JPS6123248B2 - - Google Patents

Info

Publication number
JPS6123248B2
JPS6123248B2 JP17004883A JP17004883A JPS6123248B2 JP S6123248 B2 JPS6123248 B2 JP S6123248B2 JP 17004883 A JP17004883 A JP 17004883A JP 17004883 A JP17004883 A JP 17004883A JP S6123248 B2 JPS6123248 B2 JP S6123248B2
Authority
JP
Japan
Prior art keywords
pine
sulfuric acid
treating
iron
feso
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17004883A
Other languages
Japanese (ja)
Other versions
JPS6063331A (en
Inventor
Mitsuo Muraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Jiryoku Senko Co Ltd
Original Assignee
Nippon Jiryoku Senko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Jiryoku Senko Co Ltd filed Critical Nippon Jiryoku Senko Co Ltd
Priority to JP58170048A priority Critical patent/JPS6063331A/en
Publication of JPS6063331A publication Critical patent/JPS6063331A/en
Publication of JPS6123248B2 publication Critical patent/JPS6123248B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、乾式製練で発生するマツトの処理方
法に関し、更に詳細には亜鉛マツトや銅マツトを
硫酸にて処理し不純物である鉄化合物を溶出さ
せ、この時に発生する硫化水素ガスを利用して有
価金属である銅、鉛、銀を酸に不溶性の硫化物と
して残留させ、又所定濃度の硫酸を使用すること
によつて含水けい酸を含ない高品位のマツトを回
収する処理方法に関するものである。 最近省エネルギー対策として製練法も従来の溶
鉱炉方式から自溶炉方式に移り変わつり従来のよ
うに鉄化合物の多い原料は供給不可能となつて来
た。従つてマツトのように銅10%以下の低品位の
原料は高品位化の処理をしないと原料として大幅
に減量しなければならない。 しかしながら、マツトの有効な処理方法は今の
ところ全く確立されていない。 即ち、これまでは浮遊選鉱法によつて銅、銀の
品位向上を行つてきたが、この方法では品位アツ
プに重点を置くと実収率が低下し、品位向上と実
収率の向上との両立ができなかつた。又磁力選鉱
法では鉄と銅・銀の分離ができず、熱処理の過程
で発生したマツト類は300メツシユ以下に粉砕し
ても単体に分離することができず、鉄と銅・銀と
の磁選分離は不可能であつた。 本発明は、かかる欠点を解消すべくなされたも
のであり、その要旨は亜鉛マツトや銅マツト等の
マツトに濃度7〜12Nの硫酸を添加し、該硫酸に
よつてマツト中に含まれる鉄分や亜鉛分を溶出除
去し、Au,Ag,Cu,Pb等の品位と収率とを向
上させるようにしたマツトの処理方法であり、マ
ツト中の鉄分を除去して銅,銀,金,鉛等の非鉄
金属の品質を向上させると共にこれらの金属の実
収率をも大幅に改善するようにしたマツトの処理
方法を提供せんとするものである。以下に本発明
の処理方法について説明する。
The present invention relates to a method for treating matte generated during dry smelting, and more specifically, it involves treating zinc matte or copper matte with sulfuric acid to elute impurity iron compounds, and utilizing hydrogen sulfide gas generated at this time. This relates to a treatment method that recovers high-grade pine that does not contain hydrous silicic acid by leaving valuable metals such as copper, lead, and silver as acid-insoluble sulfides, and by using sulfuric acid at a specified concentration. It is. Recently, as an energy-saving measure, the smelting method has changed from the conventional blast furnace method to the flash furnace method, and it has become impossible to supply raw materials with a large amount of iron compounds as before. Therefore, low-grade raw materials such as pine, which contain less than 10% copper, must be significantly reduced in volume as raw materials unless they are treated to improve their quality. However, no effective method for treating pine has been established so far. In other words, up until now, the quality of copper and silver has been improved by the flotation method, but with this method, if the emphasis is placed on increasing the quality, the actual yield rate will decrease, and it is difficult to achieve both improvement in quality and increase in the actual yield rate. I couldn't do it. In addition, the magnetic separation method cannot separate iron from copper and silver, and the pine produced during the heat treatment cannot be separated into individual pieces even if crushed to less than 300 mesh. Separation was impossible. The present invention was made in order to eliminate such drawbacks, and its gist is that sulfuric acid with a concentration of 7 to 12N is added to pine such as zinc pine or copper pine, and the iron content in the pine is reduced by the sulfuric acid. This is a method of treating pine that improves the quality and yield of Au, Ag, Cu, Pb, etc. by leaching out the zinc content. It is an object of the present invention to provide a method for treating pine that not only improves the quality of nonferrous metals but also significantly improves the actual yield of these metals. The processing method of the present invention will be explained below.

