JPS61234324A - Stress sensor - Google Patents

Stress sensor

Info

Publication number
JPS61234324A
JPS61234324A JP60075451A JP7545185A JPS61234324A JP S61234324 A JPS61234324 A JP S61234324A JP 60075451 A JP60075451 A JP 60075451A JP 7545185 A JP7545185 A JP 7545185A JP S61234324 A JPS61234324 A JP S61234324A
Authority
JP
Japan
Prior art keywords
piezoelectric material
interdigital electrode
saw
material substrate
electrode idt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60075451A
Other languages
Japanese (ja)
Other versions
JPH0643928B2 (en
Inventor
Koichiro Miyagi
宮城 幸一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP60075451A priority Critical patent/JPH0643928B2/en
Publication of JPS61234324A publication Critical patent/JPS61234324A/en
Publication of JPH0643928B2 publication Critical patent/JPH0643928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators
    • G01L1/165Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators with acoustic surface waves

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To achieve the protection and a higher sensitivity of SAW devices while enabling temperature compensation of a circuit, by combining sets of SAW devices, two per set, with the transduce surfaces thereof facing each other to form an air gap therebetween with two layers of beams. CONSTITUTION:To obtain two differential signals, two SAW devices made almost identical are used. To protect interdigital transducers IDT2a and 2b for transmitting SAWs and those 3a and 3b for receiving SAWs arranged on the surface of the respective devices and a SAW propagation path between the two transducers from external environment, these devices are combined so as to make the transducer surfaces of the two SAW devices face each other while an air gap is formed between the devices through seat members 6a and 6b, so to speak, by building two layers of beams so that the transducers will not contact each other. This enables the protection and a higher sensitivity of the devices along with a temperature compensation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、主に曲げの応力測定に使用するための力学
的センサに係シ、特に固体物質の表面を伝搬する表面弾
性波(SAW:旦urface AcousticWa
ve)を利用したSAWデバイスの感圧機能を用いた応
力センサに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a mechanical sensor mainly used for measuring bending stress, and in particular to a surface acoustic wave (SAW) that propagates on the surface of a solid material. Surface AcousticWa
The present invention relates to a stress sensor using the pressure-sensitive function of a SAW device using ve).

〔従来の技術〕[Conventional technology]

SAWデバイスを用いたSAW発振回路において、SA
W伝搬路の状態を力学的に歪ませ、SAWの伝搬速度、
もしくは伝搬経路長の変化を生じさせることにより、見
損回路固有の発振周波数を変化させ、この周波数の変化
量からSAWデバイスの受けた力や圧力を検出するSA
W圧カセンサがある。このSAWセンサは小形軽量、高
精度であシ、また、センサ部の製作が容易で再現性が高
いといった特徴を有しており、特に、圧力や応力、及び
加速度等の力学的センサとして実用的価値が高い。
In a SAW oscillation circuit using a SAW device, the SA
By dynamically distorting the state of the W propagation path, the SAW propagation speed,
Alternatively, SA changes the oscillation frequency unique to the missed circuit by causing a change in the propagation path length, and detects the force or pressure received by the SAW device from the amount of change in this frequency.
There is a W pressure sensor. This SAW sensor has the characteristics of being small, lightweight, highly accurate, and the sensor part is easy to manufacture and has high reproducibility, making it particularly useful as a mechanical sensor for pressure, stress, acceleration, etc. High value.

