JPS6123077B2 - - Google Patents

Info

Publication number
JPS6123077B2
JPS6123077B2 JP6205878A JP6205878A JPS6123077B2 JP S6123077 B2 JPS6123077 B2 JP S6123077B2 JP 6205878 A JP6205878 A JP 6205878A JP 6205878 A JP6205878 A JP 6205878A JP S6123077 B2 JPS6123077 B2 JP S6123077B2
Authority
JP
Japan
Prior art keywords
wire
flux
welding
groove
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6205878A
Other languages
Japanese (ja)
Other versions
JPS54152640A (en
Inventor
Michio Koori
Tadashi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP6205878A priority Critical patent/JPS54152640A/en
Publication of JPS54152640A publication Critical patent/JPS54152640A/en
Publication of JPS6123077B2 publication Critical patent/JPS6123077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、手溶接および自動、半自動溶接に適
用されるフラツクス入りワイヤの製造法に係るも
ので、その要旨は被覆アーク溶接棒心線用線材に
連続した溝状切欠部を設けた後、この溝状切欠部
に沿つてロール圧入加工を施す圧延加工を施し、
形成される溝形空所にフラツクスを自動充てんし
成形することを特徴としている。 従来から、フラツクス入りワイヤの製造には、
適当寸法に圧延、裁断された実質的に長方形断面
の磨き帯鋼が外皮金属原料として使用されて来て
おり、また、これに関連する技術論文や報告書は
非常に多い。 しかし、近年のフラツクス入りワイヤ普及にと
もなうこの種ワイヤの需要増と原料帯鋼価格が
年々高騰する状況下にあつて特に磨き帯鋼を主原
料とする従来の製造法は種々の問題をもたらし始
めた。 すなわち、これら諸問題を要約すると、先ず、
ワイヤ生産量の急増に応じ、成分的に安定した原
料帯鋼の量的確保が困難となつたこと、近年、帯
鋼価格高騰による製品ワイヤのコストアツプなど
がある。特に、前者は帯鋼を原料とする溶接材料
において極めて重視すべき問題と考えられる。 現在、原料帯鋼の素材としては、前述の如き観
点から、材質的にリムド鋼を使用すのが普通とな
つている。 ところが周知の通り、リムド鋼塊から熱延され
た帯鋼素材(ホツトコイル)は、外側部に純鉄状
のリム層を形成し、一方、中央部にPおよびSな
ど不純元素の偏析帯を持つ欠点がある。 本発明者等はこのような難点を克服するため、
既に溶接棒用線材を材料とし塑性加工を施す過程
において現われる溝形空所にフラツクスを自動的
に充填してフラツクス入りワイヤを製造する方法
(特願昭49−29480号)を開発しその成果を得てい
る。 即ち、溶接棒用線材は帯鋼と異なり、鋼塊が原
理的には、そのまま長手方向に伸長されたもので
あるから、リム部と偏析帯は線材各箇所におい
て、ほぼ均等に分布する利点があり、これは、線
材を用いる在来溶接法、例えば手溶接、Co2溶接
および潜弧溶接法などが帯鋼使用のフラツクス入
りワイヤ溶接法より一層の普及を遂げている一因
を成しているものである。 さらに、溶接棒用線材の場合にはレードル分折
値が線材部分をほぼ代表しているため、原料成分
の品質管理面でも有利である。 しかも、線材は帯鋼にくらべ溶接材料用原料と
して、量的供給も容易である。 以上の如き理由で、本発明においては、素材と
して、特に成分面から溶接棒用線材を採用するも
のである。 さらに原料帯鋼は通常輸送中の荷くずれ防止
と、圧延、裁断工程から規制され、100Kg程度の
小重量コイルとして供給されるため、ワイヤ製造
にあたり、可成り頻繁に溶接接合する必要があ
る。これはワイヤ生産が高速化されるとともに設
備の稼動率を著るしく低下させる欠点もある。 以上に記載した如き理由から、本発明者等は線
材、特に成分的品質、経済性および供給料の面で
安定している溶接棒用心線材をフラツクス入りワ
イヤ原料素材とすることを既に開発したものであ
るが、本発明は更に研究し、同線材を最も効果的
に塑性変形して均質なフラツクス入りワイヤを高
能率で製造する方法を開発したものである。 即ち、本発明は連続生産ライン上において、溶
接棒用線材を素材とし、これの一部を軸方向に連
続する溝状に切削除去し、この連続する溝に沿つ
て圧延ロールを圧入するロール加工を施すことに
より連続するU字状溝を形成せしめ、このU字状
溝にフラツクスを自動的に充てんした後、この溝
部の口を閉じ、更に伸線工程を同一生産ラインで
行うことより原料線材の上記メリツトを最も有効
に生かし、かつ生産能率向上を計ることに成功し
たものである。 本発明の製造方法は先ず、溶接棒心線用線材に
軸方向に連続した溝状切欠部を連続生産ライン上
で軸方向頂部に連続して設けるものであるが、そ
の具体的方法は以下に述べる如く、例えば焼結合
金又は高速度鋼からなる回転カツターや切削バイ
ト等一般に慣用されている切削工具を走行中の線
材に押しつけ、その表面に所要形及び深さの溝を
切削加工する。この場合、線材の直線性を確保
し、線材のぶれを防止するための両側ガイドロー
ルを切削工具の前後に取付ける。なお、切削工具
は溝加工の程度に応じて1個ないし複数個使用す
るものである。又、この連続した溝状切欠部は次
工程の圧延による塑性変形におけるロール圧入の
ガイド溝ともなるものであり、その断面形状はU
字形またはV字形である。切削加工の難易から複
数個の切削工具を用い、先ずV字形切削溝を形成
した後、V字形工具にて次の圧延加工が容易なU
字溝を形成すると、工具の摩耗損を最低にするこ
とができる。又、その深さは圧延加工時のロール
ガイド効果と線材の加工硬化を目的の硬度以下に
する目的から切削溝の切込み率を10〜67%とする
ものである。すなわち、本発明において、切込み
率の下限を10%とするのは、加工硬化による伸線
中の析線、断線など製造中のトラブル発生、また
溶接時のワイヤ送給性の観点からワイヤ外皮断面
のビツカース硬度220を上限とするものであり、
この点を考慮したものである。これは後述する第
7図の実験結果からも妥当なことは明らかであ
る。従つて、切込み率が10%を下まわると、ワイ
ヤ断面はビツカース硬度が220以上となり、上述
した種々のトラブルを生じ易すくするため好まし
くない。 つぎに、第1図は伸線材の一部に切削溝を形成
するとが、ワイヤ外皮の加工硬化を最少限に抑え
る為に有効なことを実験により示したものであ
る。図中、横軸はワイヤ加工度を、縦軸はワイヤ
外皮の断面硬度を示したものである。第1図から
明らかな様に、線材を一部切削した場合のワイヤ
外皮硬度は切削なしの場合にくらべ、全体的に低
くなることが判る。また、切削溝も深くなる。換
言すれば切込み率(=切削溝の深さ/線材径×
100、%、第1図参照)が大きくなるにしたがつ
て、外皮硬度は低下する傾向にある。これはワイ
ヤ外皮となる伸線材のCやMn量がJIS規格成分範
囲内にて高目を示し、加工硬化し易い場合でも、
中間焼鈍を必要とせず、1.2φの如き細径ワイヤ
を断線などのトラブルなく高速製線するのに都合
が良い。したがい、本発明の技術は従来法による
と困難であつたCr、Mo、Niなどの合金元素を含
有する特殊鋼線材を使用して、冷間製線するのを
可能にしている。この場合の実験条件として、(1)
線材はJIS G3503−1964規格に該当する6φの溶
接棒用線材、(2)充てんフラツクスの種類はCo2
接用チタニヤ系であり、(3)フラツクス充てん率は
15%であつた。 また、第2図の実験結果は、切込み率を増加す
ることにより、冷間製線された細径ワイヤの外皮
硬度の低下することを示している。ところで、こ
の実験は(1)線材としてJIS G3503−1964規格の溶
接棒用線材を用い、(2)充てんフラツクスはCo2
接用CaF2−CaCO3系、(3)フラツクス充てん率は
16%および(4)冷間製線された最終ワイヤ外径は
1.2φなる条件にて行なつた。第2図から明らか
な通り、切込み率が増加するにしたがい、ワイヤ
外皮硬度は低下し、67%以上からほぼ平衡に達し
ていることが判る。したがい、切削する線材の欠
損を考慮すると、工業的に有効な切込み率の上限
は67%とすれば良い。 ロール圧延に当つては連続した切削した切欠溝
をガイド溝として圧入ロールを導入圧下するので
高速製線ラインにおいて、本発明法によるフラツ
クス充てん溝の成形性は従来法に比べて線材断面
の加工率が均一化されるから遥かにすぐれてい
る。更には、この頂部に設けた切削した切欠溝を
設けることにより、丸断面の線材を一挙にロール
加圧する従来法に比べて成形初期の線逃げ(だ