【表】 ただし、Au,Agのみは(g/トン)である。 代表的なマツトの成分は、第1表に示されるよ
うなものであるが、一般にマツトは塊状で生起す
るため粉砕機で60メツシユに粉砕しこれに5N〜
19NのH2SO4を添加する。溶剤にHNO3を使用す
ると有価金属のCu,Ag,Pbも溶出し、又HCIを
使用すると含水ケイ酸が生成し過不能となる。 従つてH2SO4が適している。しかしながら
H2SO4の濃度が大きく影響するため、H2SO4の濃
度による各種の影響を第2表と第3表に示した。
この表の溶出の条件は次の通りである。 イ マツト :10g ロ 溶 剤 :濃H2SO4 ハ 反応温度:30℃ ニ 反応時間:3時間
[Table] However, only Au and Ag are (g/ton). Typical components of pine are as shown in Table 1. Since pine is generally produced in the form of a lump, it is ground into 60 meshes using a crusher and then mixed with 5N~
Add 19N H2SO4 . When HNO 3 is used as a solvent, valuable metals such as Cu, Ag, and Pb are also eluted, and when HCI is used, hydrous silicic acid is produced, resulting in inconvenience. Therefore H 2 SO 4 is suitable. however
Since the concentration of H 2 SO 4 has a large effect, Tables 2 and 3 show various effects of the concentration of H 2 SO 4 .
The elution conditions in this table are as follows. Imatsuto: 10g B Solvent: Concentrated H 2 SO 4 C Reaction temperature: 30℃ D Reaction time: 3 hours

【表】【table】

【表】【table】

【表】 H2SO4濃度が12N以上になると固液比が小さく
なりパルプ濃度が高くなり過ぎ粘性が上るので反
応が不充分になる傾向があつた。又、Feが溶出
し過飽和に達するのでFeSO4・7H2Oの結晶化が
進行し始めるようになる。 一方、H2SO4濃度が7N以下になると同一添加
当量であつてもFeとZnの溶出率は低下し、特に
Znの溶出が抑制されて来る。又含水けい酸の生
成が顕著になり溶出残渣の過性が悪くなつてく
る。 次に、H2SO4の添加量と溶出との関係は、マツ
ト中にFeが約50%も占めておりその大半がFeS
(Cu2S)―FeOの形態をなしている。 FeSは比較的H2SO4には溶出しやすく、又分解
することによつてH2Sガスを放出しこれが溶存し
たCuやAg,Pbを不溶性の硫化物にする要素をも
つている。 第2表と第3表に示した実施例から同一添加量
でもH2SO4濃度によつて溶出率は異なることが明
確であり、又同様に添加当量によつても大きく影
響を受けていることがわかる。 H2SO4の添加量はマツトに含まれているFeと
Znの含量に対しいずれのH2SO4濃度でも1.5当量
前後でほぼ充分な結果を得ている。即ち、Feの
溶出率も約90%以上に達し、Znも80%は可能で
あつた。それに溶出残渣中のCu品位も30〜33%
に達し処理前のCu10%に対し約3倍に品位を向
上させることができた。 H2SO4の濃度と添加量とを調整することによつ
てZnの溶出率を7%から90%にまで変化させる
ことも可能であることが判明した。 又Agについては、全ての実施例について定性
を行つたが溶出液では検出されなかつたので
Cu,Pb同様Ag,Au共に略3倍の品位にアツプ
されたものと推考できる。 以上の実験に基づいて、処理を行つたものを次
の実施例1に示す。 実施例 1 下記第4表は処理条件を示し、第5表はこの条
件によつて処理した結果を示している。
[Table] When the H 2 SO 4 concentration exceeded 12N, the solid-liquid ratio decreased, the pulp concentration became too high, the viscosity increased, and the reaction tended to be insufficient. Further, since Fe is eluted and supersaturation is reached, crystallization of FeSO 4 .7H 2 O begins to proceed. On the other hand, when the H 2 SO 4 concentration becomes 7N or less, the elution rate of Fe and Zn decreases even if the added equivalent is the same, especially
Zn elution is suppressed. In addition, the formation of hydrous silicic acid becomes noticeable and the eluted residue becomes less sensitive. Next, the relationship between the amount of H 2 SO 4 added and elution is that Fe accounts for about 50% in pine and most of it is FeS.
(Cu 2 S)--FeO. FeS is relatively easily eluted by H 2 SO 4 and has the element of releasing H 2 S gas upon decomposition, which converts dissolved Cu, Ag, and Pb into insoluble sulfides. From the examples shown in Tables 2 and 3, it is clear that the elution rate differs depending on the H 2 SO 4 concentration even if the amount added is the same, and it is also greatly influenced by the equivalent amount added. I understand that. The amount of H 2 SO 4 added is the same as Fe contained in pine.
Approximately sufficient results were obtained at around 1.5 equivalents for any H 2 SO 4 concentration relative to the Zn content. That is, the elution rate of Fe reached approximately 90% or more, and it was possible to achieve an elution rate of 80% for Zn. In addition, the Cu content in the elution residue is 30 to 33%.
We were able to improve the quality by approximately three times compared to the 10% Cu before treatment. It was found that by adjusting the concentration and amount of H 2 SO 4 added, it was possible to change the Zn elution rate from 7% to 90%. Regarding Ag, although qualitative analysis was performed for all Examples, it was not detected in the eluate.
It can be assumed that, like Cu and Pb, Ag and Au are approximately three times as high in quality. The following Example 1 shows a process performed based on the above experiment. Example 1 Table 4 below shows the processing conditions, and Table 5 shows the results of processing under these conditions.