さらに、このSAWセンサは力学的センナに限らず、そ
の大多数がSAW発振回路を構成し、この発振回路の固
有発振周波数の変化によって測定量を表示する方式であ
る。これは、SAWデバイス自体が受動的なデバイスで
あり、自発的にエネルギーを放出した夛、被測定物の放
出エネルギーを他の形に変換して出力したシするタイプ
のデバイスではないからである。このため、SAWデバ
イスをセンナに用いる場合には、まず、SAWデバイス
が安定に動作する状態、す表わち、SAWデバイスを含
む閉回路が固有振動数で定常発振する状態を作る必要が
ある。また、このよりなSAW発振回路は外部の温度変
化に敏感であるため、定温状態で使用する以外は、適当
な温度補償をする必要がちシ、その対策として例えば、
2個のSAW発振回路の出力信号の差周波数を検出して
、温度変化による発振周波数の変移をキャンセルさせる
方法などが広く用いられている。
Furthermore, this SAW sensor is not limited to a mechanical sensor, and most of them constitute a SAW oscillation circuit, and the measured quantity is displayed by a change in the natural oscillation frequency of this oscillation circuit. This is because the SAW device itself is a passive device, and is not a type of device that spontaneously emits energy or converts the emitted energy of the object to be measured into another form and outputs it. Therefore, when using a SAW device as a sensor, it is first necessary to create a state in which the SAW device operates stably, that is, a state in which a closed circuit including the SAW device oscillates steadily at its natural frequency. Also, since this rigid SAW oscillation circuit is sensitive to external temperature changes, it is necessary to perform appropriate temperature compensation unless it is used in a constant temperature state.As a countermeasure, for example,
A widely used method is to detect the difference in frequency between the output signals of two SAW oscillation circuits to cancel the change in oscillation frequency due to temperature change.

一方、力学的なSAWセンサでは、僅かな外力を検出す
る高感度な性能と同時に、SAWデバイス自体が使用中
に損傷を受けないように構造上の堅牢性も必要である。
On the other hand, a dynamic SAW sensor requires not only high sensitivity to detect a slight external force, but also structural robustness to prevent the SAW device itself from being damaged during use.

この2つの性質は相反するものであシ、加えて実用的な
セ/すを実現するためには構造の単純化と小形化も併せ
て必要である。
These two properties are contradictory, and in addition, in order to realize a practical system, it is necessary to simplify and downsize the structure.

現在、力学的なSAWセンサの構造としては、金属板上
にSAWデバイスのチップを1個、あるいは、金属板の
表裏面に各1個づつ貼シ付けたものや、1個あるいは裏
面同士を貼シ合わせた2個1組のチップを、片持ち梁成
に保持した構造のものなどがある。
Currently, the structure of a mechanical SAW sensor is one in which one SAW device chip is attached to a metal plate, one chip each on the front and back sides of a metal plate, or one chip or two chips are attached to the back sides of a metal plate. There are structures in which a set of two chips are held together in a cantilever configuration.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に述べたように、力学的なSAWセンサ、すなわち
応力センサでは、電気回路の動作を補償することと、構
造的にSAWデバイスが保護され、かつ、高感度である
ことが要求される。
As described above, a mechanical SAW sensor, that is, a stress sensor, requires compensation for the operation of an electric circuit, structural protection of the SAW device, and high sensitivity.

そこで、本発明は、このような要求を満たすためになさ
れたもので、簡単な構造にもかかわらず、SAWデバイ
スの保護と高感度化を両立させ、かつ、差動検出によっ
て回路の温度補償も可能にさせることを目的としたもの
である。
Therefore, the present invention has been made to meet these demands, and despite its simple structure, it achieves both protection and high sensitivity of SAW devices, and also provides temperature compensation for the circuit through differential detection. It is intended to make it possible.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、差動用の2つの信号を得るために、はぼ
同等に作成した2個のSAWデバイスを使用し、また、
各デバイスの表面に配置されているSAWの送信用及び
受信用の交差指形電極IDT (Inter Digi
tal工ransducer )と、この2つの電極間
のSAW伝搬路とを外部環境よシ保護するために、前記
2個のSAWデバイスの電極面が互いに向き合うように
組合せ、かつ、これらの電極が互いに接触しないように
、デバイスの間に座部材を介してエアーギャップを形成
する構造、すなわち二層の梁を構成するものとした。
In this invention, in order to obtain two differential signals, two SAW devices made almost identically are used, and
Interdigital electrodes (IDT) for SAW transmission and reception are placed on the surface of each device.
In order to protect the transducer (transducer) and the SAW propagation path between these two electrodes from the external environment, the two SAW devices are combined so that their electrode surfaces face each other, and these electrodes are in contact with each other. In order to prevent this, we constructed a structure that forms an air gap between the devices via a seat member, that is, a two-layer beam.

