転を行う、以
下同じ動作を1&返す、つまり摂動方向を常に把握した
上で、極大あるいは極小点の通過を確認し、その点を境
にし摂動の方向を決定して摂動を行なうことにより光強
度が常に極大あるいは極小の向きに向って移動するごと
く、第1の共振器長制御系で熱バランスを取りながら、
第2の制御系により摂動を行うことによって共振器長の
ルIllを行なうものであるる、摂動印加回路は十分長
い時定数を有する積分器、摂動方向決定回路はフリップ
フロップの信号に応じ、正負の一定電圧を発生するコン
パレーターで実現される。
The perturbation direction determining circuit 7 determines the sign, and the signal output by the perturbation applying circuit 6 based on the determined sign is added and amplified! This is done by applying an additional voltage to 15. When a negative perturbation is performed, the cavity length gradually increases, and the light intensity signal changes to a maximum or minimum (Fig. 2a,
LC) point. Whether the maximum or minimum point has been passed can be determined by detecting the deviation of the output of the difference amplifier 8 from zero using the comparator 11. When the passage of the maximum or minimum point is confirmed by the comparator 11, the flip-flop 12 is operated to reverse the polarity of the perturbation direction determining circuit 7, and the signal VJ circuit 1 is activated.
By inserting the inverting amplifier B10 into the first resonator length control system using 3, the output of the amplifier of the first resonator length control system is inverted as shown in tIS2 to prevent the system from becoming unstable. . When the perturbation changes from negative to positive, the light intensity signal passes through the maximum or minimum point again, but when the passage of this point is confirmed by the comparator 11, the perturbation direction is reversed again. In other words, by always knowing the perturbation direction, checking the passage of the maximum or minimum point, determining the direction of the perturbation using that point as the boundary, and performing the perturbation, the light intensity will always be directed towards the maximum or minimum point. As it moves, the first resonator length control system maintains heat balance.
The resonator length is determined by perturbing the second control system.The perturbation applying circuit is an integrator with a sufficiently long time constant, and the perturbation direction determining circuit is configured to change the positive or negative direction according to the flip-flop signal. This is realized by a comparator that generates a constant voltage.

一般のヘリウムネオンレーザ−放電管においてはラムデ
ィップは明確に現われることはないので。
Lamb dips do not clearly appear in ordinary helium-neon laser discharge tubes.

その場合には共振器の設定値は利用する偏光の極大値あ
るいは隣のモードの偏光の極小値とするのがよく、同位
元素を用いた放電管で第1図Cのごとくラムディップが
現れる場合には極小値を選ぶとよい。
In that case, the setting value of the resonator should be set to the maximum value of the polarized light to be used or the minimum value of the polarized light of the adjacent mode.If a lamb dip appears as shown in Figure 1 C in a discharge tube using isotopes, It is best to choose the minimum value for .

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の説明図。 第4図は本発明の実施例である。 l・・・・・・・・・レーザー放電管 2・・・・・・・・・検知= 3・・・・・・・・・温度31tM器 4・・・・・・・・・環m器 5・・・・・・・・・加算増幅器 6・・・・・・・・・摂動印加回路 7・・・・・・・・摂動方向決定回路 8・・・・・・・・・ピークホルダー 9・・・・・・・・・差増幅塁 工0・・・・・・・・・反転増幅器 11・・・・・・・・・コンパレーター12・・・・・
・・・・フリップフロップ13・・・・・・・・・信号
切替回路 20・・・・・・・・・偏光イ g・・・・・・・・・利得曲線 L・・・・・・・・・共振器長
FIG. 1, FIG. 2, and FIG. 3 are explanatory diagrams of the present invention. FIG. 4 shows an embodiment of the present invention. l...Laser discharge tube 2...Detection = 3...Temperature 31tM device 4...Ring m Device 5...Summing amplifier 6...Perturbation applying circuit 7...Perturbation direction determining circuit 8...Peak Holder 9... Difference amplification base 0... Inverting amplifier 11... Comparator 12...
...Flip-flop 13...Signal switching circuit 20...Polarization Ig...Gain curve L... ...resonator length