行)がなく、その結果、直線性および均一性の極
めて優れたフラツクス充てん溝をロール加工する
とができる。従い、本発明法によつてはフラツク
スの自動充てんにおけるフイードノズルからのフ
ラツクス供給規制が容易であり、フラツクス充て
んの均一性が著しく向上し、製線速度は大巾に向
上でき、ワイヤの生産性が著るしく改善できた。 更に本発明では上述した如く、切削加工の効果
により線材の加工硬化が最低に抑えられ、加工溝
のワイヤ閉塞部に該当する部分の剛性が小さいた
めフラツクス充てん後の溝開口部の閉塞加工が容
易であり、しかもワイヤ取扱い中に閉塞部の再度
の開口による充てんフラツクスの落下損失が全く
ない。また、極細径ワイヤを製造する場合、しば
しば生じる問題としてワイヤ合せ目部に発生する
微少われを原因とする断線も、本発明では製線時
の加工硬化が最低に抑えられているために極めて
起り難い。 以下本発明を実施例に基づいて詳述する。 第3図は本発明によるフラツクス入りワイヤ製
造法実施の一例を示したブロツク図である。以
下、本発明を第3図にもとづき詳しく説明する。
先ず、溶接棒用線材は所要径の線材コイルスタン
ド1より供給し、連続伸線機2により圧延に適す
る線径まで伸線する(以下この線材を伸線材と称
す)。また、この伸線材は必要に応じ、加熱装置
3を通過させ焼鈍軟化することが出来る。 この場合の焼鈍は、線材が高速で移動している
途中において、実施可能な方法であれば如何なる
装置でも適用出来る。例えば、通電ロールを介し
て伸線材の所定区間に直接的に通電し加熱する方
法か、高周波電流による誘導加熱の方法などが有
効である。 この焼鈍工程が必要なのは、素材であるホツト
コイル原線の外径が大きく、連続伸線機2にて、
所定外径に減径して伸線材を得る際の加工硬化が
著るしい場合である。したがい、製鉄所にて熱間
製線された比較的小径の軟質線材を素材として選
んだ場合には、工程を複雑にするこの焼鈍工程を
省くことが出来る。 次いで、本発明の要素である切削工程4は伸線
材の頂部を次の圧延工程5の作業が容易となる様
切削除去するため、1個または複数個の切削工具
をセツトした加工スタンドである。しかも、この
工程をかかる製線ラインに組込むことは、後述す
る如く、製品ワイヤの加工硬化を防ぐ重要な意味
を持つている。 圧延工程5では、先ず切削工程4にて切削除去
された伸線材頂部からロールを遂次圧入し、粉・
粒状のフラツクス充てんに都合の良いU字状溝を
形成する。この場合、工程4による切削加工溝は
ロール圧入時のガイド効果を発揮し、U字状溝形
成作業を極めて容易にする。これは、かかる工程
4を考慮していない従来法をより効率的なものに
している。 圧延された伸線材はフラツクスホツパ9より供
給されたフラツクスが充てんされた後、通常の成
形機6および連続伸線機7を経て完成されたフラ
ツクス入りワイヤの形で巻取機8に巻取られる。
以下、このフラツクス入りワイヤは従来と同様、
乾燥および製品のコイリング工程に送られる。 この場合、成形機6の成形ロールを圧延ロール
と同様駆動される方法にした方が線材の断線は生
じ難く、かつ、より高速の生産が可能となる。 なお、これらロールの駆動方式としては、加工
中における線材の伸び率に適合させて、個々のロ
ール回転数を調整するものと全ロールの周速を調
節するものなどが考えられ、いずれも有効であ
る。ただ、前者は充てんするフラツクスの組成、
密度およびフラツクスの充てん率を変化させたこ
とによるワイヤ伸び率変動に応じて、ロール回転
数を調整することが容易であるため少量多品種生
産を行なう設備としては好適である。 ところで、本発明法における特徴の一つは言う
までもなく、溶接棒用線材をフラツクス充てんに
都合の良い形状に塑性加工することにあるが、こ
の場合、伸線材に多大の加工度を加えない塑性加
工の方法を採り、最終伸線を容易にすることが望
ましい。 かかる観点から、本発明法はロール圧延のみに
よる従来法にくらべ、切削工程を含んでおりその
意義は大きい。 第4図は本発明者が行なつた線材加工に関する
実例Aを従来の一例Bと比較して示したものであ
る。すなわち本発明法では、ガイドロールに支え
られた線材イの頂部を先ず1本または直列に配置
した複数個の切削工具ロにて切削欠除し、次にこ
の切削した切欠溝をガイドとして、圧延ロールハ
をワイヤ中心に向かつて圧入し、U字状溝ニを形
成する。かかる工程は上述した如く、従来法にお
いて全く試みられなかつたものである。すなわ
ち、従来法は第2図Bに例示する如く、線材イの
頂部を押えロールヌにて加圧し、欠円断面を成形
してからロールハを線材中心部に向つて圧入す
る。ところで、かかる従来法は欠円加工時に線材
が加工硬化されるので、以下の伸線時、特に細径
ワイヤを作る場合に断線などの支障を来たし易
い。 一方、本発明の場合加工硬化を最低に抑えた状
態で形成したU字状フラツクス充てん溝ニに使用
目的に応じて調整したフラツクスを定量給粉ホ
し、U字状溝ニ内にフラツクスヘを完全に充てん
する。その後、U字状溝の開口部をロールトおよ
びチにて閉じ、リの工程に至つて、ロールまたは
伸線用孔ダイスにて減径し、所要外径のワイヤを
仕上げる。 上述した如く、本発明はロール圧入に先だち、
切削工具にて切削溝を形成することを特徴として
おり、この工程が線材の加工硬化を最低に抑える
ことに有利なことと切削溝がロール圧入時のガイ
ド役を果すので、加工中の線材はロール外に逸脱
し難く、より高速の製線を可能にすることが実験
により確められた。 さらに本発明によるワイヤの断面は生産性を考
慮し、第4図に例示する如く単純管形とするのが
良い。また、充てんされるフラツクスの形態は必
ずしも粉粒状である必要はなく、高速供給に適す
る様、例えば水ガラスを添加したペースト状でも
良い。 さらに、本発明の工業的利用の実例として、本
発明製造法により製造したガスシールドおよびノ
ンガスシールド溶接ワイヤの性能を以下に示す。 実施例 1 (1) 溶接ワイヤの種類と外径 Co2溶接ワイヤ1.2
mm (2) フラツクス粉末の組成 下記の組成で構成される5種のフラツクスを
ワイヤ全重量に対し、15〜16%の範囲で充てん
する。
The present invention relates to a method for manufacturing flux-cored wire that is applied to manual welding and automatic and semi-automatic welding. A rolling process is applied along the groove-shaped notch,
It is characterized by automatically filling the groove-shaped void to be formed with flux. Traditionally, in the production of flux-cored wire,
Polished strip steel having a substantially rectangular cross section that has been rolled and cut into appropriate dimensions has been used as a raw material for the outer shell metal, and there are a large number of technical papers and reports related to this. However, with the recent spread of flux-cored wire, the demand for this type of wire is increasing, and the price of raw steel strip is rising year by year, so the conventional manufacturing method, which uses polished steel strip as the main raw material, has begun to bring about various problems. Ta. In other words, to summarize these problems, first of all,
In response to the rapid increase in wire production, it has become difficult to secure a quantity of raw material steel strip with stable composition, and in recent years, the cost of product wire has increased due to the soaring price of steel strip. In particular, the former is considered to be an issue that should be extremely important in welding materials made from steel strips. Currently, from the above-mentioned viewpoints, it is common to use rimmed steel as the material for raw steel strips. However, as is well known, a steel strip material (hot coil) hot-rolled from a rimmed steel ingot forms a pure iron-like rim layer on the outside, while having a segregation zone of impurity elements such as P and S in the center. There are drawbacks. In order to overcome these difficulties, the present inventors
