JPS61230267A - Frame for electrode of stacked cell - Google Patents

Frame for electrode of stacked cell

Info

Publication number
JPS61230267A
JPS61230267A JP60071243A JP7124385A JPS61230267A JP S61230267 A JPS61230267 A JP S61230267A JP 60071243 A JP60071243 A JP 60071243A JP 7124385 A JP7124385 A JP 7124385A JP S61230267 A JPS61230267 A JP S61230267A
Authority
JP
Japan
Prior art keywords
electrode
frame
thermoplastic resin
kneading
mica flakes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071243A
Other languages
Japanese (ja)
Inventor
Akira Yamamoto
暁 山本
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP60071243A priority Critical patent/JPS61230267A/en
Publication of JPS61230267A publication Critical patent/JPS61230267A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To prevent warp of product and increase mechanical strength by forming a frame with a compound obtained by mixing glass fibers and mica flakes to thermoplastic resin and kneading the mixture. CONSTITUTION:An electrode frame 1 is formed with a compound obtained by mixing glass fibers or glass fibers and mica flakes to thermoplastic resin and kneading the mixture. High density polyethylene (HDPE) having a density of 0.94 or more, and an MFI of 8-40 is used as thermoplastic resin. 20-50wt% of glass fiber is mixed to the HDPE and the mixture is kneaded, then the electrode frame is molded. The mixing amount of glass fiber is preferably limited to 35-45wt%. The electrode with frame which is flat and free from deformation and has sufficient mechanical strength can be manufactured.

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は、例えば金属−ハロゲン系からなる電解液循環
型積層二次電池C使用する平板状のカーボンプラスチッ
ク電極(以下、CP電極という)(ニ一体的C二成形す
る絶縁性の電極用枠に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Field of Application The present invention relates to flat carbon plastic electrodes (hereinafter referred to as CP electrodes) (hereinafter referred to as CP electrodes) used in, for example, electrolyte circulation type laminated secondary batteries C made of a metal-halogen system. This invention relates to an insulating electrode frame that is integrally molded.

B 発明の概要 本発明は、熱可塑性の樹脂(ニガラスファイバとさらC
二必要C:応じてマイカを添加した枠材を用いてカーボ
ンプラスチック電極の外周C:電極用枠を設けることに
より、主に枠材とカーボンプラスチック電極との成形収
縮率の差C二よって生じていた製品のソリを防止すると
共t:PA械的強度を有する電極用枠な提供するもので
ある。
B. Summary of the Invention The present invention is based on thermoplastic resins (niglass fibers and carbon fibers).
2 Necessary C: By using a frame material containing mica as needed, the outer periphery of the carbon plastic electrode C: By providing an electrode frame, the difference in molding shrinkage rate between the frame material and the carbon plastic electrode is mainly caused. The present invention provides an electrode frame that prevents warping of the product and has t:PA mechanical strength.

C従来の技術 電解液循環型積層二次電池(:使用するcp電極用枠は
、従来インジェクションモールド方式で密度0.94 
g/cd以上のポリエチレンまたは密度0.90g/d
以上のポリプロピレンC二カーボンブラック等の無機充
填物を混練して平板状C:成形されたcp電極と一体的
【二成形されており、その材質としてはcp電極との相
溶性の観点から密度がおよそ0、94 gl−以上の高
密度ポリエチレン(以下率C:HDPKという)をベー
スレジンとしここにマイカフレークを約30〜50重量
係配合したものを使用していた。
C Conventional technology Electrolyte circulation type stacked secondary battery (: The frame for the CP electrode used is a conventional injection molding method with a density of 0.94
g/cd or higher polyethylene or density 0.90g/d
The above polypropylene C is kneaded with an inorganic filler such as carbon black to form a flat plate. The base resin used was high-density polyethylene (hereinafter referred to as HDPK) of about 0.94 gl or more, and about 30 to 50 mica flakes were blended therein by weight.

このような材質および比率C:到達した最大の理由とし
て、cp電極と線膨張係数をできるだけ合わせること(
:主眼が置かれていたこと(−よるOD 発明が解決し
ようとする問題点 ところで、上述のよう(ニジて配合された電極用枠材は
、成形収縮率が比較的大きくかつこと(ニインサートさ
れるCP電極C二比較して肉厚C;形成するため、枠付
電極を形成したのち室温まで冷却を行っていったとき枠
部分の収縮量がcp電極材料のそれより大きいためソリ
を生ずることがしばしば認められた。
The main reason for achieving this kind of material and ratio C is to match the coefficient of linear expansion with that of the CP electrode as much as possible (
Problems to be Solved by the Invention By the way, as mentioned above, the electrode frame material formulated with Niji has a relatively large molding shrinkage rate and the Compared to the CP electrode C, the wall thickness C: When a framed electrode is formed and then cooled to room temperature, the amount of shrinkage of the frame portion is greater than that of the CP electrode material, causing warpage. was often recognized.

