JPS61232205A - Production of lithium carbonate powder - Google Patents
Production of lithium carbonate powderInfo
- Publication number
- JPS61232205A JPS61232205A JP7144585A JP7144585A JPS61232205A JP S61232205 A JPS61232205 A JP S61232205A JP 7144585 A JP7144585 A JP 7144585A JP 7144585 A JP7144585 A JP 7144585A JP S61232205 A JPS61232205 A JP S61232205A
- Authority
- JP
- Japan
- Prior art keywords
- lithium carbonate
- lithium
- aqueous solution
- carbonate powder
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
く産業上の利用分野〉
本発明は高純度炭酸リチウム粉末の製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field The present invention relates to a method for producing high purity lithium carbonate powder.
さらに詳しくは加熱減量成分の少ない高純度炭酸リチウ
ム粉末の製造方法に関するものである。More specifically, the present invention relates to a method for producing high-purity lithium carbonate powder with a small amount of components that lose weight on heating.
最近の電子工業の発展は目覚ましく、新しい原理に基づ
く機能性素子、ニューセラミックスがつぎつぎと開発さ
れている。これにともない使用される原料である素材も
よりいっそう高純度高品質であることが要求されている
。The recent development of the electronics industry is remarkable, and functional elements and new ceramics based on new principles are being developed one after another. Along with this, the raw materials used are required to be of even higher purity and quality.
炭酸リチウムは近年表面弾性波フィルター、温度湿度セ
ンサー、オプトエレクトロニクス素子等の構成部材であ
るタンタル酸リチウム、ニオブ酸リチウム等の単結晶あ
るいは薄膜の原料として注目されているものであり、よ
り一層、高純度高品質であることが望まれている。Lithium carbonate has recently attracted attention as a raw material for single crystals or thin films such as lithium tantalate and lithium niobate, which are components of surface acoustic wave filters, temperature and humidity sensors, and optoelectronic devices. High purity and high quality are desired.
この目的に供される炭酸リチウムはアルカリ金属、アル
カリ土類金属、遷移金属等の金属不純物、塩素、硫酸根
等の陰イオン不純物の含有量が少ないこととともに加熱
減量成分が少ないことが重要である。すなわち炭酸リチ
ウムと五酸化タンタルあるいは五酸化ニオブとを原料と
し白金製のルツボを用いチックラルスキー法でタンタル
酸リチウム、ニオブ酸リチウム等の単結晶を製造する場
合、炭酸リチウムと他の成分の重量比をコングルエント
メル)&Il成として知られる特定の比率に厳密に制御
する必要があり、この比率よりずれると得られる製品の
特性の変動、結晶のクランクの発生による収率の低下を
もたらすため加熱減量成分の少ない炭酸リチウムが望ま
れている。It is important that the lithium carbonate used for this purpose has a low content of metal impurities such as alkali metals, alkaline earth metals, and transition metals, anionic impurities such as chlorine and sulfuric acid radicals, and has a low content of components lost on heating. . In other words, when producing a single crystal of lithium tantalate, lithium niobate, etc. using lithium carbonate and tantalum pentoxide or niobium pentoxide as raw materials using a platinum crucible using the Chickralski method, the weight of lithium carbonate and other components is The ratio needs to be strictly controlled to a specific ratio known as congruent mel) & Il composition, as deviations from this ratio will result in variations in the properties of the resulting product and a decrease in yield due to the occurrence of crystal cranks. Lithium carbonate with less components that lose weight on heating is desired.
しかしながら、従来炭酸リチウムには炭酸リチウムの融
点以上の温度、たとえば300〜550℃の温度範囲で
消失減量する炭酸リチウム以外の成分が0.5%から数
%存在し、かつその量が原料ロフト間、原料の使用部分
によって変動し、炭酸リチウム仕込量の誤差の原因とな
り、前述の組成比の制御を困難にし、性能収率の低下を
もたらしていた。However, conventional lithium carbonate contains 0.5% to several% of components other than lithium carbonate, which disappear and lose weight at temperatures above the melting point of lithium carbonate, for example, in the temperature range of 300 to 550°C, and the amount of these components varies between raw material lofts. , which varies depending on the part of the raw material used, causing errors in the amount of lithium carbonate charged, making it difficult to control the aforementioned composition ratio, and causing a decrease in performance yield.
〈従来の技術および発明が解決しようとする問題点〉
粗リチウム化合物、−触には粗炭酸リチウムより高純度
の炭酸リチウムを得る方法として再結晶法、再沈殿法、
隔膜電解法等が知られている。<Prior art and problems to be solved by the invention> Crude lithium compounds, specifically recrystallization, reprecipitation,
Diaphragm electrolysis methods and the like are known.