We have already developed a method (Japanese Patent Application No. 49-29480) for producing flux-cored wire by automatically filling the groove-shaped voids that appear during the plastic working process using welding rod wire as material (Japanese Patent Application No. 1982-29480), and published the results. It has gained. In other words, unlike steel strips, wire rods for welding rods are, in principle, steel ingots that are elongated in the longitudinal direction, so the rim and segregation bands have the advantage of being almost evenly distributed at each location of the wire. This is one reason why conventional welding methods using wire rods, such as manual welding, Co2 welding, and submerged arc welding, have become more popular than flux-cored wire welding methods using strip steel. It is something that exists. Furthermore, in the case of wire rods for welding rods, the ladle analysis value almost represents the wire rod portion, which is advantageous in terms of quality control of raw material components. Furthermore, compared to steel strips, wire rods can be easily supplied in quantity as raw materials for welding materials. For the reasons mentioned above, in the present invention, a wire for welding rods is used as the material, especially from the viewpoint of composition. Furthermore, raw steel strips are normally regulated to prevent them from collapsing during transportation, as well as from rolling and cutting processes, and are supplied as small coils weighing around 100 kg, so they must be welded and joined fairly frequently during wire production. This increases the speed of wire production, but also has the disadvantage of significantly lowering the operating rate of the equipment. For the reasons described above, the present inventors have already developed the use of wire rods, particularly core wire rods for welding rods that are stable in terms of component quality, economical efficiency, and supply materials, as flux-cored wire raw materials. However, the present invention has conducted further research and developed a method for producing homogeneous flux-cored wire with high efficiency by plastically deforming the same wire most effectively. That is, the present invention involves roll processing on a continuous production line, in which a welding rod wire material is used as a raw material, a part of it is cut and removed in the shape of a continuous groove in the axial direction, and a rolling roll is press-fitted along this continuous groove. By applying this process, a continuous U-shaped groove is formed, and after this U-shaped groove is automatically filled with flux, the mouth of this groove is closed, and the wire drawing process is performed on the same production line, thereby reducing the raw material wire material. This method has succeeded in making the most effective use of the above-mentioned merits and improving production efficiency. In the manufacturing method of the present invention, first, a groove-shaped notch continuous in the axial direction is provided in the wire rod for the welding rod core on a continuous production line at the top in the axial direction, and the specific method is as follows. As described above, a commonly used cutting tool such as a rotary cutter or a cutting tool made of sintered alloy or high-speed steel is pressed against the running wire to cut a groove of the desired shape and depth on its surface. In this case, guide rolls on both sides are installed before and after the cutting tool to ensure the straightness of the wire and prevent the wire from wobbling. Note that one or more cutting tools are used depending on the degree of groove machining. In addition, this continuous groove-like notch also serves as a guide groove for press-fitting the roll during plastic deformation due to rolling in the next process, and its cross-sectional shape is U.
