JPS61231391A - High-pressure steam condenser - Google Patents

High-pressure steam condenser

Info

Publication number
JPS61231391A
JPS61231391A JP7003185A JP7003185A JPS61231391A JP S61231391 A JPS61231391 A JP S61231391A JP 7003185 A JP7003185 A JP 7003185A JP 7003185 A JP7003185 A JP 7003185A JP S61231391 A JPS61231391 A JP S61231391A
Authority
JP
Japan
Prior art keywords
condensate
temperature
steam
zone
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7003185A
Other languages
Japanese (ja)
Inventor
Joji Tonomura
殿村 丈二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7003185A priority Critical patent/JPS61231391A/en
Publication of JPS61231391A publication Critical patent/JPS61231391A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To fix the temperature of condensate and enable safe operation of a boiler, by a construction wherein condensate is branched to a high-temperature side and a low-temperature side, and an automatic controlling valve is provided for controlling the mixing ratio of high-temperature condensate on the upstream side of a condensate zone and low-temperature condensate on the downstream side of the zone. CONSTITUTION:A steam A in a high-pressure steam condenser is fed into a steam header 1, from which it is led to an assembly header 3 while being condensed into condensate in a condensing (condensate part) zone 2. The condensate is branched into two directions, one portion is led to a sub-cooling zone 4, where it is further cooled to be a cold condensate C, which is led to a condensate header 5, and flows into a mixer 8. The other portion is led into the mixer 8 as a hot condensate B, and is mixed with the cold condensate C to be condensate D of an appropriate temperature. The temperature of the condensate is controlled to be a fixed value by providing a temperature control valve 7 on the hot condensate side and controlling the mixing ratio of the hot condensate.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高圧蒸気復水器において、蒸気が復水:二戻
らず、そのまま流れたり、あるいは復水が過冷却となり
、低温になりすぎたりして、器内の圧力も変動させるよ
うな状態を解消して、ボイラの安定した運転を可能とす
る技術分野で利用される。
[Detailed Description of the Invention] Industrial Application Field The present invention is a high-pressure steam condenser in which steam does not return to condensation and flows as it is, or condensate becomes supercooled and becomes too low temperature. It is used in the technical field to eliminate conditions that cause the pressure inside the vessel to fluctuate and enable stable boiler operation.

従来の技術。Conventional technology.

従来の高圧蒸気復水器の概要につき第2図に従つて述べ
る。
An overview of a conventional high pressure steam condenser will be described with reference to FIG.

ごみ焼却炉の排熱ボイラは燃料がごみであるため、その
発熱量が一定でないため、蒸気発生量も大きく変動する
。その変動する蒸気Aを復水0(二戻すのに、通常空冷
の高圧蒸気復水器が使用されている。
Since the waste heat boiler of a waste incinerator uses waste as fuel, its calorific value is not constant, and the amount of steam generated also fluctuates greatly. An air-cooled high-pressure steam condenser is usually used to return the fluctuating steam A to condensation.

蒸気はまず、蒸気ヘッダ1に至り、コンデンス(復水部
)ゾーン2に導かれ、ここで順次復水に戻され、集合ヘ
ッダ3に至る。
The steam first reaches a steam header 1 and is led to a condensation zone 2 where it is sequentially returned to condensate and reaches a collection header 3.

それから復水を更:二低い温度にするため(圧力調節弁
12から排出された場合、フラッシングされないように
)サブクール(復水冷却部)ゾーン4を通して、復水ヘ
ッダ5に至り、圧力調節弁12を、通って坪出される。
The condensate is then further cooled to a lower temperature (so that it is not flushed when discharged from the pressure regulating valve 12) through a subcooling zone 4 to the condensate header 5, where it reaches the pressure regulating valve 12. It is passed through and exited.

復水に戻し、冷却するための空気は、ファン1゜によっ
て送風される。この際に復水温度を一定にするためには
、従来、ファン1oの翼角を変化させて冷却空気の風量
を変化させ、冷却能力を調節する事による方法が取られ
ていた。
Air for returning to the condensate and cooling it is blown by a fan 1°. In order to keep the condensate temperature constant at this time, conventionally a method has been taken in which the blade angle of the fan 1o is changed to change the volume of cooling air to adjust the cooling capacity.