再結晶法の例としては炭酸リチウム水溶液を蒸発mmし
炭酸リチウムを析出させるとともに不純物を除去する方
法が知られている。再沈殿法の例としては炭酸リチウム
水溶液と石灰乳を反応させ水酸化リチウムにし不純物を
炭酸塩として除去したのち二酸化炭素と反応させ炭酸リ
チウムを析出させる方法(米国特許4207297号)
が知られている。また隔膜電解法の例としては硫酸リチ
ウム水溶液を隔膜電解し高純度水酸化リチウムを得て二
酸化炭素と反応させ炭酸リチウムを析出させる方法(特
開昭54−43174号)が知られている。As an example of the recrystallization method, a method is known in which an aqueous lithium carbonate solution is evaporated to precipitate lithium carbonate and impurities are removed. An example of the reprecipitation method is a method in which an aqueous lithium carbonate solution and milk of lime are reacted to form lithium hydroxide, impurities are removed as carbonate, and then reacted with carbon dioxide to precipitate lithium carbonate (US Pat. No. 4,207,297).
It has been known. Further, as an example of the diaphragm electrolysis method, a method is known in which a lithium sulfate aqueous solution is electrolyzed through a diaphragm to obtain high purity lithium hydroxide, which is then reacted with carbon dioxide to precipitate lithium carbonate (Japanese Patent Laid-Open No. 43174/1983).
しかしながらこれらの方法はいずれも炭酸リチウム中の
金属不純物、陰イオン不純物を除去する方法に関するも
のであり、現在まで前述したチ四りラルスキー法でニオ
ブ酸リチウム、タンタル酸リチウム等の単結晶を製造す
る際、反応生成物の組成をくるわし、性能、収率に悪影
響を及ぼす加熱減量成分の少ない高純度炭酸リチウムの
製造方法についてはなんら効果的な提案が成されていな
かった。やむをえず、高価な装置と費用を費やし精製し
た炭酸リチウムを再汚染させながら500〜600℃の
温度で炭酸リチウムを焼成し加熱減量成分を除去してい
るのが実情である。However, all of these methods are related to methods for removing metal impurities and anion impurities in lithium carbonate, and up to now, single crystals of lithium niobate, lithium tantalate, etc. have been produced using the Chisri Ralski method described above. However, considering the composition of the reaction product, no effective proposals have been made regarding a method for producing high-purity lithium carbonate that has few components that lose heat and have a negative effect on performance and yield. The reality is that lithium carbonate, which has been refined using expensive equipment and costs, is unavoidably burned at a temperature of 500 to 600° C. while recontaminating the purified lithium carbonate to remove components lost by heating.
このため加熱減量成分の少ない、少なくとも0゜1重量
%以下の高純度炭酸リチウムの提供が望まれている。For this reason, it is desired to provide high-purity lithium carbonate with a low content of components that lose weight on heating, at least 0.1% by weight or less.
く問題点を解決するための手段と作用〉本発明者らは前
述した問題点を解消し加熱減量成分の少ない高純度炭酸
リチウムの経済的な製造方法を開発すべく鋭意検討を重
ねた結果、加熱減量成分はリチウム化合物水溶液より炭
酸リチウムの結晶を析出させる晶析操作中に生成し、そ
の主要成分が水分であることを見出した。さらに加熱減
量成分は晶析時間の延長、晶析槽内の撹拌の強化、晶析
時の加熱あるいは減圧等の手段によってはほとんど減少
できないが、リチウム化合物水溶液の再結晶、再沈殿等
により炭酸リチウムの結晶を析出させる際、
■該水溶液の液温を90℃以上に加温し晶析することに
より炭酸リチウム中の加熱減量成分を0゜1重量%以下
に減少できることを見出した。(以下第1の方法と称す
る)
■さらに晶析時に前辺ってリチウム化合物水溶液に炭酸
リチウム粉末を、晶析により新に生成する炭酸リチウム
10011ffi部あたり5〜100重量部添加し、且
つ該水溶液の液温を70℃以上に加温し晶析することに
より炭酸リチウム中の加熱減量成分を0.1ftlt%
以下二特に0.02重量%以下にすら減量できることを
見出した。(以下第2の方法と称する)
こられの方法により、高い液温での晶析、炭酸リチウム
の添加という容易な手段により加熱減量成分の少ない高
純度炭酸リチウムが得られるということは従来知られて
いなかったものである。そして晶析によりえられた炭酸
リチウム粉末に対し焼成等の処理は不必要であり、単な
る乾燥のみで良く、また晶析時の炭酸リチウムの著しい
収率向上ももたらされる。Means and operation for solving the above-mentioned problems> As a result of intensive studies by the present inventors in order to solve the above-mentioned problems and develop an economical method for producing high-purity lithium carbonate with a small amount of heat loss components, It was found that the heating loss component is generated during the crystallization operation of precipitating lithium carbonate crystals from an aqueous lithium compound solution, and its main component is water. Furthermore, the components lost on heating cannot be reduced by prolonging the crystallization time, strengthening stirring in the crystallization tank, heating or reducing pressure during crystallization, etc., but lithium carbonate can be reduced by recrystallization and reprecipitation of the lithium compound aqueous solution. When precipitating the crystals, (1) it was found that by heating the aqueous solution to a temperature of 90° C. or higher and performing crystallization, it was possible to reduce the component lost on heating in lithium carbonate to 0.1% by weight or less. (Hereinafter referred to as the first method) (1) Furthermore, before crystallization, 5 to 100 parts by weight of lithium carbonate powder is added to the lithium compound aqueous solution per 10011 parts of lithium carbonate newly produced by crystallization, and the aqueous solution The heating loss component in lithium carbonate is reduced to 0.1ftlt% by heating the liquid temperature to 70°C or higher and crystallizing it.