It is letter-shaped or V-shaped. Due to the difficulty of cutting, multiple cutting tools are used to first form a V-shaped cutting groove, and then the V-shaped tool is used to form a U-shaped groove for easy rolling.
By forming the groove, wear and tear on the tool can be minimized. Further, the depth is such that the depth of cut of the cutting groove is 10 to 67% for the purpose of reducing the roll guide effect during rolling and the work hardening of the wire to a target hardness or less. In other words, in the present invention, the lower limit of the cutting rate is set to 10% to prevent troubles during manufacturing such as wire disintegration and wire breakage during wire drawing due to work hardening, and from the viewpoint of wire feedability during welding. The upper limit is Bitkers hardness of 220,
This point was taken into consideration. It is clear that this is valid from the experimental results shown in FIG. 7, which will be described later. Therefore, if the depth of cut is less than 10%, the cross section of the wire will have a Vickers hardness of 220 or more, which is undesirable because it is likely to cause the various troubles mentioned above. Next, FIG. 1 shows through experiments that forming cutting grooves in a part of the drawn wire material is effective in minimizing work hardening of the wire sheath. In the figure, the horizontal axis represents the degree of wire processing, and the vertical axis represents the cross-sectional hardness of the wire sheath. As is clear from FIG. 1, the hardness of the outer skin of the wire when a portion of the wire is cut is lower overall than when the wire is not cut. Additionally, the cutting grooves also become deeper. In other words, depth of cut (=depth of cutting groove/wire diameter x
100%, see Figure 1) increases, the outer skin hardness tends to decrease. This is because the C and Mn contents of the drawn wire material that forms the wire sheath are high within the JIS standard component range and are easily work hardened.
It does not require intermediate annealing and is convenient for high-speed production of small diameter wires such as 1.2φ without troubles such as wire breakage. Therefore, the technology of the present invention makes it possible to cold-make a special steel wire containing alloying elements such as Cr, Mo, and Ni, which was difficult to produce using conventional methods. In this case, the experimental conditions are (1)
The wire rod is a 6φ welding rod wire that corresponds to the JIS G3503-1964 standard, (2) the type of filling flux is titania type for Co2 welding, and (3) the flux filling rate is
It was 15%. Moreover, the experimental results shown in FIG. 2 show that by increasing the cutting depth, the outer skin hardness of the cold-formed small diameter wire decreases. By the way, in this experiment, (1) welding rod wire according to JIS G3503-1964 standard was used as the wire, (2) the filling flux was CaF 2 -CaCO 3 system for Co 2 welding, and (3) the flux filling rate was
16% and (4) the final cold-made wire outer diameter is
The test was carried out under the condition of 1.2φ. As is clear from FIG. 2, as the depth of cut increases, the wire outer skin hardness decreases, and almost reaches equilibrium from 67% or higher. Therefore, taking into account the loss of the wire rod to be cut, the industrially effective upper limit of the cutting depth may be 67%. During roll rolling, a press-fitting roll is introduced and rolled using a continuous notched groove as a guide groove. Therefore, in a high-speed wire production line, the formability of flux-filled grooves by the method of the present invention is higher than that of conventional methods in terms of processing rate of wire cross section. It is much better because it equalizes. Furthermore, by providing the cut groove on the top, there is no line run-out during the initial