〔作 用〕[For production]

以上のような構成によシ、本発明によれば2個のSAW
デバイスの簡単な組合せ構造によりて、各電極及びSA
W伝搬路面の保護と、電気回路の温度補償などに用いる
2つの信号を得ることが可能となる。また、この構造の
応力センサを曲げの応力測定に使用すれば、2個のSA
Wデバイスの電極面には各々伸張と圧縮による互いに逆
向きの力が加わるため、この2つの応力によって前記2
個のSAWデバイスを含む発振回路のそれぞれの発振周
波数は互いに異なる方向に変移する。この結果、前記発
振周波数の差を検出すれば、1個のSAWデバイスを使
用した場合に比べ、約2倍の周波数変化量を得ることが
でき、また、2つのSAWデバイス及び発振回路内で生
ずる温度特性や経時変化などによる周波数ドリフトも、
大半のものは両回路共通に発生するものであるから、こ
れを差動検出によって除去することが可能である。
According to the above configuration, according to the present invention, two SAWs
Due to the simple combination structure of the device, each electrode and SA
It becomes possible to obtain two signals used for protection of the W propagation road surface, temperature compensation of the electric circuit, etc. In addition, if a stress sensor with this structure is used to measure bending stress, two SA
Since forces in opposite directions due to expansion and compression are applied to the electrode surfaces of the W device, these two stresses cause the above two
The oscillation frequencies of the oscillation circuits including the SAW devices shift in different directions. As a result, by detecting the difference in the oscillation frequencies, it is possible to obtain approximately twice the amount of frequency change compared to the case where one SAW device is used, and the amount of change in frequency that occurs within the two SAW devices and the oscillation circuit can be obtained. Frequency drift due to temperature characteristics, changes over time, etc.
Since most of these occur commonly in both circuits, they can be removed by differential detection.

〔実施例〕〔Example〕

第1図は、本発明の一実施例における構成図−を。 FIG. 1 is a block diagram of an embodiment of the present invention.