In particular, we have found that the weight can be reduced to 0.02% by weight or less. (Hereinafter referred to as the second method) It is conventionally known that by this method, high purity lithium carbonate with a small amount of components lost on heating can be obtained by simple means such as crystallization at a high liquid temperature and addition of lithium carbonate. This was not the case. The lithium carbonate powder obtained by crystallization does not require any treatment such as calcination, and only simple drying is required, and the yield of lithium carbonate during crystallization is significantly improved.
以下これらの方法の構成について説明する。The configurations of these methods will be explained below.
リチウム化合物を含有する水溶液としては、粗リチウム
化合物、一般には粗炭酸リチウムを原料とする炭酸リチ
ウム水溶液あるいはよく知られた無機酸、石灰乳等によ
り可溶化したリチウム化合物を含有する水溶液、これら
水溶液をよくしられた再結晶法、再沈殿法、イオン交換
法等により処理した精製リチウム化合物水溶液等が用い
られる。Examples of aqueous solutions containing lithium compounds include crude lithium compounds, generally aqueous lithium carbonate solutions made from crude lithium carbonate, or aqueous solutions containing lithium compounds solubilized with well-known inorganic acids, milk of lime, etc. A purified lithium compound aqueous solution treated by a well-known recrystallization method, reprecipitation method, ion exchange method, etc. is used.
リチウム化合物を含有する水溶液中のリチウム化合物の
種類は晶析時の反応により炭酸リチウムに変化し結晶を
析出するものであれば種類をとわないが、水酸化リチウ
ム、飽和濃度以下の炭酸リチウム、炭酸水素リチウム等
が好適である。The type of lithium compound in the aqueous solution containing the lithium compound is not limited to any type as long as it changes to lithium carbonate and precipitates crystals through the reaction during crystallization, but lithium hydroxide, lithium carbonate below the saturated concentration, Lithium hydrogen carbonate and the like are preferred.
水酸化リチウムの場合、第1の方法では、攪拌機、加熱
ジャケット、二酸化炭素吹き込み口、炭酸リチウムスラ
リー取り出し口を備えた耐圧晶析槽に5〜1011量%
濃度の水酸化リチウム水溶液を入れ、該水溶液の液温か
90℃以上になるまで加温し、ついで液温を90℃以上
に保ちながら水酸化リチウムの2分の1当量以上の二酸
化炭素を晶析槽内へ連続的に吹き込み水酸化リチウムを
炭酸リチウムに変え結晶として析出させる。得られた炭
酸リチウムスラリーより炭酸リチウムを公知の分離手段
により分離回収し、洗浄後よくしられた乾燥方法で60
℃〜120℃で乾燥する。得られる炭酸リチウム中の加
熱減量成分は晶析時の水酸化リチウム水溶液の液温によ
り異なり液温が高温であるほど少ない、即ち液温90℃
以上では加熱減量成分0.1重量%以下の、液温120
℃以上では加熱減量成分0.05重量%以下の高純度炭
酸リチウムを得ることができる。In the case of lithium hydroxide, in the first method, 5 to 1011% by weight is placed in a pressure-resistant crystallization tank equipped with a stirrer, a heating jacket, a carbon dioxide inlet, and a lithium carbonate slurry outlet.
