JPS61230321A - Drawing method with charged particle rays - Google Patents

Drawing method with charged particle rays

Info

Publication number
JPS61230321A
JPS61230321A JP7219885A JP7219885A JPS61230321A JP S61230321 A JPS61230321 A JP S61230321A JP 7219885 A JP7219885 A JP 7219885A JP 7219885 A JP7219885 A JP 7219885A JP S61230321 A JPS61230321 A JP S61230321A
Authority
JP
Japan
Prior art keywords
area
data
size
pattern
minute
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7219885A
Other languages
Japanese (ja)
Inventor
Takafumi Goto
孝文 後藤
Osamu Hosoda
細田 治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP7219885A priority Critical patent/JPS61230321A/en
Publication of JPS61230321A publication Critical patent/JPS61230321A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To enable a high-precision drawing by reading out from storage means the data for a small area which is divided including the additional area, and comparing the size of width direction of the respective patterns in the additional area and the original area with a reference width. CONSTITUTION:A CPU 2 sequentially reads out the data for one small area from a disk memory 3 and stores it in a memory 4. A high-speed data transmission control mechanism 5 compares the size of width direction of the respective patterns in the lug area and the original area with a micro pattern size by means of the pattern data in the small area. A trimming process is performed after performing data selection, the remaining data is converted to a drawing signal, and the signals of position, time and size are respectively sent to a deflector for beam position control 15, a deflector for blacking 8, and a deflector for beam size control 12, thereby drawing a pattern on the position corresponding to an area on the material placed in the means.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高精度に図形が描画される荷電粒子線描画方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a charged particle beam drawing method for drawing figures with high precision.

[従来の技術1 近時、電子線描画方法を代表とする荷電粒子線描画方法
がLSI素子及び超LSI素子の製作方法として注目さ
れている。特に、電子線描画方法を例に上げると、電子
線通路上に2つのスリットと、該2つのスリットの間に
レンズと偏向器を配置し、該偏向器に供給される偏向信
号をコントロールすることにより、下に配置されたスリ
ットから所定の大きさの断面を有する電子線を取出し、
該電子線を材料上で走査して図形を描画する面積可変型
電子線描画方法が高速、高精度描画方法として期待され
ている。
[Prior Art 1] Recently, charged particle beam lithography methods, typified by electron beam lithography methods, have been attracting attention as a method for manufacturing LSI devices and VLSI devices. In particular, taking the electron beam writing method as an example, two slits are placed on the electron beam path, a lens and a deflector are arranged between the two slits, and the deflection signal supplied to the deflector is controlled. An electron beam with a predetermined cross section is taken out from the slit placed below,
A variable area electron beam drawing method in which a figure is drawn by scanning the electron beam on a material is expected to be a high-speed, high-precision drawing method.

斯くの如き描画方法では次の様にして図形が描画されて
いる。描画に必要なデータが格納されている磁気的格納
手段から材料上の成る領域〈第3図(a )のA参照)
に描かれる分の図形(第3図(a )の1)1.1)2
.1)3.D4.・・・・・・・・・参照)のデータを
読出すと共に該図形データを微小領域分(第3図(b 
)のa I、 a z 、 a 3. a 4 、 ・
・・・・・al・・・参照)に等区分して記憶手段に貯
蔵する。
In such a drawing method, figures are drawn in the following manner. An area on the material consisting of magnetic storage means in which data necessary for drawing is stored (see A in Figure 3(a))
The minute figure drawn in (Figure 3 (a) 1) 1.1) 2
.. 1)3. D4. . . . )), and read out the graphic data for a minute area (see Fig. 3 (b)).
) of a I, az, a3. a4, ・
. . al . . .)) and stored in the storage means.