forming process compared to the conventional method of roll-pressing round-section wire rods all at once, and as a result, the straightness and Flux-filled grooves with extremely high uniformity can be formed by roll processing. Therefore, according to the method of the present invention, it is easy to regulate the flux supply from the feed nozzle during automatic flux filling, the uniformity of flux filling is significantly improved, the wire manufacturing speed can be greatly improved, and the wire productivity is improved. It was a marked improvement. Furthermore, in the present invention, as described above, the work hardening of the wire rod is suppressed to the minimum due to the effect of the cutting process, and the rigidity of the part corresponding to the wire closing part of the processed groove is small, so it is easy to close the groove opening after filling with flux. Moreover, there is no loss of filling flux due to re-opening of the closed portion during wire handling. Furthermore, when manufacturing ultra-fine diameter wires, wire breakage caused by minute cracks that occur at the wire joints is a problem that often occurs.With the present invention, work hardening during wire manufacturing is suppressed to a minimum, so this problem is significantly reduced. hard. The present invention will be described in detail below based on examples. FIG. 3 is a block diagram showing an example of the method for manufacturing flux-cored wire according to the present invention. Hereinafter, the present invention will be explained in detail based on FIG.
First, a wire rod for a welding rod is supplied from a wire coil stand 1 having a required diameter, and drawn to a wire diameter suitable for rolling by a continuous wire drawing machine 2 (hereinafter, this wire rod is referred to as a wire drawing rod). Moreover, this drawn wire material can be annealed and softened by passing through a heating device 3, if necessary. In this case, annealing can be performed using any device that can perform the annealing while the wire is moving at high speed. For example, a method of heating a predetermined section of the drawn wire material by directly applying current to it via a current-carrying roll, or a method of induction heating using a high-frequency current are effective. This annealing process is necessary because the outer diameter of the raw hot coil wire is large, so the continuous wire drawing machine 2
This is a case where work hardening is significant when reducing the outer diameter to a predetermined outer diameter to obtain a drawn wire material. Therefore, if a relatively small-diameter soft wire rod hot-formed in a steel mill is selected as the raw material, this annealing step, which complicates the process, can be omitted. Next, the cutting step 4, which is an element of the present invention, is a processing stand equipped with one or more cutting tools in order to remove the top of the wire drawing material so that the next rolling step 5 can be easily performed. Moreover, incorporating this process into such a wire production line has an important meaning of preventing work hardening of the product wire, as will be described later. In the rolling process 5, first, rolls are sequentially press-fitted from the top of the drawn wire material that was cut and removed in the cutting process 4, and the powder and
Forms a U-shaped groove convenient for filling with granular flux. In this case, the cut groove in step 4 exhibits a guiding effect during roll press-fitting, making the U-shaped groove forming operation extremely easy. This makes the conventional method, which does not take such step 4 into consideration, more efficient. The rolled wire drawing material is filled with flux supplied from a flux hopper 9, and then passed through a conventional forming machine 6 and a continuous wire drawing machine 7, and then wound into a winding machine 8 in the form of a completed flux-cored wire.
Below, this flux-cored wire is the same as the conventional one.