しかしこの方法であると、復水温度を一定にするための
み風量を変化させることになるので、復水器の本来の目
的である蒸気な復水に戻す能力が蒸気量の変化に対応し
た形で変化する事にならず、蒸気が復水に戻らず、その
まま流れたり、もしくは復水が過冷却となり、低温にな
りすぎたりする。
However, with this method, the air volume is changed only to keep the condensate temperature constant, so the ability to return steam to condensate, which is the original purpose of the condenser, is not adjusted to correspond to changes in the steam volume. The steam does not return to condensate and flows as it is, or the condensate becomes supercooled and becomes too low.

また、さらには、器内の圧力も圧力調節弁だけでは対応
できず、変動する事になり、ボイラ等も安定した運転が
されない事が応々にあった。この傾向は特に復水温度を
比較的高い範囲(50℃以上)で顕著となる。
Furthermore, the pressure inside the vessel could not be handled by the pressure regulating valve alone and would fluctuate, resulting in unstable operation of the boiler and the like. This tendency becomes particularly noticeable when the condensate temperature is in a relatively high range (50° C. or higher).

上記したように、従来は復水温度が度々一定でないため
、種々の不具合があったが、a)、高圧蒸気復水器以降
の機器の運転の安定化、b)、復水温度を高い状態(5
0℃〜ボイラ飽和蒸気温度の範囲内)で一定できれば、
熱回収の点から有利、c)。
As mentioned above, in the past, there were various problems because the condensate temperature was often not constant. (5
If it can be kept constant within the range of 0℃ to boiler saturated steam temperature,
Advantageous in terms of heat recovery, c).

高圧蒸気復水器の容量を小さくでき、復水温度を高くす
れば、サブクールゾーンの伝熱面積を小さくできる事等
のため、復水温度を一定とすることが必要である。
It is necessary to keep the condensate temperature constant because the capacity of the high-pressure steam condenser can be reduced and the heat transfer area of the subcool zone can be reduced by increasing the condensate temperature.

発明が解決しようとする問題点 本発明は、ボイラの安定運転を維持するために、上記し
たような従来例にあった蒸気量の変動を解消し、復水温
度を一定にしてボイラの安定運転を行なわしめることに
ある。
Problems to be Solved by the Invention In order to maintain stable operation of the boiler, the present invention eliminates the fluctuations in the amount of steam that occur in the conventional example as described above, and maintains stable operation of the boiler by keeping the condensate temperature constant. The purpose is to carry out the following.

問題点を解決するための手段 本発明は、上述の問題を解決するために、次のような手
段を採っている。すなわち、 復水を高温側と低温側とに分岐し、復水温度を一定にす
るために復水ゾーン前の高温復水と復水ゾーン後の低温
復水との混合比をコントロールする自動調節弁を設ける
Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. In other words, the condensate is divided into a high-temperature side and a low-temperature side, and automatic adjustment controls the mixing ratio of high-temperature condensate before the condensate zone and low-temperature condensate after the condensate zone in order to keep the condensate temperature constant. Provide a valve.

作用。Action.

以上述べた手段(:よれば、したがって、蒸気量の変動
に対しては、その最大量の復水能力を持った冷却風量で
一定とするか、もしくは蒸気量に応じた復水能力を冷却
風量の調節(ファンの翼角調節)により得るようにして
おき、復水温度は、高温・低温復水な混合することによ
り、一定にすることができ、高圧蒸気復水器以降の機器
の運転を安定化することが可能となる。
According to the above-mentioned method (:), therefore, in response to fluctuations in steam volume, either the cooling air volume with the maximum amount of condensation capacity is kept constant, or the cooling air volume is adjusted to the condensation capacity according to the steam volume. The condensate temperature can be kept constant by mixing high-temperature and low-temperature condensate, making it possible to control the operation of equipment after the high-pressure steam condenser. It becomes possible to stabilize the temperature.