Add a concentrated aqueous solution of lithium hydroxide, heat the aqueous solution until its temperature reaches 90°C or higher, and then crystallize carbon dioxide equivalent to more than half of the lithium hydroxide while maintaining the liquid temperature at 90°C or higher. Continuously blow into the tank to convert lithium hydroxide into lithium carbonate and precipitate it as crystals. Lithium carbonate was separated and recovered from the obtained lithium carbonate slurry by a known separation means, and after washing, it was dried by a well-known drying method.
Dry at 120°C. The components lost on heating in the resulting lithium carbonate vary depending on the temperature of the lithium hydroxide aqueous solution at the time of crystallization, and the higher the liquid temperature, the smaller the amount, i.e., the liquid temperature is 90°C.
In the above, the liquid temperature is 120% with a heating loss component of 0.1% by weight or less.
℃ or higher, high purity lithium carbonate with a heating loss component of 0.05% by weight or less can be obtained.
なお晶析槽内においては結晶として析出した炭酸リチウ
ム粉末が槽下部に沈積することなく十分浮遊分散するよ
うに攪拌等゛の手段により分散させる0分散が不十分で
炭酸リチウム粉末が沈積する場合は得られる炭酸リチウ
ム中の加熱減量成分は増加する。In addition, in the crystallization tank, the lithium carbonate powder that has precipitated as crystals is dispersed by means such as stirring so that it is sufficiently suspended and dispersed without being deposited at the bottom of the tank.If the dispersion is insufficient and the lithium carbonate powder is deposited, The amount of heat loss components in the obtained lithium carbonate increases.
二酸化炭素の供給速度は晶析時間が少なくとも1時間以
上、好ましくは3時間以上となるよう連続的に供給する
。晶析が1時間以内に完了するよう二酸化炭素を急速に
供給し炭酸リチウムの結晶を析出させると得られる炭酸
リチウム粉末の加熱減量成分は増加する。Carbon dioxide is supplied continuously so that the crystallization time is at least 1 hour, preferably 3 hours or more. When carbon dioxide is rapidly supplied to precipitate lithium carbonate crystals so that the crystallization is completed within one hour, the amount of loss on heating of the resulting lithium carbonate powder increases.
第2の方法では水酸化リチウムの場合、同じ晶析槽を用
い5〜10重量%の水酸化リチウム水溶液と二酸化炭素
から炭酸リチウムの結晶を析出させるに際し、晶析の開
始に先立って該水溶液中に炭酸リチウム粉末を添加し攪
拌分散させ、且つ該水溶液の液温を70℃以上に加温し
、該水溶液中の水酸化リチウムの2分の1当量以上の二
酸化炭素を吹き込み炭酸リチウムの結晶を析出させる。In the case of lithium hydroxide, in the second method, when crystals of lithium carbonate are precipitated from a 5 to 10% by weight lithium hydroxide aqueous solution and carbon dioxide using the same crystallization tank, the crystals are precipitated in the aqueous solution prior to the start of crystallization. Lithium carbonate powder is added to the solution, stirred and dispersed, and the temperature of the aqueous solution is heated to 70°C or higher, and carbon dioxide equivalent to one-half or more of the lithium hydroxide in the aqueous solution is blown into the solution to form crystals of lithium carbonate. Let it precipitate.
この方法では第1の方法に較べより低い液温で加熱減量
成分0.1eft量%以下の炭酸リチウム粉末を得るこ
とができ、100℃以上の液温では加熱減量成分0.0
2IIt量%以下の極めて加熱減量成分の少ない炭酸リ
チウム粉末を得ることができる。In this method, compared to the first method, it is possible to obtain lithium carbonate powder with a heating loss component of 0.1% or less at a lower liquid temperature, and at a liquid temperature of 100° C. or higher, a heating loss component of 0.0%.
It is possible to obtain a lithium carbonate powder having extremely low components that lose weight on heating, such as 2IIt amount or less.