Sent to drying and product coiling process. In this case, if the forming rolls of the forming machine 6 are driven in the same way as the rolling rolls, wire breakage will be less likely to occur and higher speed production will be possible. In addition, the drive methods for these rolls include one that adjusts the rotation speed of each individual roll to match the elongation rate of the wire material during processing, and one that adjusts the circumferential speed of all rolls, both of which are effective. be. However, the former is the composition of the filling flux,
Since it is easy to adjust the roll rotation speed in accordance with changes in the wire elongation rate due to changes in the density and flux filling rate, it is suitable as equipment for producing a wide variety of products in small quantities. By the way, one of the features of the method of the present invention is, needless to say, that the wire rod for welding rods is plastically worked into a shape that is convenient for flux filling. It is desirable to adopt the following method to facilitate the final wire drawing. From this point of view, the method of the present invention has great significance because it includes a cutting step, compared to the conventional method using only roll rolling. FIG. 4 shows an example A of wire rod processing carried out by the present inventor in comparison with a conventional example B. That is, in the method of the present invention, the top of the wire rod A supported by a guide roll is first cut with one cutting tool or a plurality of cutting tools arranged in series, and then the cut groove is used as a guide to perform rolling. Press the roll toward the center of the wire to form a U-shaped groove. As mentioned above, such a step has never been attempted in the conventional method. That is, in the conventional method, as illustrated in FIG. 2B, the top of the wire rod A is pressurized with a presser roll to form an occluded circular cross section, and then the roll is press-fitted toward the center of the wire. However, in this conventional method, the wire rod is work-hardened during the cut-out circle processing, and therefore, problems such as wire breakage are likely to occur during the subsequent wire drawing, especially when making a small diameter wire. On the other hand, in the case of the present invention, a fixed amount of flux adjusted according to the purpose of use is fed into the U-shaped flux-filled groove formed while minimizing work hardening, and the flux is completely filled into the U-shaped groove. to be filled. Thereafter, the opening of the U-shaped groove is closed with a roll and a chi, and in the process of ri, the wire is reduced in diameter with a roll or a wire drawing hole die to finish the wire with the required outer diameter. As mentioned above, the present invention, prior to roll press-fitting,
It is characterized by forming cutting grooves with a cutting tool, and this process is advantageous in minimizing work hardening of the wire rod, and since the cutting grooves serve as a guide during roll press-fitting, the wire rod during processing is It has been confirmed through experiments that the wire is less likely to deviate from the roll and enables higher-speed wire production. Further, in consideration of productivity, the cross section of the wire according to the present invention is preferably a simple tube shape as illustrated in FIG. Further, the form of the flux to be filled does not necessarily have to be in the form of powder or granules, but may be in the form of a paste to which water glass is added, for example, so as to be suitable for high-speed supply. Furthermore, as an example of the industrial application of the present invention, the performance of gas shield and non-gas shield welding wires produced by the production method of the present invention will be shown below. Example 1 (1) Type and outer diameter of welding wire Co 2 welding wire 1.2
mm (2) Composition of flux powder Fill the wire with five types of flux having the compositions shown below in an amount of 15 to 16% of the total weight of the wire.