実施例 次に、第1図を参照して本発明の実施例につき詳述する
。図において、上記した従来例と同一符号のものは同一
部分を示す。
Embodiment Next, an embodiment of the present invention will be described in detail with reference to FIG. In the figure, the same reference numerals as in the conventional example described above indicate the same parts.

蒸気Aは蒸気ヘッダ1に入り、コンデンス(復水部)ゾ
ーン2で復水に戻されつつ集合ヘッダ3゜(二至る。そ
こで復水は2つの方向に分岐される。
Steam A enters the steam header 1 and is returned to condensate in the condensation zone 2 until it reaches the collecting header 3°, where the condensate is split into two directions.

その一方は、サブクールゾーン4に至り、さらに冷却さ
れ、温度の低い冷復水Cとなり、復水へラダ5に至り、
混合器8へ流れる。
One of them reaches the subcool zone 4, where it is further cooled and becomes cold condensate C with a low temperature, and the condensate reaches the rudder 5.
Flows to mixer 8.

また他方は、そのままで、温度の高い熱復水Bとして混
合器8へ導かれ、そこで前記冷復水Cと混合され、適当
な温度の復水りとなる。復水温度の一定制御は、この熱
復水側に温度調節弁7を設置し、熱復水量を調節する事
により行なう。また、熱復水側に蒸気の流れるのを防止
する。ためにドレントラップ6を設置する。なお、冷復
水側には圧損が不足する場合のためにオリフィス9を設
置する。
The other condensate is directly led to the mixer 8 as high-temperature thermal condensate B, where it is mixed with the cold condensate C to form condensate at an appropriate temperature. Constant control of the condensate temperature is achieved by installing a temperature control valve 7 on the heat condensate side and adjusting the amount of heat condensate. It also prevents steam from flowing to the heat condensate side. A drain trap 6 is installed for this purpose. Note that an orifice 9 is installed on the cold condensate side in case there is insufficient pressure loss.

冷却空気を送るファン10は、所定の復水能力を持った
風量のもので、風量調節をしないものとするか、あるい
は可変翼角ができ、風量調節のできるファンであれば、
蒸気流量計11を設置して蒸気量に応じた復水能力をも
つように翼角(風量)を変化させればよりよい制御が得
られる。
The fan 10 that sends cooling air has a predetermined condensing capacity and has no air volume adjustment, or has a variable blade angle and can adjust the air volume.
Better control can be obtained by installing a steam flow meter 11 and changing the blade angle (air volume) so as to have a condensing capacity according to the amount of steam.

以上のように、本発明は、復水温度を一定にするために
、冷却風量を調節するのではなく、復水を冷・熱の2つ
に分け、各々その混合量比を調節することで行なうもの
である。
As described above, in order to keep the condensate temperature constant, the present invention does not adjust the cooling air volume, but divides the condensate into two, cold and hot, and adjusts the mixing ratio of each. It is something to do.

発明の効果 本発明は、上述の如く、蒸気量の変動(一対しては、そ
の最大量の復水能力を持った冷却風量で一定とするか、
もしくは蒸気量に応じた復水能力を冷却風量の調節(フ
ァンの翼角調節)により得るようにしておき、復水温度
は高温・低温復水な混合することにより、復水温度を一
定にすることが出来、タービンの安定運転が可能となる
Effects of the Invention As described above, the present invention is capable of controlling the fluctuation of the amount of steam (in contrast, the amount of cooling air that has the maximum amount of condensation capacity is kept constant, or
Alternatively, the condensate capacity can be obtained according to the amount of steam by adjusting the cooling air volume (adjusting the fan blade angle), and the condensate temperature can be kept constant by mixing high and low temperature condensate. This enables stable operation of the turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の高圧蒸気復水器の構成を示す系統図、
第2図は従来例の系統図である。 1・・蒸気〜ラダ、2・・コンデンス(復水部)ゾーン
、3・・集合ヘッダ、4・・サブクール(復水冷却部)
ゾーン、5・・復水ヘッダ、6・・ドレントラップ、7
・・温度調節弁、8・・混合器、9・・オリフィス、1
0・・ファン、11・・蒸気流量計、12・・圧力調節
弁、A・・蒸気、B・・熱復水、C・・冷復水、D・・
復水。 第1図 化1.圧力セ」時升
FIG. 1 is a system diagram showing the configuration of the high pressure steam condenser of the present invention;
FIG. 2 is a system diagram of a conventional example. 1. Steam to ladder, 2. Condensation zone, 3. Collection header, 4. Subcool (condensate cooling section)
Zone, 5...Condensate header, 6...Drain trap, 7
・・Temperature control valve, 8・・Mixer, 9・・Orifice, 1
0...Fan, 11...Steam flow meter, 12...Pressure control valve, A...Steam, B...Heat condensate, C...Cold condensate, D...
Condensing. First diagram 1. pressure cell