示している。第1及び第2の圧電材基板1a、lbの各
々の表面に、SAWを発射させるための送信用交差指形
電極I D T 2a、2bと、SAWを受信するため
の受信用交差指形電極I D T 3a、3b t−設
けてSAWデバイスを構成している。各IDTの片側の
電極は全て接地されておシ、また、送信用IDTの接地
されていない側の信号入力用電極と、受信用IDTの同
じく接地されていない側の信号出力用電極との間には、
各デバイスごとにSAW発振回路を構成するための増幅
器4a、4bが接続されている。この増幅器と前記SA
Wデバイスとによって電気的閉ループ回路が構成され、
SAWデバイスの電極構造によって生ずる周波数選択特
性と電気回路の位相遅延特性による固有振動数で自励発
振が行われる。との自励発振中に前記送信用交差指形電
極IDTによって励起されたSAWは、第1図において
点線で示しているようK、第1及び第2の圧電材基板上
を進行する。このSAWは、一定温度において物理定数
とも言える圧電材基板の材質で定められた一定の音速で
、送信用交差指形電極IDTから受信用交差指形電極I
DTへと伝搬する。また、このSAWの伝搬によって生
ずる信号の遅延時間は、前記SAW発振回路の発振回路
の発振周波数に顕著な影響を与え、通常、伝搬路長が短
くなり、遅延時間が小さくなるに従りて、発振周波数は
低い方向に変移する。ゆえに、外力によって前記第1及
び第2の圧電材基板のSAW伝搬面にSAW伝搬方向に
対して伸張もしくは圧縮を生じさせれば、各々の前記S
AW発振回路の発振周波数はこの外力に応じた変化を生
ずる。
It shows. Transmitting interdigital electrodes IDT 2a, 2b for emitting SAW and receiving interdigital electrodes for receiving SAW are provided on the surfaces of each of the first and second piezoelectric material substrates 1a, lb. IDT 3a, 3b t- are provided to constitute a SAW device. All electrodes on one side of each IDT are grounded, and between the signal input electrode on the ungrounded side of the transmitting IDT and the signal output electrode on the ungrounded side of the receiving IDT. for,
Amplifiers 4a and 4b are connected to each device to configure a SAW oscillation circuit. This amplifier and the SA
An electrical closed loop circuit is configured with the W device,
Self-oscillation occurs at a natural frequency due to frequency selection characteristics caused by the electrode structure of the SAW device and phase delay characteristics of the electric circuit. The SAW excited by the transmitting interdigital electrode IDT during self-excited oscillation advances on the first and second piezoelectric substrates K, as shown by dotted lines in FIG. This SAW operates from the transmitting interdigital electrode IDT to the receiving interdigital electrode I at a constant sound speed determined by the material of the piezoelectric material substrate, which can be said to be a physical constant at a constant temperature.
Propagates to DT. Further, the signal delay time caused by the SAW propagation has a significant effect on the oscillation frequency of the oscillation circuit of the SAW oscillation circuit, and normally, as the propagation path length becomes shorter and the delay time becomes smaller, The oscillation frequency shifts downward. Therefore, if the SAW propagation surfaces of the first and second piezoelectric material substrates are expanded or compressed in the SAW propagation direction by an external force, each of the SAW
The oscillation frequency of the AW oscillation circuit changes in response to this external force.

本発明では後述する二層の梁の構造によって、一方向に
加えられた外力により、2つのSAW発振回路が互いに
逆向きに周波数変移するようにしであるため、2つの発
振回路の出力信号を受領してその位相差を検出する比較
回路5を用いて、外力に対応する周波数の変化量を検出
している。
In the present invention, the two SAW oscillation circuits are configured to shift frequencies in opposite directions due to an external force applied in one direction due to the two-layer beam structure described later, so that the output signals of the two oscillation circuits are received. The amount of change in frequency corresponding to the external force is detected using a comparator circuit 5 that detects the phase difference.

第2図はSAWセンサ部の構造例を示した図である。2
枚の圧電材基板1a、lbは、電極が設置されている面
が向い合うように組合され、かつ、2枚の基板の間にエ
アーギャップを生ずるように基板の端面に座部材6a、
6b f介しである。本図の例は、片持ちはシ(梁)式
の応力センサの構造を示しており、センサの一万の端部
は、支持部材7で固定されてお夛、もう−万の端面には
矢印で示したように外力が加えられる。この結果、仁の
二層の梁では、圧電材基板1aの電極面に゛は圧縮の力
が加わり、反対に、圧電材基板1bの電極面には伸張の
力が加わる。これらの力によってSAW伝搬路の長さが
変化し、最終的には、SAW発振回路の発振周波数が変
移することは前述した通シである。前記座部材6a、6
bは、本図例のような片持ち梁成の場合、固定端に設置
するものは固くて変形しにくい材質のものを用い、力を
加えるべき端面の部材には、圧電材基板の曲げによって
生ずる上下基板面のズレを吸収するような、いくらか弾
力性をもたせたものが望ましい。また、この座部材の表
裏面、及び側面を利用して、圧電材基板上の電極のリー
ド線を引き出す(実際は、座部材に導電ペースト等でプ
リント配線を施す)ことも考えられ、この場合、には絶
縁体を使用する必要がある。
FIG. 2 is a diagram showing an example of the structure of the SAW sensor section. 2
The piezoelectric material substrates 1a and 1b are assembled so that the surfaces on which the electrodes are installed face each other, and a seat member 6a is placed on the end surface of the substrates so as to create an air gap between the two substrates.
6b f via. The example in this figure shows the structure of a stress sensor with a cantilever type. An external force is applied as shown by the arrow. As a result, in the two-layer beam, a compressive force is applied to the electrode surface of the piezoelectric material substrate 1a, and, conversely, a stretching force is applied to the electrode surface of the piezoelectric material substrate 1b. As mentioned above, these forces change the length of the SAW propagation path, and ultimately the oscillation frequency of the SAW oscillation circuit changes. The seat members 6a, 6
In the case of a cantilever structure as shown in the example in this figure, the material installed at the fixed end is hard and difficult to deform, and the member on the end face to which force should be applied is made by bending the piezoelectric material substrate. It is desirable to have some elasticity so as to absorb the misalignment of the upper and lower substrate surfaces that occurs. It is also possible to draw out the lead wires of the electrodes on the piezoelectric substrate using the front and back surfaces and side surfaces of this seat member (actually, print wiring is applied to the seat member with conductive paste, etc.); in this case, requires the use of insulators.