さて、この場合、描画すべき図形が別々の微小領域に跨
る時が多々ある。例えば、微小頭1aa+とalに連続
する図形p1を描く場合を例に取って説明する。第4図
(a )は微小頭bi!atと81の部分を拡大したも
のである。先ず、該記憶手段から1微小領域分のデータ
、即ち、微小頭域a1のデータを読出す。そして、該デ
ータを描画信号(ショット位置、ショツト時間及びショ
ットビームのサイズ信号のこと)に変換して描画手段に
導入し、該手段内に配置された材料上の領bltatに
対応した位置にパターン11++を描く様にする。
Now, in this case, the figures to be drawn often span different minute areas. For example, a case will be explained in which a figure p1 continuous to the minute heads 1aa+ and al is drawn. Figure 4(a) shows the tiny head bi! This is an enlarged view of at and 81. First, data for one minute area, ie, data for the minute head area a1, is read out from the storage means. Then, the data is converted into writing signals (shot position, shot time, and shot beam size signals) and introduced into the writing means, and a pattern is placed at a position corresponding to the area bltat on the material placed in the means. Make it look like you are drawing 11++.

次に、微小頭域a1のデータを読出し、同様に、該デー
タを描画信号(ショット位置、ショツト時間及びショッ
トビームのナイズ信号のこと)に変換して描画手段に導
入し、該手段内に配置された材料上の領域a1に対応し
た位置にパターンp12を措く様にする事により、図形
ptを描画する。
Next, the data of the minute head area a1 is read out, and similarly, the data is converted into a writing signal (shot position, shot time, and shot beam nizing signal), introduced into the writing means, and placed in the means. The figure pt is drawn by placing a pattern p12 at a position corresponding to the area a1 on the material.

この様に従来においては、第4図(b)に示す様に、異
った微小領域に含まれるものは描画の際に別個のデータ
として処理されていた。
In this way, in the past, as shown in FIG. 4(b), data included in different minute regions were processed as separate data during drawing.

[発明が解決しようとする問題点] しかし乍ら、何れかの微小領域にあるパターンが極めて
微小な場合、前記第4図を例に上げると、微小領域a1
のパターンp12が例えば0.1μm以下の超微小サイ
ズのパターンの場合、現在の描画技術においては該超微
小サイズパターンデータである為に精確に描画する事が
難しい。
[Problems to be Solved by the Invention] However, if the pattern in any of the minute areas is extremely minute, taking the above-mentioned FIG. 4 as an example, the minute area a1
If the pattern p12 is, for example, an ultra-fine size pattern of 0.1 μm or less, it is difficult to accurately draw it using current drawing technology because it is ultra-fine size pattern data.

本発明はこの様な問題を解決することを目的としたもの
である。
The present invention aims to solve such problems.

[問題点を解決するための手段] 本発明の荷電粒子線描画方法は、描画に必要なデータを
微小領域分毎に区分して記憶手段に記憶させ、該微小領
域分のデータを該記憶手段から読出して描画手段に導入
することにより荷電粒子線の断面の大きさを所定の大き
さにし、該荷電粒子線を材料上の所定の位置に照射させ
て所定の図形を描画する様にした方法において、前記描
画に必要なデータを微小領域分毎に区分する際、微小領
域の境界から隣りの微小領域へ超微小な基準幅SOを有
する付加領域分余分に見込んで区分して記憶手段に記憶
させ、該記憶手段から付加領域を含んで区分した微小領
域分のデータを読出し、前記付加領域及び元の領域内の
夫々のパターンの幅方向のサイズとJi41幅Soとを
比較し、前記付加領域内のパターンの幅方向のサイズが
基準幅より小さい場合には該付加領域内のパターンデー
タを元の領域のパターンデータとして残し、そうでない
場合には捨てる様にし、又、元の領域のパターンの幅方
向のサイズが基準幅Soより小さい場合には腰元の領域
のパターンのデータは捨て、そうでない場合には元の領
域のパターンデータとして残す様にして該データを描画
手段に導入したものである。
[Means for Solving the Problems] The charged particle beam drawing method of the present invention has data necessary for drawing divided into minute regions and stored in a storage means, and the data for the minute regions are stored in the storage means. A method in which the cross-sectional size of the charged particle beam is set to a predetermined size by reading it out from the charged particle beam and introducing it into a drawing means, and the charged particle beam is irradiated onto a predetermined position on a material to draw a predetermined figure. When dividing the data necessary for the drawing into each minute area, an additional area having an ultra-minute reference width SO is allowed to be added from the boundary of the minute area to the next minute area, and the data is stored in the storage means. The data for the minute area divided including the additional area is read out from the storage means, and the size in the width direction of each pattern in the additional area and the original area is compared with the Ji41 width So. If the size of the pattern in the width direction in the area is smaller than the standard width, the pattern data in the additional area is left as the pattern data in the original area, otherwise it is discarded, and the pattern data in the original area is If the size in the width direction is smaller than the reference width So, the data of the pattern of the waist region is discarded, and if not, the data is introduced into the drawing means so as to remain as the pattern data of the original region. It is.