【表】【table】

【表】 叙上せる如く、本発明によれば、マツト中の
FeはH2SO4と反応しFeSO4となつて溶出し、こ
の溶液を60℃から常温(20℃)まで放冷すると
FeSO4・7H2Oとして結晶し晶出する。又FeSO4
溶液からPHを調整しながらら空気酸化することに
よつて容易に黄色酸化鉄FeO・OHやマグネタイ
ト(Fe3O4)等を生成させることができる。更に
は、フエライトや顔料用酸化鉄(Fe2O3)′の生
成も可能であり、Cu,Ag,Auと並んでFeの有
効利用ができる利点を持つものである。 このように本発明では従前の処理方法では不可
能とされていたマツトを処理してCu,Ag,Au,
Pbの品位を3倍以上も向上させ、銅溶錬費を大
幅に低減し銅製練に悪影響を与えるFe分を略90
%も除去し、このFeを黄色酸化鉄に有効利用す
ることもできるようになつた。又Feの除去を有
効に行なえることによつてマツト中のCu,Ag,
Au等の品位が向上し、銅製錬工程に於けるこれ
等成分の実収率も大幅に改善されるため製錬業界
への寄与率が大きくなる等種々の優れた効果を奏
するものである。
[Table] As mentioned above, according to the present invention, the
Fe reacts with H 2 SO 4 and becomes FeSO 4 and is eluted, and when this solution is left to cool from 60℃ to room temperature (20℃),
It crystallizes as FeSO 4.7H 2 O. Also FeSO 4
Yellow iron oxide FeO.OH, magnetite (Fe 3 O 4 ), etc. can be easily produced by air oxidation while adjusting the pH of the solution. Furthermore, it is also possible to produce ferrite and iron oxide (Fe 2 O 3 )' for pigments, and it has the advantage of being able to use Fe as effectively as Cu, Ag, and Au. In this way, the present invention can process pine to produce Cu, Ag, Au, etc., which was considered impossible with previous processing methods.
Improves Pb grade by more than 3 times, significantly reduces copper smelting costs, and reduces Fe content, which has a negative impact on copper smelting, to about 90%
%, and this Fe can now be used effectively to produce yellow iron oxide. In addition, by effectively removing Fe, Cu, Ag,
This improves the quality of Au, etc., and greatly improves the actual yield of these components in the copper smelting process, resulting in a greater contribution to the smelting industry.

Claims (1)