【表】【table】

【表】 (3) 線材 外径 6.5mm 化学成分 C 0.07% P 0.011% Si 0.01〃 S 0.012〃 Mn 0.46〃 Cu 0.032〃 (4) 切削工具数 1個 (5) 切込み率 15% (6) 圧延ロールスタンド数 5基 (7) 最終径での製線速度 700m/min 以上の条件で製造した1.2mmφワイヤは、外
皮断面硬度Hv215で製造時の断線も発生せず良
好な生産性が得られた。 (8) 溶接(JIS Z3111およびZ3112) 次の条件で溶接した。溶接時のワイヤ送給性
は良好で安定したアーク状態であり、溶接金属
の性能についても下記の通り、いぜれも満足す
べきものであつた。 溶接電流280A Ca2量 20/min 溶接電圧 23V パス数 10パス 母 材SM−41
[Table] (3) Wire rod Outer diameter 6.5mm Chemical composition C 0.07% P 0.011% Si 0.01〃 S 0.012〃 Mn 0.46〃 Cu 0.032〃 (4) Number of cutting tools 1 piece (5) Depth of cut 15% (6) Rolling Number of roll stands: 5 (7) The 1.2 mmφ wire manufactured under conditions of a wire manufacturing speed of 700 m/min or more at the final diameter had a cross-sectional hardness of the outer skin of Hv215, and good productivity was achieved with no wire breakage occurring during manufacturing. . (8) Welding (JIS Z3111 and Z3112) Welding was performed under the following conditions. The wire feeding performance during welding was good and the arc state was stable, and the performance of the weld metal was also satisfactory as described below. Welding current 280A Ca2 amount 20/min Welding voltage 23V Number of passes 10 passes Base material SM−41

【表】 実施例 2 (1) 溶接ワイヤの種類と外径 ノンガスシールド
溶接ワイヤ2.0mm (2) フラツクス粉末の組成 下記の組成で構成される数種のフラツクスを
ワイヤ全重量に対し、16〜17%の範囲で充てん
する。
[Table] Example 2 (1) Type and outer diameter of welding wire Non-gas shielded welding wire 2.0mm (2) Composition of flux powder Several types of flux with the following composition were added to the total weight of the wire at a rate of 16 to 17 mm. Fill in the range of %.

【表】【table】

【表】 (3) 線材 外径 8mm 化学成分 C 0.08% P 0.011% Si 0.01〃 S 0.022% Mn 0.55% (4) 切削工具数 3個 (5) 切込み率 20% (6) 圧延ロールスタンド数 4基 (7) 最終径での製線速度 600m/分 以上の条件で製造した2.0mmφワイヤは、外
皮断面硬度Hv200で、特に加工溝のワイヤ閉塞
部に該当する端部硬度も低く、閉塞加工が容易
で良好生産性が得られた。 (8) 溶接(JIS Z3111およびZ3112) 次の条件で溶接した。溶接時のワイヤ送給性
は良好でワイヤの指向性もなく安定したアーク
状態であり、溶接金属の性能についても下記の
とおり、いずれも満足すべきものであつた。 溶接電流400A パス数10パス 溶接電圧 30V 母 材SM−41
[Table] (3) Wire rod Outer diameter 8mm Chemical composition C 0.08% P 0.011% Si 0.01 S 0.022% Mn 0.55% (4) Number of cutting tools 3 (5) Depth of cut 20% (6) Number of rolling roll stands 4 Group (7) Wire manufacturing speed at final diameter: 600 m/min The 2.0 mmφ wire manufactured under the above conditions has a cross-sectional hardness of Hv200, and the hardness of the end, which corresponds to the wire closing part of the processing groove, is particularly low, making it difficult to process the closing process. It was easy and good productivity was obtained. (8) Welding (JIS Z3111 and Z3112) Welding was performed under the following conditions. The wire feeding performance during welding was good, there was no directivity of the wire, and the arc was stable, and the performance of the weld metal was also satisfactory as described below. Welding current 400A Number of passes 10 Welding voltage 30V Base material SM−41