[発明の原]!l] 先ず、本発明の原理について説明する。尚、説明の便宜
上前記第4図(a)に示ず様に図形1)+を描く場合に
ついて説明する。
[The source of invention]! l] First, the principle of the present invention will be explained. For convenience of explanation, a case will be described in which the figure 1)+ is drawn as shown in FIG. 4(a).

初めに、描画に必要なデータが格納されている磁気的格
納手段から材料上の成る領域(第3図(a )のA参照
)に描かれる分の図形(第3図(a )のpl、pl、
p3.p4.・・・・・・・・S参照)のデータを読出
1と共に該図形データを微小領域分(第3図(b)のa
 1. a 2 、 a 3 、 a a 、 −・・
・al・・・参照)に等区分する場合、第1図(a >
の微小領域al+aiの拡大図において破線で示ず様に
、適宜大きさの付加領域(以下、耳領域と称し、領域a
、についてはOI、e2.e3,04、領hia l 
kmツイテはes 、 ei 、 ey 、 ee )
を付けて区分し、記憶装置に記憶させる。第1図(b)
に示す様に、この耳介の幅So  (以下、超微小サイ
ズと称す)は、例えば0.1μmに設定しておく。そし
て、該目領域の付いた微小頭域atのデータ、即ち、第
1図(b ’)に示す様にH領域と微小領域a1内のパ
ターン(パターン+1+++耳領域のパターンC++’
)のデータを読出してきて、目領域のパターン+1++
−の幅方向のサイズS1が超微小サイズSoより大きい
か小さいかを比較する。該比較により、目領域のパター
ンp11′の幅方向のサイズSLが超微小サイズSOよ
り小さい場合、本来の微小領域a1の外にあるデータ、
即ち目領域のデータであっても、該データを微小領域a
1のデータとして残し、その外の目領域のデータを取り
除く(耳取り処理と称す)。そして、該耳取り処理を行
なった領域(第1図(C)参照)のデータを描画信号〈
ショット位置。
First, a figure (pl in Fig. 3(a), pl,
p3. p4.・・・・・・・・・Refer to S) is read out 1, and the figure data is read out for a minute area (a in FIG. 3(b)).
1. a2, a3, aa, -...
・Al...) When dividing into equal parts, see Figure 1 (a >
As shown by the broken line in the enlarged view of the minute area al+ai, an additional area of an appropriate size (hereinafter referred to as the ear area, area a
, for OI, e2. e3,04, territory
km tweets are es, ei, ey, ee)
It is classified by adding and stored in the storage device. Figure 1(b)
As shown in , the width So of the pinna (hereinafter referred to as ultra-small size) is set to, for example, 0.1 μm. Then, the data of the minute head area at with the eye area, that is, the pattern in the H area and the minute area a1 (pattern +1+++ear area pattern C++'), as shown in FIG. 1(b').
) and read out the data for the eye area pattern +1++
Compare whether the size S1 in the width direction of - is larger or smaller than the ultra-small size So. According to the comparison, if the size SL in the width direction of the pattern p11' in the eye area is smaller than the ultra-small size SO, data outside the original small area a1,
In other words, even if the data is for the eye area, the data is transferred to the minute area a.
1 data, and remove the other eye area data (referred to as ear removal processing). Then, the data of the area (see FIG. 1(C)) where the ear-picking process has been performed is converted into a drawing signal.
shot position.