この方法においても晶析槽内の炭酸リチウム粉末の攪拌
分散また晶析時間については第1の方法と同様におこな
われる。 ゛晶析に先立って添加する炭酸リ
チウムは粉末であればよいが、平均粒径が80μm以下
が好ましく、5011m以下がさらに好ましい。添加量
は新たに晶析により結晶として析出する炭酸リチウム1
0(l置部あたり5〜100重量部、好ましくは10〜
50!Ifit部である。5重量部より少ないと晶析に
先立って炭酸リチウム粉末を添加した効果が小さく、1
00重量部以上添加しても格段の加熱減量成分の減少は
認められない、添加する炭酸リチウム粉末は第1の方法
で晶析した炭酸リチウム粉末あるいは市販の高純度炭酸
リチウムを550℃の温度で1時間焼成した炭酸リチウ
ム粉末あるいは別途第2の方法で晶析した炭酸リチウム
粉末等の加熱減量成分の少ないものを用いる。In this method as well, stirring and dispersion of the lithium carbonate powder in the crystallization tank and crystallization time are carried out in the same manner as in the first method. ``The lithium carbonate added prior to crystallization may be in the form of powder, but the average particle size is preferably 80 μm or less, more preferably 5011 μm or less. The amount added is 1 liter of lithium carbonate, which is newly precipitated as crystals by crystallization.
0 (5 to 100 parts by weight per 1 part placed, preferably 10 to 100 parts by weight)
50! This is the Ifit section. If it is less than 5 parts by weight, the effect of adding lithium carbonate powder prior to crystallization will be small;
The lithium carbonate powder to be added is lithium carbonate powder crystallized by the first method or commercially available high-purity lithium carbonate at a temperature of 550°C. A lithium carbonate powder calcined for one hour or a lithium carbonate powder separately crystallized by a second method, which has a small amount of heat loss components, is used.
これら2つの方法において晶析に供する水溶液中のリチ
ウム化合物が炭酸リチウム、炭酸水素リチウムであって
も、加熱減量成分は炭酸リチウムの析出挙動によるため
、水酸化リチウムの場合と同様の効果が得られる。In these two methods, even if the lithium compound in the aqueous solution used for crystallization is lithium carbonate or lithium hydrogen carbonate, the component lost on heating depends on the precipitation behavior of lithium carbonate, so the same effect as in the case of lithium hydroxide can be obtained. .
例えば、飽和濃度以下の炭酸リチウム水溶液の場合では
、該水溶液を晶析槽に入れ水を減圧除去し炭酸リチウム
濃度を飽和濃度以上にt!AwIシ、第1の方法では予
め該水溶液の液温を90℃以上に加温し晶析する。また
第2の方法では晶析に先立って該水溶液中に炭酸リチウ
ム粉末を添加し且つ該水溶液の液温を70℃以上に加温
し晶析する。For example, in the case of a lithium carbonate aqueous solution having a saturated concentration or less, the aqueous solution is placed in a crystallization tank and the water is removed under reduced pressure to bring the lithium carbonate concentration to the saturated concentration or higher. In the first method, the temperature of the aqueous solution is heated to 90° C. or higher in advance to crystallize it. In the second method, prior to crystallization, lithium carbonate powder is added to the aqueous solution and the temperature of the aqueous solution is heated to 70° C. or higher to perform crystallization.
いずれの方法によっても加熱減量成分が0.1重量%以
下の炭酸リチウム粉末が得られる。By either method, lithium carbonate powder having a heating loss component of 0.1% by weight or less can be obtained.
また炭酸水素リチウムの場合では、濃度5〜8重量%の
炭酸水素リチウム水溶液を晶析槽に入れ減圧あるいは窒
素ガスフィードにより二酸化炭素を脱離させ炭酸リチウ
ムにし炭酸リチウムの結晶を析出させるに際し、第1の
方法では該水溶液の液温を90℃以上に保ちながら減圧
分解させ晶析する。第2の方法では晶析に先立って該水
溶液中に炭酸リチウム粉末を水酸化リチウムの場合と同
様に加え且つ該水溶液の液温を70℃以上に加温し炭酸
水素リチウムを分解し炭酸リチウム結晶を析出させる。In the case of lithium hydrogen carbonate, a lithium hydrogen carbonate aqueous solution with a concentration of 5 to 8% by weight is placed in a crystallization tank and carbon dioxide is desorbed by reducing pressure or nitrogen gas feed to convert it into lithium carbonate and precipitate lithium carbonate crystals. In method 1, the aqueous solution is decomposed under reduced pressure and crystallized while maintaining the temperature of the aqueous solution at 90° C. or higher. In the second method, prior to crystallization, lithium carbonate powder is added to the aqueous solution in the same manner as in the case of lithium hydroxide, and the temperature of the aqueous solution is heated to 70°C or higher to decompose lithium hydrogen carbonate and crystallize lithium carbonate. is precipitated.
いずれの方法によっても加熱減量成分0.1重量%以下
の炭酸リチウム粉末を得ることができる。By either method, lithium carbonate powder having a heating loss component of 0.1% by weight or less can be obtained.