次に、SAWセンサ部の両端部と中央部とに反対方向の
力を加えて使用する場合を考える。この場合は、両端部
を固定して中央部に加圧する場合と、これとは逆に、中
央部を固定して両端部に加圧する場合が考えられる。さ
らに、中央部及び両端部共に固定せず、3点に加圧する
場合もhD得る。この状態を第3図に示した。また、さ
らに、両端部をくわえて曲げる状態においても、変形と
しては第3図に示したような加圧状態となる。この場合
には、SAWセンサ部全体を保持するような支持部材が
必要でアシ、例えば、第4図に示すような外形となる。
Next, consider a case where forces are applied in opposite directions to both ends and the center of the SAW sensor section. In this case, it is conceivable that both ends are fixed and pressure is applied to the center, or conversely, that the center is fixed and pressure is applied to both ends. Furthermore, hD can also be obtained when pressure is applied to three points without fixing both the center and both ends. This state is shown in FIG. Furthermore, even when both ends are held together and bent, the deformation results in a pressurized state as shown in FIG. 3. In this case, a support member is required to hold the entire SAW sensor section, and the support member has an external shape, for example, as shown in FIG. 4.

第一4図の例では、弾性を有する絶縁材料8、例えば合
成樹脂力どを用いてSAWデバイス及び、発振回路、比
較回路を保持被覆し、かつ、SAWセンサ部の中央が曲
が9易くなるように被覆の厚さを薄くした構造となって
いる。
In the example shown in FIG. 14, the SAW device, the oscillation circuit, and the comparison circuit are held and covered using an elastic insulating material 8, such as synthetic resin, and the center of the SAW sensor section is easily bent. The structure has a thinner coating.

この構造の応力センサは、従来から使われている歪みゲ
ージと同様に使用すること、すなわち、変形を測定する
場所に貼シ付けて使用することができる。
A stress sensor with this structure can be used in the same way as a conventional strain gauge, that is, it can be attached to a location where deformation is to be measured.