ショツト時間及びショットビームのサイズ信号のこと)
に変換して描画手段に導入し、該手段内に配置された材
料上の領域a1に対応した位置にパターンを描く様にす
る。次に、同様にして目領域の付いた微小領域a1のデ
ータ、即ち目領域と微小領域aI内のパターン(パター
ンpI2+耳領域のパターンDI2’)のデータを読出
してきて、微小領域a1内のパターンD+zの幅方向の
4ノ゛イズSzが超微小サイズSoより大きいか小さい
かを比較する。該比較により、微小領域a1内のパター
ンmの幅方向のサイズS2が超微小サイズSoより小さ
い場合、本来の微小頭1dal内のデータであっても、
該データを微小領域alのデータとして残さず、目領域
のデータと共に該領域a1のデータを取り除く。この様
にして図形1)tが描かれる。この様に、隣接する微小
領域に図形が跨る場合に、該微小領域にあるパターンが
超微小サイズであっても、該超微小パターンデータは隣
接する微小領域で超微小サイズ以上のサイズのパターン
としてデータ処理されるので、正確に図形が描かれる。
shot time and shot beam size signal)
and is introduced into a drawing means, so that a pattern is drawn at a position corresponding to the area a1 on the material placed within the means. Next, in the same manner, the data of the minute area a1 with the eye area, that is, the data of the pattern (pattern pI2+pattern DI2' of the ear area) in the eye area and the minute area aI, are read out, and the pattern in the minute area a1 is read out. Compare whether the four noises Sz in the width direction of D+z are larger or smaller than the ultra-small size So. According to the comparison, if the size S2 in the width direction of the pattern m in the micro region a1 is smaller than the ultra-micro size So, even if the data is within the original micro head 1 dal,
The data of the area a1 is removed together with the data of the eye area without leaving this data as the data of the minute area al. In this way, figure 1) t is drawn. In this way, when a figure straddles an adjacent micro area, even if the pattern in the micro area is ultra-small, the ultra-fine pattern data is larger than the ultra-small size in the adjacent micro area. Since the data is processed as a pattern, the figure can be accurately drawn.

尚、微小領域al内のパターン1)12の幅方向のサイ
ズS2が超微小サイズSoより大きくなる様な場合には
、前記領域a1の耳取り処理の時、目領域のパターンD
1t −の幅方向のサイズStが超微小サイズSoより
当然の事乍ら大きくなるので、■領域のパターンI)+
+ −のデータは捨てられ、微小頭111a+の耳取り
処理の時、微小領域a1内のパターンI)+zの幅方向
のサイズS2が超微小サイズSoより当然の事乍ら大き
くなるので、該データを微小領域a、のデータとして残
J。
Note that if the size S2 in the width direction of the pattern 1) 12 in the minute area al is larger than the ultra-minute size So, the pattern D in the eye area is
Since the size St in the width direction of 1t- is naturally larger than the ultra-micro size So, the pattern of the ■ area I)+
+ - data are discarded, and when performing ear cutting processing for the micro head 111a+, the size S2 in the width direction of the pattern I)+z in the micro area a1 is naturally larger than the ultra micro size So. The data is left as the data of the minute area a.

そして、パターンD++と1)tz別個のショットでが
描画される事により、図形p1が描画される。
Then, by drawing the pattern D++ and 1) tz in separate shots, the figure p1 is drawn.

この時、パターンp12のサイズは超微小パターンサイ
ズより大きいので、精度良く描画される。
At this time, since the size of the pattern p12 is larger than the ultra-fine pattern size, it is drawn with high precision.

[実施例] 第2図は前記原理に基づいて図形を描画する装置の一応
用例として示した電子線描画SN置の概略図である。
[Example] FIG. 2 is a schematic diagram of an electron beam lithography SN apparatus shown as an applied example of a device for drawing figures based on the above-mentioned principle.