く本発明の効果〉
本発明は上述の2つの方法の内、第2の方法であ酸リチ
ウムが得られる。Effects of the Present Invention> In the present invention, lithium oxide can be obtained by the second method of the above two methods.
■炭酸リチウムの水に対する溶解度は高温はど減少する
ため、晶鯉操作での炭酸リチウムの収率が大きく改善さ
れる。■Since the solubility of lithium carbonate in water decreases at high temperatures, the yield of lithium carbonate in the crystal carp operation is greatly improved.
■特別な焼成装置は不要であり、焼成操作に付随する炭
酸リチウムの汚染がなく、製品価値の高い高純度炭酸リ
チウムをえることができる。■No special firing equipment is required, there is no lithium carbonate contamination associated with the firing operation, and high-purity lithium carbonate with high product value can be obtained.
参考例1
晶析槽として攪拌機、加熱用スチームジャケット、リチ
ウム化合物水溶液フィードロ、炭酸リチウム粉末添加口
、ガス吹き込み口、排気口、炭酸リチウムスラリーぬき
だし口、圧力ゲージ等を備えた内容積301の耐圧オー
トクレーブを用いた。Reference Example 1 A pressure-resistant crystallization tank with an internal volume of 301 equipped with a stirrer, a heating steam jacket, a lithium compound aqueous solution feeder, a lithium carbonate powder addition port, a gas injection port, an exhaust port, a lithium carbonate slurry outlet, a pressure gauge, etc. An autoclave was used.
精製した濃度5.2ii量%の水酸化リチウム水溶液を
201水溶液フイードロより晶析槽にいれ回転数60O
rpmで十分撹拌しながら約30分かけて液温を90℃
に昇温した。十分攪拌し液温を90℃に保ちながらガス
吹き込み口より二酸化炭素ガスを毎分2.21の流量で
4時間連続的に槽内に供給し、水酸化リチウムと反応さ
せ炭酸リチウムの結晶を晶析した。A purified lithium hydroxide aqueous solution with a concentration of 5.2ii mass % was put into a crystallization tank from a 201 aqueous solution feeder and the rotation speed was 60O.
Bring the liquid temperature to 90℃ for about 30 minutes while stirring thoroughly at rpm.
The temperature rose to . While stirring thoroughly and keeping the liquid temperature at 90°C, carbon dioxide gas was continuously supplied into the tank from the gas inlet at a flow rate of 2.21 per minute for 4 hours, causing it to react with lithium hydroxide and crystallizing lithium carbonate. analyzed.
熱天秤により乾燥炭酸リチウムの加熱mfft変化を測
定し550℃までの加熱減少量の全体に占める割合を加
熱減量成分とした。The change in mfft on heating of dry lithium carbonate was measured using a thermobalance, and the proportion of the total amount of loss on heating up to 550° C. was defined as the heating loss component.
得られた炭酸リチウム粉末の収率は74.4%、平均粒
径47μm、加熱減量成分は0.092%であった。The yield of the obtained lithium carbonate powder was 74.4%, the average particle size was 47 μm, and the weight loss component on heating was 0.092%.
実施例1
参考例1で用いたのと同じ晶析槽を用い、精製した濃度
5.2重量%の水酸化リチウム水溶液を201水溶液フ
イードロより晶析槽にいれ攪拌しなから液温を80℃に
昇温した。炭酸リチウム粉末投入口より平均粒径43μ
m、加熱減量成分0゜073%の炭酸リチウム粉末を1
65g加え、十分攪拌し水溶液中に分散させた。Example 1 Using the same crystallization tank as used in Reference Example 1, a purified lithium hydroxide aqueous solution with a concentration of 5.2% by weight was poured into the crystallization tank from the 201 aqueous solution feeder, and the liquid temperature was raised to 80°C while stirring. The temperature rose to . Average particle size 43μ from lithium carbonate powder inlet
m, 1 liter of lithium carbonate powder with heating loss component 0°073%
65g was added and thoroughly stirred to disperse in the aqueous solution.
液温を80℃に保ち十分攪拌しながら二酸化炭素ガスを
毎分2.21の流量で4時間連続的に槽得た。While maintaining the liquid temperature at 80° C. and stirring sufficiently, carbon dioxide gas was continuously supplied to the tank at a flow rate of 2.21 per minute for 4 hours.
炭酸リチウム粉末の回収率は70.2%、平均粒径は5
28m1加熱減量成分は0.052%であった。The recovery rate of lithium carbonate powder was 70.2%, and the average particle size was 5.
The heating loss component of 28ml was 0.052%.