〔発明の効果〕〔Effect of the invention〕

以上、説明したように、本発明の応力センサでは、2枚
1組のSAWデバイスを、電極面を向い合せて組合せ、
その間にエアギャップを形成する二層の梁を採用するこ
とによって、各電極及びSAW伝搬路面の保護と、電気
回路の温度補償などに用いる2つの出力信号を得ること
が可能となった。また、向い合せに組合せたSAWデバ
イスは外力によって互いに逆方向の伸縮力を与えられる
ため、前記2つの出力信号の周波数変移が逆方向となシ
、これら周波数の差を測定して加えられた力を検出する
場合には、1枚のSAWデバイスを使用する場合に較べ
、約2倍の検出感度が得られるようになった。さらにま
た、2枚のSAWデバイスを向い合せに組合せる構造は
、小形化に適しており、また、組合゛せ後のSAWセン
サ部の外面に感圧機能を有する部分が露出しないため、
被覆も容易でおるといった実用的な効果も有する。
As explained above, in the stress sensor of the present invention, a set of two SAW devices are combined with their electrode surfaces facing each other,
By employing two layers of beams that form an air gap between them, it has become possible to obtain two output signals for use in protecting each electrode and the SAW propagation path, as well as for temperature compensation in the electrical circuit. Furthermore, since the SAW devices combined facing each other are subjected to expansion/contraction forces in opposite directions due to external forces, if the frequency shifts of the two output signals are in opposite directions, the applied force can be determined by measuring the difference between these frequencies. When detecting , the detection sensitivity can now be approximately twice as high as when using a single SAW device. Furthermore, the structure in which two SAW devices are combined face-to-face is suitable for miniaturization, and since the part having a pressure-sensitive function is not exposed on the outer surface of the SAW sensor section after combination,
It also has the practical effect of being easy to coat.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の応力センナの電気回路構成を示す図
。 第2図は、SAWセンサ部と支持部、加圧点及び加圧状
態を示す図。 第3図は、SAWセンサ部の加圧点を示す図。 第4図は、前記第3図のSAWセンサ部と発振回路部及
び検出回路部を被覆した応力センサの全体図を示す。 図中、la、lbは第1.第2の圧電材基板、2m。 2bは送信用交差指形電極IDT、3a、3bは受信用
交差指形電極IDT、4a、4bは増幅器、5は比較回
路、6a、6bは座部材、7は支持部材を示す。 特許出願人   安立電気株式会社 代理人  弁理士  小池 龍太部 14回 手続補正書く自発) 昭和60年5月−2−2日 1、事件の表示 昭和60年特許願第75451号 2、発明の名称 応力センサ 3、補正をする者 事件との関係    特許出願人 住所 ■106東京都港区南麻布五丁目10番27号名
称(057)安立電気株式会社 代表者 藤田雄五 4、代理人 住所 ■106東京都港区南麻布五丁目10番27号5
、補正命令の日付   自発 6、補正の対象 (1)  願書 7゜補正の内容 (1)  特許願のあとに次を追加する。 (特許法第38条ただし書の規定による特許出願)(2
)第2項に次を追加する。
FIG. 1 is a diagram showing the electrical circuit configuration of the stress sensor of the present invention. FIG. 2 is a diagram showing a SAW sensor section, a support section, a pressurizing point, and a pressurizing state. FIG. 3 is a diagram showing pressurizing points of the SAW sensor section. FIG. 4 shows an overall view of a stress sensor in which the SAW sensor section, oscillation circuit section, and detection circuit section of FIG. 3 are covered. In the figure, la and lb are the first. Second piezoelectric material substrate, 2m. 2b is a transmitting interdigital electrode IDT, 3a and 3b are receiving interdigital electrodes IDT, 4a and 4b are amplifiers, 5 is a comparison circuit, 6a and 6b are seat members, and 7 is a support member. Patent Applicant Anritsu Electric Co., Ltd. Agent Patent Attorney Ryuta Koike 14th Proceeding Amendment Written Voluntary) May 2-2, 1985 1, Display of Case 1985 Patent Application No. 75451 2, Name of Invention Stress Sensor 3, relationship with the amended person case Patent applicant address ■106 5-10-27 Minami-Azabu, Minato-ku, Tokyo Name (057) Anritsu Electric Co., Ltd. Representative Yugo Fujita 4, Agent address ■106 Tokyo Minamiazabu 5-10-27-5, Minato-ku
, date of amendment order Motu 6, subject of amendment (1) Application 7゜Contents of amendment (1) Add the following after the patent application. (Patent application pursuant to the proviso to Article 38 of the Patent Act) (2)
) Add the following to paragraph 2:

Claims (1)