図中1は描画に必要なデータが格納されている磁気的格
納手段、2は該格納手段から材料上の成る領域に描かれ
る分の図形データを読出1と共に該データを前記原理で
説明した様に耳介を付けて微小領域に区分し、該区分し
たデータをディスクメモリ3に格納し、更に該データの
内1微小領域分のデータをメモリ4に記憶させる中央制
御装置(以後CPUと称ず)である。5は前記CPU2
の指令に従い、描画操作の中枢制van構の動きをする
高速データ伝送制御機構(以後N S Cと称す)で、
前記メモリ4からデータを読出し、該1微小領域分のデ
ータにより、目領域及び本来の(元の)領域の夫々のパ
ターンの幅方向のサイズと超微小パターンサイズとの比
較と耳取り処理を順次行なった後、描画信号、即ら、シ
ョット時間信号、ビームサイズ信号、及びショット位置
信号を作成する。6は描画手段で、電子銃7の下に順次
、ブランキング用偏向器8.絞りの入った集束レンズ9
゜正方形又は矩形の孔を有するスリット10.レンズ1
1.ビームサイズ制御用偏向器12.前記スリット10
と同様なスリット13.投影レンズ14、ビーム位置制
御用偏向器15.材料16が配置されている。そして、
前記H8C5はショット時間信号をパルス発生器17を
介してブランキング用偏向器8に供給し、ビームサイズ
用信号をDA変換器18を介して前記ビームサイズ制御
用偏内器12に、ビーム位置制御信号をDA変換器19
を介して前記ビーム位置制御用偏向器15に夫々供給す
る。
In the figure, 1 is a magnetic storage means in which data necessary for drawing is stored, and 2 is a magnetic storage means for reading graphic data to be drawn on an area on the material from the storage means. A central control unit (hereinafter referred to as CPU) that attaches an auricle to the auricle and divides it into minute regions, stores the divided data in a disk memory 3, and further stores data for one minute region of the data in a memory 4. ). 5 is the CPU2
A high-speed data transmission control mechanism (hereinafter referred to as NSC) that operates as a central control van mechanism for drawing operations according to the instructions of
Data is read from the memory 4, and the size of the pattern in the width direction of the eye area and the original area is compared with the ultra-fine pattern size, and the ear removal process is performed using the data for the one minute area. After performing this sequentially, writing signals, that is, a shot time signal, a beam size signal, and a shot position signal are created. Reference numeral 6 denotes a drawing means, and a blanking deflector 8 is sequentially installed under the electron gun 7. Focusing lens with aperture 9
゜Slit with square or rectangular hole 10. lens 1
1. Beam size control deflector 12. The slit 10
A slit similar to 13. Projection lens 14, beam position control deflector 15. Material 16 is placed. and,
The H8C5 supplies a shot time signal to the blanking deflector 8 via a pulse generator 17, and a beam size signal to the beam size control deflector 12 via a DA converter 18 for beam position control. DA converter 19
are supplied to the beam position control deflector 15 through the respective beam position control deflectors 15.

斯くの如き装置において、CPU2は磁気的格納手段1
から材料16上の成る領域に描かれる分の図形のデータ
を読出すと共に該図形データを耳を付けて微小分に等区
分してディスクメモリ3に記憶させる。更にCPLIは
、順次1微小領域分のデータを該ディスクメモリから読
出し、メモリ4に記憶させる。そして、HS C5は該
小領域内のパターンデータにより、原理で説明した様に
、耳領域及び本来のく元の)領域の夫々のパターンの幅
方向のサイズと超微小パターンサイズとを比較し、デー
タの取捨を行なってから耳取り処理を行ない、残ったデ
ータを描画信@(ショット位置。
In such a device, the CPU 2 has a magnetic storage means 1.
The data of the figure to be drawn in the area formed on the material 16 is read out from the figure, and the figure data is divided into even minute parts with ears and stored in the disk memory 3. Further, the CPLI sequentially reads data for one minute area from the disk memory and stores it in the memory 4. Then, using the pattern data in the small area, HS C5 compares the size in the width direction of each pattern in the ear area and the original bear area with the ultra-fine pattern size, as explained in the principle. After discarding the data, perform the ear-picking process, and use the remaining data as a drawing signal @ (shot position).