【特許請求の範囲】 1 亜鉛マツトや銅マツト等のマツトに濃度7〜
12Nの硫酸を添加し、該硫酸によつてマツト中に
含まれる鉄分や亜鉛分を溶出除去し、マツト中に
含まれるAu,Ag,Cu,Pb等の品位と収率とを
向上させるようにしたマツトの処理方法。 2 上記鉄分中のFeS分を分解することによつて
発生したH2Sガスで一部溶在するCu,Pb,Agを
硫酸に不溶性の硫化物として回収することを特徴
とする特許請求の範囲第1項記載のマツトの処理
方法。 3 上記マツト中に含まれるけい酸化合物を上記
硫酸でもつて処理し、含水性の少ないけい酸とし
て過性を向上させるようにした特許請求の範囲
第1項記載のマツトの処理方法。 4 上記鉄分をFeSO4溶液として溶出した後、該
FeSO4溶液をPH調整して空気酸化することにより
黄色酸化鉄又は磁性酸化鉄を生成させることを特
徴とする特許請求の範囲第1項記載のマツトの処
理方法。
[Claims] 1. Pines such as zinc pine and copper pine with a concentration of 7 to
By adding 12N sulfuric acid, the iron and zinc contained in the pine are eluted and removed by the sulfuric acid to improve the quality and yield of Au, Ag, Cu, Pb, etc. contained in the pine. How to treat pine trees. 2 Claims characterized in that Cu, Pb, and Ag partially dissolved in the H 2 S gas generated by decomposing the FeS component in the iron component are recovered as sulfides insoluble in sulfuric acid. The method for treating pine according to item 1. 3. The method for treating pine according to claim 1, wherein the silicic acid compound contained in the pine is treated with the sulfuric acid to improve the permeability of the silicic acid as silicic acid with low water content. 4 After eluting the above iron content as a FeSO 4 solution,
The method for treating pine according to claim 1, characterized in that yellow iron oxide or magnetic iron oxide is produced by adjusting the pH of the FeSO 4 solution and performing air oxidation.
JP58170048A 1983-09-14 1983-09-14 Treatment of matte Granted JPS6063331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58170048A JPS6063331A (en) 1983-09-14 1983-09-14 Treatment of matte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58170048A JPS6063331A (en) 1983-09-14 1983-09-14 Treatment of matte

Publications (2)

Publication Number Publication Date
JPS6063331A JPS6063331A (en) 1985-04-11
JPS6123248B2 true JPS6123248B2 (en) 1986-06-05

Family

ID=15897648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58170048A Granted JPS6063331A (en) 1983-09-14 1983-09-14 Treatment of matte

Country Status (1)

Country Link
JP (1) JPS6063331A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742513B1 (en) 2006-08-02 2007-07-24 조성기 The smelting process of sulphide ores

Also Published As

Publication number Publication date
JPS6063331A (en) 1985-04-11

Similar Documents

Publication Publication Date Title
CA1234291A (en) Recovery of gold from auriferous refractory iron- containing sulphidic material
US3434947A (en) Process for the separation of iron from metal sulphate solutions and a hydrometallurgic process for the production of zinc
FI83541B (en) FOERFARANDE FOER TILLVARATAGANDE AV GULD UR GULDHALTIG JAERNINNEHAOLLANDE SULFIDMALM.
US4440569A (en) Recovery of zinc from zinc-containing sulphidic material
US4342591A (en) Process for the recovery of gold and/or silver and possibly bismuth contained in sulfuretted ores and/or sulfoarsenides
EP1245686B1 (en) Method and apparatus for leaching zinc concentrates
JPS61179821A (en) Collection from gold from refining difficult gold-containingand iron-containing ore concentrate
US2822263A (en) Method of extracting copper values from copper bearing mineral sulphides
CN101063181A (en) Rapid reduction of carbonaceous gold-containing iron ore firing residue pellet gold enrichment by using rotary hearth furnace and method for coproduction of iron powder
US3684490A (en) Process for recovering zinc from jarosite residue
CN111519026B (en) Method for leaching secondary coated gold hematite
JPS5952218B2 (en) Method for recovering gold from copper electrolytic slime
JPS62211B2 (en)
CA1172456A (en) Hydrometallurgical process for the recovery of valuable metals from metallic alloys
CN105821216A (en) Method for leaching zinc from purification copper, cadmium, cobalt and nickel slag of zinc hydrometallurgy
US4168969A (en) Recovery of silver, copper, zinc and lead from partially roasted pyrite concentrate by acid chloride leaching
US3174849A (en) Two-stage oxidation and leaching process
CN111996364A (en) Method for recovering gold from cyanidation tailings and synchronously magnetizing iron
JPS6123248B2 (en)
US5082638A (en) Process of recovering non-ferrous metal values, especially nickel, cobalt, copper and zinc, by using melt and melt coating sulphation, from raw materials containing said metals
US4276084A (en) Hydrometallurgical process for the recovery of lead
EP3701053B1 (en) Process for the recovery of metals from cobalt-bearing materials
WO2015079116A1 (en) Method and arrangement of separating arsenic from starting materials
NO130026B (en)
US2815261A (en) Uranium precipitation process