【特許請求の範囲】 1)長方形の第1の圧電材基板と; 該第1の圧電材基板の第1の表面に表面弾性波を励起す
るために備えられた送信用交差指形電極IDTと; 励起された表面弾性波を電気信号として出力する該第1
の表面に備えられた受信用交差指形電極IDTと; 長方形の第2の圧電材基板と該第2の圧電材基板の第2
の表面に表面弾性波を励起するために備えられた送信用
交差指形電極IDTと; 該第1の受信用交差指形電極IDTと該第2の受信用交
差指形電極IDTとから出力される電気信号の位相差を
検出する比較回路と; 座部材と; 該座部材を介して前記第1及び第2の圧電材基板が隙き
間を有し、かつ前記第1の表面及び第2の表面が向い合
って重ねられた二層の梁と;該二層の梁の支持部材と; 該二層の梁に曲げ応力を適用する力の作用手段とから構
成される応力センサ。 2)長方形の第1の圧電材基板と; 該第1の圧電材基板の第1の表面に表面弾性波を励起す
るために備えられた送信用交差指形電極IDTと; 励起された表面弾性波を電気信号として出力する第1の
表面に備えられた受信用交差指形電極IDTと; 長方形の第2の圧電材基板と該第2の圧電材基板の第2
の表面に表面弾性波を励起するために備えられた送信用
交差指形電極IDTと; 該第1の表面に備えられた受信用交差指形電極IDTの
出力を入力しその出力を該第1の表面に備えられた送信
用交差指形電極IDTに加えて第1の発振回路を構成す
る第1の発振回路用増幅器と; 該第2の表面に備えられた受信用交差指形電極IDTの
出力を入力しその出力を該第2の表面に備えられた送信
用交差指形電極IDTに加えて第2の発振回路を構成す
る第2の発振回路用増幅器と; 該第1の発振回路と該第2の発振回路とから出力される
電気信号の位相差を検出する比較回路と;座部材と; 該座部材を介して前記第1及び第2の圧電材基板が隙き
間を有し、かつ前記第1の表面及び第2の表面が向い合
って重ねられた二層の梁と;該二層の梁の支持部材と; 該二層の梁に曲げ応力を適用する力の作用手段とから構
成される応力センサ。
[Claims] 1) A rectangular first piezoelectric material substrate; and a transmission interdigital electrode IDT provided on a first surface of the first piezoelectric material substrate for exciting a surface acoustic wave. ; the first part outputs the excited surface acoustic wave as an electric signal;
a receiving interdigital electrode IDT provided on the surface of; a rectangular second piezoelectric material substrate; and a second piezoelectric substrate of the second piezoelectric material substrate;
a transmitting interdigital electrode IDT provided for exciting surface acoustic waves on the surface of the transmitting interdigital electrode IDT; output from the first receiving interdigital electrode IDT and the second receiving interdigital electrode IDT; a comparison circuit for detecting a phase difference between electric signals; a seat member; the first and second piezoelectric material substrates having a gap therebetween, and the first surface and the second piezoelectric material substrate having a gap therebetween; A stress sensor comprising: two layers of beams stacked one on top of the other with surfaces facing each other; a support member for the two layers of beams; and a force applying means for applying bending stress to the two layers of beams. 2) a rectangular first piezoelectric material substrate; a transmission interdigital electrode IDT provided on a first surface of the first piezoelectric material substrate for exciting a surface acoustic wave; and an excited surface acoustic wave. a receiving interdigital electrode IDT provided on the first surface that outputs waves as electrical signals; a rectangular second piezoelectric material substrate; and a second piezoelectric material substrate of the second piezoelectric material substrate;
a transmitting interdigital electrode IDT provided for exciting surface acoustic waves on the surface of the first surface; inputting the output of the receiving interdigital electrode IDT provided on the first surface; a first oscillation circuit amplifier constituting a first oscillation circuit in addition to the transmitting interdigital electrode IDT provided on the surface of the receiving interdigital electrode IDT provided on the second surface; a second oscillation circuit amplifier that inputs an output and adds the output to the transmission interdigital electrode IDT provided on the second surface to form a second oscillation circuit; the first oscillation circuit; a comparator circuit that detects a phase difference between electric signals output from the second oscillation circuit; a seat member; and a gap between the first and second piezoelectric material substrates via the seat member; , and a two-layer beam in which the first surface and the second surface are stacked facing each other; a support member for the two-layer beam; and a force applying means for applying bending stress to the two-layer beam. A stress sensor consisting of.
JP60075451A 1985-04-11 1985-04-11 Stress sensor Expired - Lifetime JPH0643928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60075451A JPH0643928B2 (en) 1985-04-11 1985-04-11 Stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60075451A JPH0643928B2 (en) 1985-04-11 1985-04-11 Stress sensor