ショツト時間及びショットビームのサイズ信号のこと)
に変換して、ショット位置信号をビーム位置制御用偏向
!15に、ショット時間信号をブランキング用偏向器8
に、ビームサイズ信号をビームサイズ制御用偏向器12
に夫々送り、該手段内に配置aされた材料上の領域に対
応した位ざにパターンを描く様にする。その後、同様に
して前記I」SC5は微小領域のデータを前記メモリ4
から読出してきて、耳領域及び本来の(元の)領域の夫
々のパターンの幅方向のサイズと超微小パターンサイズ
とを比較し、データの取捨処理を行なってから耳取り処
理を行ない、該データを描画信号に変換してショット位
置信号をビーム位置制御用偏向器15に、ショット時間
信号をブランキング用偏向器8に、ビームサイズ信号を
ビームサイズ制御用偏向器12に夫々送り、該手段内に
配置された材料上の領域に対応した位置にパターンを描
く様にする。この様にして微小領域al、alに夫々残
ったデータに基づいてショットをすれば、図形p1が描
かれる。
shot time and shot beam size signal)
Convert the shot position signal to deflection for beam position control! 15, a deflector 8 for blanking the shot time signal;
Then, the beam size signal is transmitted to the beam size control deflector 12.
and draw a pattern at a position corresponding to the area on the material placed in the means. Thereafter, in the same manner, the I''SC5 stores the data of the minute area in the memory 4.
The size in the width direction of each pattern in the ear region and the original (original) region is compared with the ultra-fine pattern size, data is discarded, and then ear removal processing is performed. The data is converted into a drawing signal and the shot position signal is sent to the beam position control deflector 15, the shot time signal is sent to the blanking deflector 8, and the beam size signal is sent to the beam size control deflector 12. A pattern is drawn at a position corresponding to the area on the material placed inside. If a shot is made based on the data remaining in each of the minute areas al and al in this way, the figure p1 is drawn.

[発明の効果] 本発明によれば、図形データを区分して出来た隣接する
微小領域に跨るパターンサイズが極めて微小な場合でも
、隣接する微小領域で超微小サイズ以上のサイズのパタ
ーンとしてデータ処理されるので、精確に描画する事が
出来る。又、この様な場合、従来の様に、夫々の微小領
域のパターンデータを別々に処理し、後で合゛体する場
合に比べ処理時間が少なくて済む。
[Effects of the Invention] According to the present invention, even when the pattern size extending over adjacent micro-areas created by dividing graphic data is extremely small, the data can be treated as a pattern with a size larger than ultra-micro in the adjacent micro-areas. Because it is processed, it is possible to draw accurately. In addition, in such a case, the processing time can be reduced compared to the conventional case where pattern data of each minute area is processed separately and then combined later.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明する為に用いたもの、第2
図は本発明の一応用例として示した電子線描画装置の概
略図、第3図は材料上の成る領域を表わしたもの、第4
図は従来の描画方法を説明する為に用いたものである。
Figure 1 is used to explain the invention in detail, Figure 2 is used to explain the invention in detail.
The figure is a schematic diagram of an electron beam lithography system shown as an application example of the present invention, FIG. 3 shows the area formed on the material, and FIG.
The figure is used to explain the conventional drawing method.

Claims (1)