このソリを抑える目的でマイカフレークの充填量をさら
C二増加することは、成形用素材(例えばペレット)の
製造の点からもまた成形操作上からも困難であり、その
ためソリを修正するために後処理としてアニール処理を
行うことが行われていた。
It is difficult to further increase the filling amount of mica flakes by C2 in order to suppress this warpage, both from the viewpoint of manufacturing the molding material (for example, pellets) and from the viewpoint of the molding operation. Annealing treatment has been performed as a post-treatment.

しかし、例えばセパレータ(:使用する多孔質の膜のよ
うC:柔かい材料の外周(=枠を形成する場合では、成
形品に生ずる歪をある程度吸収できたが、膜よりもはる
か(:剛性の高いCP電極では歪を完全C二除去するこ
とができず、成形品単体の場合、変形が拘束されずある
期間経過すると残留歪が除徐f:緩和してソリの発生は
不可避なものであり、また電池の実施用状態である積層
電池では、ソリが拘束され集中ソリ歪が発生するのであ
った。
However, when forming a frame, for example, a separator (like a porous membrane used) can absorb some of the strain that occurs in a molded product, but it is much more rigid than a membrane (like a porous membrane used). With CP electrodes, it is not possible to completely remove strain, and in the case of a single molded product, deformation is not restrained and after a certain period of time, the residual strain is removed and relaxed, and warpage is inevitable. Furthermore, in the case of a laminated battery in the practical state of the battery, warpage is restrained and concentrated warp strain occurs.

大電力用の電池、例えば有効電極面積80〇−以上1二
なると特嘔二歪が現れて枠部分の最も弱い部分であるウ
ェルドラインC一応力が集中すると、5部チ以上の確率
でこの部分にクラツクが発生し交換を迫られるという問
題を抱えているものであった。
For high-power batteries, for example, if the effective electrode area is 800-12 or more, special strain will appear, and if stress is concentrated at the weld line C, which is the weakest part of the frame, there is a probability of 5% or more in this area. The problem was that cracks would occur during the process, requiring replacement.

このようなことから、電解液循環型積層二次電池を構成
しこれが長期間(−安定的唱:稼動できるようCgせる
た・め少なくとも次の2点C二ついて改善する必要があ
った。
For this reason, in order to construct an electrolyte circulation type stacked secondary battery and maintain the Cg so that it can operate for a long period of time, it was necessary to improve at least the following two points.

(1)成形収縮率のできるだけ小さい熱可履性樹脂素材
を使用し最終的な枠の収縮量を抑制する。
(1) Use a thermoplastic resin material with as low a molding shrinkage rate as possible to suppress the amount of shrinkage of the final frame.

(2)  フェルドライン強度を上げて、例えばアニー
ル処理を行ってもクラックを発生させない程度の強度を
もたせる。
(2) Increasing the strength of the Feldline to a level that does not cause cracks even when subjected to annealing treatment, for example.

このような改善すべき問題点を改める(:先立って、予
備的な検討を行ったところ、CP電極と枠材との密着性
ないじ融着性を解決すべき一つの課題としてクローズア
ップされた。
We will correct these problems that need to be improved (: When we conducted a preliminary study in advance, we focused on the adhesion and fusion properties between the CP electrode and the frame material as issues that need to be solved. .

すなわち、CP電極と枠材の一体化C:ついて検討した
ところ、第1図(:示したム部では両者が融合して一体
化するが、8部では両者は密着するが融着まで(−は至
らず、従って枠体1C二対するCP電極2の位置が適正
な場合は現行のかみつき深さt(通常、2部程度)で特
(−問題は起らないが、位、置ぎめの際(:若干のずれ
があるとかみつき深さfニパラツキを生じ、結果的c 
tの値は極端C:述さくなるおそれが生じ融着部が発揮
する機械的強度は減少するというものであった。
In other words, when we studied the integration of the CP electrode and the frame material C:, we found that in the mu part shown in Figure 1 (:), the two fuse and become integrated, but in the 8 part, they come into close contact, but until the fusion (- Therefore, if the position of the CP electrode 2 with respect to the frame 1C2 is appropriate, the current biting depth t (usually about 2 parts) will not cause any problems, but (: If there is a slight deviation, the biting depth f will be uneven, resulting in c
The value of t was extreme C: there was a risk of failure and the mechanical strength exhibited by the fused portion was reduced.