Claims (1)

【特許請求の範囲】[Claims] 放電励起を用いた内部共振器を有する気体レーザーの発
振光のうち、1つの偏光成分を有する光を検出し、該1
つの偏光成分を有する光の強度が1つの設定値となるご
とくレーザー放電管の温度を制御して、該気体レーザー
の共振器長を制御する第1の共振器長制御系と、前記1
つの設定値を増あるいは減の任意の向きに徐々に変化せ
しめる機能を有する第2の共振器長制御系を有し、前記
第1の共振器長制御系により、該気体レーザーの共振器
長を一定値に保つと共に、前記第2の共振器長制御系に
より、該一定値を前記1つの偏光成分を有する光の強度
が極大値あるいは極小値の近傍になるごとく選ぶことを
特長とする周波数安定化レーザー装置
Of the oscillation light of a gas laser having an internal cavity using discharge excitation, light having one polarization component is detected, and the light having one polarization component is detected.
a first resonator length control system that controls the resonator length of the gas laser by controlling the temperature of the laser discharge tube so that the intensity of light having two polarization components becomes one set value;
a second resonator length control system having a function of gradually increasing or decreasing the two set values in an arbitrary direction, and the resonator length of the gas laser is controlled by the first resonator length control system. Frequency stabilization characterized in that the constant value is maintained at a constant value and the constant value is selected by the second resonator length control system so that the intensity of the light having the one polarization component is near a maximum value or a minimum value. chemical laser equipment
JP7732785A 1985-04-11 1985-04-11 Frequency stabilized laser having single frequency Pending JPS61234581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7732785A JPS61234581A (en) 1985-04-11 1985-04-11 Frequency stabilized laser having single frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7732785A JPS61234581A (en) 1985-04-11 1985-04-11 Frequency stabilized laser having single frequency

Publications (1)

Publication Number Publication Date
JPS61234581A true JPS61234581A (en) 1986-10-18

Family

ID=13630837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7732785A Pending JPS61234581A (en) 1985-04-11 1985-04-11 Frequency stabilized laser having single frequency

Country Status (1)

Country Link
JP (1) JPS61234581A (en)

Similar Documents

Publication Publication Date Title
RU2331846C2 (en) Stabilised solid laser gyroscope
US3649930A (en) Method of frequency-stabilization of a single-made gas laser
US3831108A (en) Method of frequency and intensity stabilization of the radiation emitted by a high-power gas laser and a gas laser for the application of said method
Yoshino Frequency stabilization of internal-mirror He-Ne (λ= 633 nm) lasers using the polarization properties
US4964132A (en) Laser arrangement with frequency stabilized and intensity stabilized laser emission
JPS61234581A (en) Frequency stabilized laser having single frequency
US5059028A (en) Ring laser gyroscope having means for maintaining the beam intensity
US11476633B2 (en) Apparatus and methods for stable bidirectional output from ring laser gyroscope
US3613026A (en) Plasma tube impedance variation frequency stabilized gas laser
GB2029631A (en) Laser gyroscope
Tai et al. Spectral linewidth of an external‐cavity laser diode stabilized by a fiber‐optic ring resonator
US3622908A (en) Dithered gain characteristic stabilization of a gas laser
US4866722A (en) Metal vapor laser device stabilizing system
JPS61239685A (en) Frequency and intensity stabilizing laser device
JPS61260694A (en) Stabilized laser having absolute oscillating frequency
JPH0337873B2 (en)
US3469205A (en) Control of optical masers or lasers
JPS6154687A (en) Stabilized laser device using inversion magnetic field
JPS58151083A (en) Transverse flow type gas laser device
SU536628A1 (en) Excitation device for linear ion accelerator resonator
US3846716A (en) Method of regulating light emitting power of laser and apparatus for effecting same
JPS6366074B2 (en)
JP2626566B2 (en) Solid state laser oscillator
JPS61125277A (en) Image recording device
JPS633476B2 (en)