【特許請求の範囲】[Claims] 描画に必要なデータを微小領域分毎に区分して記憶手段
に記憶させ、該微小領域分のデータを該記憶手段から読
出して描画手段に導入することにより荷電粒子線の断面
の大きさを所定の大きさにし、該荷電粒子線を材料上の
所定の位置に照射させて所定の図形を描画する様にした
方法において、前記描画に必要なデータを微小領域分毎
に区分する際、微小領域の境界から隣りの微小領域へ超
微小な基準幅S_0を有する付加領域分余分に見込んで
区分して記憶手段に記憶させ、該記憶手段から付加領域
を含んで区分した微小領域分のデータを読出し、前記付
加領域及び元の領域内の夫々のパターンの幅方向のサイ
ズと基準幅S_0とを比較し、前記付加領域内のパター
ンの幅方向のサイズが基準幅より小さい場合には該付加
領域内のパターンデータを元の領域のパターンデータと
して残し、そうでない場合には捨てる様にし、又、元の
領域のパターンの幅方向のサイズが基準幅S_0より小
さい場合には該元の領域のパターンのデータは捨て、そ
うでない場合には元の領域のパターンデータとして残す
様にして該データを描画手段に導入した荷電粒子線描画
方法。
The data necessary for drawing is divided into minute regions and stored in a storage means, and the data for the minute regions are read out from the storage means and introduced into the drawing means, thereby determining the size of the cross section of the charged particle beam. In a method in which the charged particle beam is irradiated onto a predetermined position on a material to draw a predetermined figure, when the data necessary for drawing is divided into minute regions, From the boundary to the adjacent minute area, an additional area having an ultra-minute reference width S_0 is allowed to be extra, and is stored in a storage means, and the data for the divided minute area including the additional area is stored from the storage means. Read and compare the size in the width direction of each pattern in the additional area and the original area with the reference width S_0, and if the size in the width direction of the pattern in the additional area is smaller than the reference width, the size in the width direction of the pattern in the additional area is The pattern data within is left as the pattern data of the original area, otherwise it is discarded, and if the size of the pattern in the original area in the width direction is smaller than the standard width S_0, the pattern data of the original area is A charged particle beam drawing method in which the data is introduced into a drawing means in such a way that the data is discarded, and if not, it is left as pattern data of the original area.
JP7219885A 1985-04-05 1985-04-05 Drawing method with charged particle rays Pending JPS61230321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7219885A JPS61230321A (en) 1985-04-05 1985-04-05 Drawing method with charged particle rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7219885A JPS61230321A (en) 1985-04-05 1985-04-05 Drawing method with charged particle rays

Publications (1)

Publication Number Publication Date
JPS61230321A true JPS61230321A (en) 1986-10-14

Family

ID=13482290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7219885A Pending JPS61230321A (en) 1985-04-05 1985-04-05 Drawing method with charged particle rays

Country Status (1)

Country Link
JP (1) JPS61230321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297823A (en) * 1988-05-26 1989-11-30 Fujitsu Ltd Exposure with electron beam
US6271852B1 (en) 1996-11-22 2001-08-07 Mitsubishi Denki Kabushiki Kaisha boundary processing of oblique overlapping graphics to achieve dimensionally accurate electron beam irradiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297823A (en) * 1988-05-26 1989-11-30 Fujitsu Ltd Exposure with electron beam
US6271852B1 (en) 1996-11-22 2001-08-07 Mitsubishi Denki Kabushiki Kaisha boundary processing of oblique overlapping graphics to achieve dimensionally accurate electron beam irradiation

Similar Documents

Publication Publication Date Title
DE69801198T3 (en) Objective lens driving apparatus for optical pickup unit
JPH07211626A (en) Aperture for collective writing with electron beam and using method thereof
JPS61230321A (en) Drawing method with charged particle rays
JPH09199389A (en) Drawing method by electron beam
JPS59208720A (en) Drawing method and apparatus
JP2744833B2 (en) Charged particle beam drawing method
JP2007227488A (en) Charged particle beam drawing method
JPS6030131A (en) Electron-beam exposure device
JPS6356703B2 (en)
JPH01107532A (en) Electron beam lithography device
JPH06163383A (en) Drawing method by charged particle beam
JPS59119831A (en) Method for splitting of pattern in charged particle beam exposure
JP2001168006A (en) Pattern data processing method and storage medium with stored program
JPS6244404B2 (en)
JPH07240361A (en) Formation of resist pattern
JPH0624183B2 (en) Electron beam drawing apparatus and method
JPS58135641A (en) Electron beam exposure
JPH0727859B2 (en) Charged particle beam writing system
JP2503359B2 (en) Charged particle beam drawing device
JPS60244025A (en) Electron beam drawing device
JPS61144823A (en) Electron beam exposure
JPH0423315A (en) Electron beam lithography equipment
JPH06176722A (en) Direct mapping type retarding filter
JPS58137947A (en) Electronic optical mirror tube
JPH06112113A (en) Charged-particle beam lithographic method