【表】 以上、本発明のフラツクス入りワイヤ製造法
は、特に成分的に安定した溶接棒用線材を使用
し、この原料線材に切削した切欠溝を設け、塑性
加工して得られる溝形空所にフラツクスを充てん
し、成形、伸線する一貫した工程であるため、ワ
イヤ生産工場の省力化が可能となり、生産性の向
上とともに製品のフラツクス充てん率、ワイヤ形
状品質の向上が実現出来た。 したがつて、今後、より高品質かつ安価な溶接
材料が強く要求される自動溶接の分野において、
特に本発明方法の工業的価値は高いものとなる。 なお、工場規模その他の状況に応じて、第図に
おける工程4以前と以降を切り離すことも出来る
ことは論ずるまでもない。
[Table] As described above, the flux-cored wire manufacturing method of the present invention uses a particularly compositionally stable wire rod for welding rods, provides cut grooves in this raw material wire rod, and forms groove-shaped cavities obtained by plastic working. Because it is an integrated process of filling the wire with flux, forming, and drawing the wire, it has become possible to save labor at the wire production factory, improving productivity, as well as improving the product's flux filling rate and wire shape quality. Therefore, in the field of automatic welding, where there is a strong demand for higher quality and cheaper welding materials in the future,
In particular, the industrial value of the method of the present invention is high. It goes without saying that depending on the factory size and other circumstances, the steps before and after Step 4 in the diagram can be separated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における加工度とワイヤ外皮断
面硬度との関係を示す図、第2図は切り込み率と
ワイヤ外皮断面硬度との関係を示した図、第3図
は本発明によるフラツクス入りワイヤ製造法の一
例を示すブロツク説明図、第4図Aは本発明の線
材加工法により、フラツクス入りワイヤが形成さ
れるワイヤ外皮断面の変形推移の一例を示す図、
Bは従来の圧延方式を示した図である。 1……線材コイルスタンド、2……連続伸線
機、3……加熱装置、4……切削スタンド、5…
…圧延ロールスタンド、6……成形ロールスタン
ド、7……連続伸線機、8……巻取機、9……フ
ラツクスホツパー。
Fig. 1 is a diagram showing the relationship between the processing degree and the cross-sectional hardness of the wire sheath in the present invention, Fig. 2 is a diagram showing the relationship between the depth of cut and the cross-sectional hardness of the wire sheath, and Fig. 3 is a diagram showing the relationship between the cutting rate and the cross-sectional hardness of the wire sheath. FIG. 4A is a block explanatory diagram showing an example of the manufacturing method; FIG.
B is a diagram showing a conventional rolling method. 1... Wire coil stand, 2... Continuous wire drawing machine, 3... Heating device, 4... Cutting stand, 5...
...Rolling roll stand, 6... Forming roll stand, 7... Continuous wire drawing machine, 8... Winding machine, 9... Flux hopper.

Claims (1)

【特許請求の範囲】[Claims] 1 被覆アーク溶接棒心線線材の軸方向に連続し
た溝状切欠を切削により設け、この溝状切欠に沿
つてロール圧延加工を施して形成される溝形空所
にフラツクスを自動充てんし、成形することを特
徴とするフラツクス入りワイヤ製造方法。
1 A continuous groove-like notch is cut in the axial direction of the coated arc welding rod core wire material, and the groove-shaped void formed by rolling along this groove-like notch is automatically filled with flux, and the forming process is performed. A method for producing a flux-cored wire.
JP6205878A 1978-05-24 1978-05-24 Production of flux wire Granted JPS54152640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6205878A JPS54152640A (en) 1978-05-24 1978-05-24 Production of flux wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6205878A JPS54152640A (en) 1978-05-24 1978-05-24 Production of flux wire

Publications (2)

Publication Number Publication Date
JPS54152640A JPS54152640A (en) 1979-12-01
JPS6123077B2 true JPS6123077B2 (en) 1986-06-04

Family

ID=13189146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6205878A Granted JPS54152640A (en) 1978-05-24 1978-05-24 Production of flux wire

Country Status (1)

Country Link
JP (1) JPS54152640A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608918B2 (en) * 1979-05-30 1985-03-06 日鉄溶接工業株式会社 Small diameter flux-cored welding wire with good feedability
JPS5944158B2 (en) * 1981-06-06 1984-10-26 株式会社神戸製鋼所 Flux-cored wire for arc welding

Also Published As

Publication number Publication date
JPS54152640A (en) 1979-12-01

Similar Documents

Publication Publication Date Title
US6079243A (en) Method of production of welding wire
CN101239430B (en) Technique for manufacturing flux-cored wire from disk round steel wire bar
US3466907A (en) Metal ribbon,welding electrodes and method and apparatus for forming same
KR100387022B1 (en) A method of packing a previously straightened metal wire into a cylindrical drum and a machining apparatus to which the metal wire is supplied
JPS6123077B2 (en)
RU2036031C1 (en) Method for producing seamless hot rolled tubes with outer diameter less than 170 mm
JPH11285892A (en) Manufacture of fine flux cored wire for welding stainless steel
JP2618261B2 (en) Manufacturing method of flux-filled rewire
US2352443A (en) Process and installation for the manufacture of shaped metal products
JP3592465B2 (en) Diamond dies for flux cored wire drawing
CA1102588A (en) Steel wire manufacture
US5767475A (en) Hot rolling method
JPS5913316B2 (en) Manufacturing method of small diameter flux-cored wire
JPS62207544A (en) Production of rolling material for long product by continuous casting
US4469534A (en) Method for controlled temperature accumulator for elongated materials
JPS5884697A (en) Production of flux cored wire
CN108340098A (en) A kind of processing technology of 5183 aluminium alloy semi-finished product welding wire
JPH1080789A (en) Welding wire for co2 gas shielded arc welding and its manufacture
JPH08300187A (en) Production of flux cored wire for stainless steel
JPH0852588A (en) Steel wire for gas shielded arc welding and its production
GB2179574A (en) Tubular welding wire manufacturing method
JPS58199693A (en) Production of flux cored wire
SU1551494A1 (en) Method of preparing semi-finished rolled products for producing cold-rolled strips
JPH0329517B2 (en)
SU1165538A1 (en) Versions of manufacturing process of bimetallic wire