Publications (2)

Publication Number Publication Date
JPS61234324A true JPS61234324A (en) 1986-10-18
JPH0643928B2 JPH0643928B2 (en) 1994-06-08

Family

ID=13576650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60075451A Expired - Lifetime JPH0643928B2 (en) 1985-04-11 1985-04-11 Stress sensor

Country Status (1)

Country Link
JP (1) JPH0643928B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156295A (en) * 2000-10-06 2002-05-31 Robert Bosch Gmbh Force sensor
JP2011249879A (en) * 2010-05-21 2011-12-08 Denso Corp Surface acoustic wave oscillator
CN111139177A (en) * 2018-11-02 2020-05-12 浙江师范大学 Convenient and universal microorganism growth curve detection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355181A (en) * 1976-10-29 1978-05-19 Toshiba Corp Balance
JPS56131437U (en) * 1980-03-07 1981-10-06
JPS57133329A (en) * 1981-02-12 1982-08-18 Yokogawa Hokushin Electric Corp Power converter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355181A (en) * 1976-10-29 1978-05-19 Toshiba Corp Balance
JPS56131437U (en) * 1980-03-07 1981-10-06
JPS57133329A (en) * 1981-02-12 1982-08-18 Yokogawa Hokushin Electric Corp Power converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156295A (en) * 2000-10-06 2002-05-31 Robert Bosch Gmbh Force sensor
JP2011249879A (en) * 2010-05-21 2011-12-08 Denso Corp Surface acoustic wave oscillator
DE102011076052A1 (en) 2010-05-21 2012-02-09 Denso Corporation Surface acoustic wave oscillator
US8368474B2 (en) 2010-05-21 2013-02-05 Denso Corporation Surface acoustic wave oscillator
CN111139177A (en) * 2018-11-02 2020-05-12 浙江师范大学 Convenient and universal microorganism growth curve detection method

Also Published As

Publication number Publication date
JPH0643928B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4885781A (en) Frequency-selective sound transducer
US3978731A (en) Surface acoustic wave transducer
US20200182721A1 (en) Passive microphone/pressure sensor using a piezoelectric diaphragm
US6571638B2 (en) Surface-acoustic-wave pressure sensor and associated methods
JP5018227B2 (en) Force detection unit
JP5375624B2 (en) Acceleration sensor and acceleration detection device
US10536779B2 (en) Electroacoustic transducer
JPS60133320A (en) Load detector
US4676104A (en) Surface skimming bulk acoustic wave accelerometer
US4598587A (en) Surface acoustic wave accelerometer
US6803698B2 (en) Acceleration sensor
JPH09297082A (en) Pressure sensor
JPS61234324A (en) Stress sensor
US20070144269A1 (en) Vibrating beam force transducer
JP2002107373A (en) Acceleration sensor
Khan et al. Multi-frequency MEMS acoustic emission sensor
JPS60186725A (en) Pressure sensor
JPH06103230B2 (en) Strain gauge
US3803546A (en) Broad band hydrophone
JPS61169728A (en) Force sensor
US11835414B2 (en) Passive pressure sensor with a piezoelectric diaphragm and a non-piezoelectric substrate
US3704385A (en) Piezoelectric transducer assembly with phase shifting accoustical parts
JPH03262972A (en) Sensor
JPH09280970A (en) Shearing force detector
JP3129022B2 (en) Acceleration sensor