参考例2、実施例2
参考例1と同じ晶析槽を用い、液温、炭酸リチウム粉末
の添加量をかえた以外は参考例1、実施例1と同様にし
て晶析、回収をおこなった。Reference Example 2, Example 2 Using the same crystallization tank as Reference Example 1, crystallization and recovery were performed in the same manner as Reference Example 1 and Example 1, except that the liquid temperature and the amount of lithium carbonate powder added were changed. .
参考例2 120 0実施例2 1
00 180参考例2 B1.3 4
5 0.049実施例2 76.7 48
0.OL3実施例3
参考例1に用いたのと同じ晶析槽を用い、濃度1.1重
量%の炭酸リチウム水溶液を2(l水溶液フィードロよ
り晶析槽にいれ、実施例1で用いたのと同じ炭酸リチウ
ム粉末63g加え、十分攪拌しなから液温を90℃に昇
温した。Reference example 2 120 0 Example 2 1
00 180 Reference example 2 B1.3 4
5 0.049 Example 2 76.7 48
0. OL3 Example 3 Using the same crystallization tank as used in Reference Example 1, a lithium carbonate aqueous solution with a concentration of 1.1% by weight was poured into the crystallization tank from the 2 (l) aqueous solution feeder, and the same crystallization tank as that used in Example 1 was added. 63 g of the same lithium carbonate powder was added, and the liquid temperature was raised to 90° C. while stirring thoroughly.
十分攪拌し液温を90℃に保ちながら排気口より排気し
4時間かけて液量が約1071となるまで水分を蒸発さ
せ炭酸リチウムの析出を行った。While thoroughly stirring and maintaining the liquid temperature at 90° C., the mixture was evacuated from the exhaust port and water was evaporated over 4 hours until the liquid amount reached approximately 1071 kg, thereby precipitating lithium carbonate.
得られた炭酸リチウムスラリーを80℃の温水で洗浄す
る以外、参考例1と同様にして分離乾燥させた。The obtained lithium carbonate slurry was separated and dried in the same manner as in Reference Example 1, except that it was washed with 80° C. hot water.
炭酸リチウム粉末の収率は67.7%、平均粒径は66
μm、加熱減量成分は0.071%であった。Yield of lithium carbonate powder is 67.7%, average particle size is 66
μm, and the heating loss component was 0.071%.
実施例4
参考例1で用いたのと同じ晶析槽を用いた。精同じ炭酸
リチウム粉末89g加え、十分攪拌しなから液温を90
℃に昇温した。Example 4 The same crystallization tank as used in Reference Example 1 was used. Add 89g of the same lithium carbonate powder, stir thoroughly, and bring the liquid temperature to 90%.
The temperature was raised to ℃.
液温を90℃に保ちながらガス吹き込み口よりアルゴン
ガスを毎分0.81入れ、炭酸水素リチウムの分解によ
り生じた二酸化炭素ガスを追い出しながら炭酸リチウム
の晶析を行った。晶析時間は約2.5時間であった。While maintaining the liquid temperature at 90° C., argon gas was introduced from the gas inlet at a rate of 0.81 per minute, and lithium carbonate was crystallized while expelling carbon dioxide gas produced by decomposition of lithium hydrogen carbonate. Crystallization time was approximately 2.5 hours.
得られた炭酸リチウムスラリーを参考例1と同様に分離
洗浄乾燥した。The obtained lithium carbonate slurry was separated, washed and dried in the same manner as in Reference Example 1.
平均粒径51μm、加熱減量成分は0.058%の炭酸
リチウム粉末が収率77.0%で得られた。Lithium carbonate powder with an average particle size of 51 μm and a heating loss component of 0.058% was obtained in a yield of 77.0%.
比較例1〜4
参考例に用いたのと同じ晶析槽を使用し、炭酸リチウム
粉末を添加せず、リチウム化合物水溶液の液温を次のよ
うにする以外は実施例と同様に炭酸リチウムの晶析を行
った。Comparative Examples 1 to 4 Lithium carbonate was prepared in the same manner as in the example except that the same crystallization tank as used in the reference example was used, lithium carbonate powder was not added, and the temperature of the lithium compound aqueous solution was set as follows. Crystallization was performed.
比較例4 14.0%ギ酸 30 4リチウ
ム水溶液
得られた炭酸リチウム粉末の収率、平均粒径、加熱減量
成分は次の通りであった。Comparative Example 4 14.0% Formic Acid 30 4 Lithium Aqueous Solution The yield, average particle size, and heating loss components of the obtained lithium carbonate powder were as follows.