E 問題点を解決するための手段 本発明は、上述の問題点を解決すべく種々検討を加えた
結果、熱可■性樹脂(ニガラス単繊維とマイカフレーク
を配合混練したコンパウンドを用いて成形したことを特
徴とする積層電池の電極用枠(=到達したのであり、従
来の1 kw級の電池C:用いられていた有効面積80
0υのCP電極からさらにスケール・アップされた10
kv級の電池C:用いられる有効面積1300clII
FoCP電極畜:も使用することが可能な電極用枠を提
供するものである。
E. Means for Solving the Problems As a result of various studies in order to solve the above-mentioned problems, the present invention has been developed by molding a thermoplastic resin (a compound obtained by mixing and kneading Niglass single fibers and mica flakes). The electrode frame of a laminated battery characterized by
10 scaled up from 0υ CP electrode
kv class battery C: effective area used 1300clII
The present invention provides an electrode frame that can also be used with FoCP electrodes.

2作用 枠材に関しては、各種の予備的な検討の結果基本的C:
密度が0.94以上でMFI冨8〜40のHDPKを使
用すれば、CP電極との相溶性および枠材の流れやすさ
からみて最も好ましいことを確認した。
Regarding the 2-function frame material, as a result of various preliminary studies, basic C:
It was confirmed that HDPK having a density of 0.94 or more and an MFI depth of 8 to 40 is most preferable in terms of compatibility with the CP electrode and ease of flow of the frame material.

このHDPgに対してグラスファイバを20〜50重量
係配合し、混練したものから電極用枠な成形すると好ま
しいものが得られる。
A preferable product is obtained by adding 20 to 50 parts by weight of glass fiber to this HDPg and kneading the mixture to form an electrode frame.

グラスファイバの量が、20重量%以下であるときは枠
材の成形収縮率が大きく、また50重量%以上ではペー
スレジンの配合割合が減少するので枠の強度が低下し実
用的でなくなることからである。なお、このグラスファ
イバの添加量は、65〜45重量%であるとき、より好
ましい結果を得ることができる。
If the amount of glass fiber is less than 20% by weight, the molding shrinkage rate of the frame material will be large, and if it is more than 50% by weight, the blending ratio of pace resin will decrease, resulting in a decrease in the strength of the frame, making it impractical. It is. In addition, more preferable results can be obtained when the amount of glass fiber added is 65 to 45% by weight.

グラスファイバは、枠材を長さ3〜5■程度のベレット
状+二形成した後インジェクションモールドを行うこと
から、直径が3〜50μm、長さ5w以下のものを用い
る。
Glass fibers having a diameter of 3 to 50 μm and a length of 5 W or less are used because the frame material is formed into a pellet shape with a length of about 3 to 5 cm and then injection molded.

また、このときマイカなどの無機充填材を最大30重量
慢位混合して成形収縮率を調整すると効果的であること
が認められた。
In addition, it has been found that it is effective to adjust the molding shrinkage rate by adding up to 30 weights of an inorganic filler such as mica.

この枠材をcp電極と一体的に成形する際は、当然のこ
とながら金型内にcp電極を所定位置C:セットしたの
ち、枠材を溶融させて行うが、両者の一体化をより好ま
しい状態にするためC:は、樹脂温度および金型温度を
高目(:設定しまた成形品取出時の成形品温度が室温ま
で冷却する過程で(cp電極の線膨張率C:よる収縮量
)=(枠材の成形収縮量)+(、・枠材の線膨張率【:
よる収縮量)となるよう(:金型の温度設定をコントロ
ールすることが必要である。
When molding this frame material integrally with the CP electrode, the CP electrode is naturally set in the mold at a predetermined position C: and then the frame material is melted, but it is more preferable to integrate the two. In order to achieve the condition C:, the resin temperature and mold temperature are set to a high value (:), and during the process of cooling the molded product temperature to room temperature at the time of taking out the molded product (linear expansion coefficient C: amount of shrinkage due to cp electrode) = (Amount of molding shrinkage of frame material) + (,・Coefficient of linear expansion of frame material [:
It is necessary to control the temperature setting of the mold so that the amount of shrinkage due to

なお、このとき必要以上に金型温度を高くするとcp電
極が軟化し枠材の成形圧C:より変形を起すことがある
ので避けるべきである。
At this time, if the mold temperature is made higher than necessary, the CP electrode may soften and the molding pressure C: of the frame material may become more deformed, so this should be avoided.

G 実施例 密度0.94 g/al1MF I −52g/10−
のHDPE30重量部C:16μmφx3mのグラスフ
ァイバ40重量部添加混練しペレットを作った。このも
ののMFIは6.41 g/10−であった。
G Example density 0.94 g/al1MF I -52g/10-
30 parts by weight of HDPE C: 40 parts by weight of glass fiber of 16 μm diameter x 3 m were added and kneaded to make pellets. The MFI of this product was 6.41 g/10-.