Claims (1)

【特許請求の範囲】[Claims] ごみ焼却炉の排熱ボイラから発生する蒸気を復水に戻す
高圧蒸気復水器であつて、復水を高温側と低温側とに分
岐し、復水温度を一定にするために復水ゾーン前の高温
復水と復水ゾーン後の低温復水との混合比をコントロー
ルする自動調節弁を設けた高圧蒸気復水器。
A high-pressure steam condenser that returns steam generated from the waste heat boiler of a waste incinerator to condensate.The condensate is divided into a high-temperature side and a low-temperature side, and a condensate zone is used to keep the condensate temperature constant. A high-pressure steam condenser equipped with an automatic control valve that controls the mixing ratio of high-temperature condensate in the front and low-temperature condensate after the condensation zone.
JP7003185A 1985-04-04 1985-04-04 High-pressure steam condenser Pending JPS61231391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7003185A JPS61231391A (en) 1985-04-04 1985-04-04 High-pressure steam condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7003185A JPS61231391A (en) 1985-04-04 1985-04-04 High-pressure steam condenser

Publications (1)

Publication Number Publication Date
JPS61231391A true JPS61231391A (en) 1986-10-15

Family

ID=13419813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7003185A Pending JPS61231391A (en) 1985-04-04 1985-04-04 High-pressure steam condenser

Country Status (1)

Country Link
JP (1) JPS61231391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084228A (en) * 2016-10-05 2018-05-31 ゼネラル・エレクトリック・カンパニイ System and method for higher plant efficiency

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084228A (en) * 2016-10-05 2018-05-31 ゼネラル・エレクトリック・カンパニイ System and method for higher plant efficiency

Similar Documents

Publication Publication Date Title
AU2009315819B2 (en) Method for operating a waste heat steam generator
US5916251A (en) Steam flow regulation in an absorption chiller
CN1100974C (en) Absorption refrigerator
US20040129002A1 (en) Method and device for regulating the power output of a combined-cycle power station
JPS61231391A (en) High-pressure steam condenser
US20100251760A1 (en) System for refrigeration, heating or air-conditioning technology, particularly refrigeration systems
JPH0417324B2 (en)
US2912831A (en) Refrigerant flow control for a refrigeration system
JPS6016283A (en) Controller for quantity of transformation in refrigerator
JPH0473062B2 (en)
GB2117749A (en) Process and equipment for burning gases containing H2S to form sulphur
SU802744A1 (en) Method of controlling heulium refrigerating plant
CN218882306U (en) Distributed cold, heat and electricity triple energy supply station
JPS631508B2 (en)
JPS626449Y2 (en)
SU1017008A1 (en) Apparatus for automatic control of thermal duty of coke dry quenching installation
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0379629B2 (en)
JPS6210352B2 (en)
JPH0221500B2 (en)
JPS62153653A (en) Refrigerator
JPS62196570A (en) Absorption refrigerator
JPS6059817B2 (en) Generator stator primary cooling water control device
KR0161212B1 (en) Refrigerant quantity control apparatus and its method of ammonia absorptive type airconditioner
JPH0518210A (en) Exhaust afterburning type combined cycle water feed control device