Claims (4)
り炭酸リチウムの粉末を得るに際し、該水溶液に予め炭
酸リチウム粉末を晶析により生成する炭酸リチウム10
0重量部あたり5〜100重量部添加し、且つ該水溶液
を70℃以上に加温し晶析することを特徴とする炭酸リ
チウム粉末の製造方法(1) When obtaining lithium carbonate powder by crystallization from an aqueous solution containing a lithium compound, lithium carbonate 10 is produced in advance by crystallizing lithium carbonate powder in the aqueous solution.
A method for producing lithium carbonate powder, which comprises adding 5 to 100 parts by weight per 0 parts by weight, and crystallizing the aqueous solution by heating it to 70°C or higher.
リチウム水溶液に二酸化炭素を吹き込みながら炭酸リチ
ウム粉末を析出させることを特徴とする特許請求の範囲
第1項記載の炭酸リチウム粉末の製造方法(2) A method for producing lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated while blowing carbon dioxide into a lithium hydroxide aqueous solution containing a lithium compound.
度以下の炭酸リチウム水溶液を濃縮することにより炭酸
リチウムの粉末を析出させることを特徴とする特許請求
の範囲第1項記載の炭酸リチウム粉末の製造方法(3) A method for producing lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated by concentrating a lithium carbonate aqueous solution containing a lithium compound and having a saturated concentration or less.
素リチウム水溶液から二酸化炭素を脱離させることによ
り炭酸リチウムの粉末を析出させることを特徴とする特
許請求の範囲第1項記載の炭酸リチウム粉末の製造方法(4) Production of lithium carbonate powder according to claim 1, characterized in that lithium carbonate powder is precipitated by desorbing carbon dioxide from an aqueous lithium hydrogen carbonate solution containing a lithium compound. Method
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7144585A JPS61232205A (en) | 1985-04-04 | 1985-04-04 | Production of lithium carbonate powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7144585A JPS61232205A (en) | 1985-04-04 | 1985-04-04 | Production of lithium carbonate powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61232205A true JPS61232205A (en) | 1986-10-16 |
JPH0360772B2 JPH0360772B2 (en) | 1991-09-17 |
Family
ID=13460754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7144585A Granted JPS61232205A (en) | 1985-04-04 | 1985-04-04 | Production of lithium carbonate powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61232205A (en) |
-
1985
- 1985-04-04 JP JP7144585A patent/JPS61232205A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH0360772B2 (en) | 1991-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6926010B2 (en) | Method for producing lithium hydroxide | |
CN115893449B (en) | Method for producing electronic grade sodium fluoride by using industrial grade sodium-alkali mixed solution | |
JPH03146421A (en) | Preparation of powdery titanium dioxide | |
US3007771A (en) | Manufacture of lithium carbonate | |
JPS61251511A (en) | Production of lithium carbonate powder | |
CN106517289A (en) | Method of using low-grade witherite to produce high-purity barium chloride | |
US2808313A (en) | Method for the production of high purity caesium compounds from caesium-bearing minerals | |
JPS6236021A (en) | Production of calcium carbonate having low strontium content | |
US3350167A (en) | Method of preparing hydrated nickel carbonate and the product thereof | |
JPS61232205A (en) | Production of lithium carbonate powder | |
US3197289A (en) | Modification of zinc hydrosulfite crystals by use of high molecular weight colloidal materials | |
RU2424187C1 (en) | Method of producing high-purity barium fluoride | |
JPH092819A (en) | Production of highly pure zirconium oxychloride crystal | |
CN111732133A (en) | Preparation method of tetraamminepalladium sulfate | |
JP7345728B2 (en) | How to purify lithium carbonate | |
JP4635310B2 (en) | Neutral sodium sulfate composition and method for producing the same | |
JPH01313333A (en) | Production of niobium hydroxide or tantalum hydroxide having high purity | |
CN114229880B (en) | Method for preparing low-barium industrial strontium chloride through primary crystallization and strontium chloride obtained through method | |
CN115959700B (en) | Hexahedral zinc fluoride, preparation method thereof and application of hexahedral zinc fluoride in magnesium removal in zinc hydrometallurgy process | |
CN114477257B (en) | Method for preparing low-sodium low-iron aluminum hydroxide flame retardant and co-producing ammonium chloride by using circulating fluidized bed fly ash | |
EP0286564A1 (en) | Process for the production of high-purity magnesium oxide from minerals containing calcium and magnesium | |
JPH0361605B2 (en) | ||
CN1422807A (en) | Method for preparing LiPF6 | |
US3048477A (en) | Production of zinc hydrosulfite crystals | |
CN106565463A (en) | Preparation process of barium acetate |