なお、これとは別C:前述のHDPE50重量部、グラ
スファイバ40重量部、マイカフレーク10重量部から
なるペレット(M F I −4,68g/s*)も得
た。
In addition, separate C: pellets (M F I -4, 68 g/s*) consisting of 50 parts by weight of the above-mentioned HDPE, 40 parts by weight of glass fiber, and 10 parts by weight of mica flakes were also obtained.

一方、30℃C:設定した金型(:、特開昭59−21
7952号C;示したポリエチレン、カーボンブラック
およびグラファイトからなるCP電極をセットし前記ペ
レットをそれぞれ射出(ノズル部分の樹脂温度は約27
0℃)して枠付電極を成形したのち、自然冷却させた。
On the other hand, 30℃: The set mold (:, JP-A-59-21
No. 7952C: Set the CP electrodes made of polyethylene, carbon black, and graphite as shown, and inject the pellets (resin temperature at the nozzle part is about 27°C).
0° C.) to form a framed electrode, and then allowed to cool naturally.

このものは、相当の平坦性を示し、成形後アルミニウム
板で挾み簡単なアニール処理を行ったところ極めて安定
した枠付電極となった。
This product showed considerable flatness, and after being formed, it was sandwiched between aluminum plates and subjected to a simple annealing process, resulting in an extremely stable framed electrode.

なお、フェルドライン強度は、従来のもの(:比較して
かなり向上し、しかも成形品の平坦性が優れているため
フェルドラインC:かかる歪C二よる応力集中も十分(
;小さくなり、結果的C;実用上十分な強度を有する信
頼性の高い枠付電極を得ることができた。
In addition, the Feldline strength is considerably improved compared to the conventional one (:), and the flatness of the molded product is excellent, so Feldline C: the stress concentration due to such strain C2 is also sufficient (
; Result C: A highly reliable framed electrode having practically sufficient strength could be obtained.

さらC:、枠付電極の成形時C;おける金型温度C:つ
いて検討したところ、CP電極素材の物性によって多少
異なるが、80℃を超えるとcp電極素材自体の軟化C
;起因して不都合な現象が現れやすく、一方20℃以下
では一体化の点で好ましくないことが認められた。従っ
て通常は金型温度を30〜70℃近傍で行うのが好まし
く特C:約30℃前後での成形作業を行うと最も安定し
た枠付電極が得られやすいことが判った。
Furthermore, when molding the framed electrode, the mold temperature at C: was studied, and although it varies somewhat depending on the physical properties of the CP electrode material, when the temperature exceeds 80°C, the CP electrode material itself softens.
; On the other hand, it was found that temperatures below 20° C. were unfavorable in terms of integration. Therefore, it is usually preferable to carry out the molding at a mold temperature of around 30 to 70°C.Special C: It has been found that the most stable framed electrode can be obtained when the molding operation is carried out at around 30°C.

これとは別(=、cp電極の端部な凹凸形(第2図)、
波形(第3図)、鋸刃形(第4図)、微小クラック形(
第5図)、面荒し形(第6図)のようC:種々改変させ
て、かみつきの強度を検討したところいずれも平坦な端
面のものに比べて強度の向上が認められた。
Apart from this (=, uneven shape at the end of the CP electrode (Fig. 2),
Waveform (Fig. 3), sawtooth shape (Fig. 4), micro-crack shape (
(Fig. 5), roughened surface (Fig. 6) C: When various modifications were made and the bite strength was examined, it was found that the strength was improved in all cases compared to the one with a flat end surface.

H発明の効果 本発明を実施することにより、次のような効果を期待す
ることができる。
Effects of the invention H By implementing the invention, the following effects can be expected.

(1)成形品取出し後平坦な板で挾み放置するだけで、
はぼ完全な平坦性が得られる。
(1) After taking out the molded product, simply sandwich it between flat plates and leave it there.
Perfect flatness can be obtained.

グラスファイバ充填量を50重量係位まで(:するとそ
のまま自然放冷しただけでほぼ完全な平坦性が得られる
When the glass fiber filling amount is increased to 50% by weight (:), almost perfect flatness can be obtained by simply leaving it to cool naturally.

(21,グラスファイバと共(:マイカフレーク等を適
量加えて混練することにより枠材の成形収縮率及び熱膨
張率をコントロールできるため、各種のcp電極素材C
:最適な配合を選択することができる。
(21. Along with glass fiber (): By adding and kneading an appropriate amount of mica flakes, etc., the molding shrinkage rate and thermal expansion rate of the frame material can be controlled, so various CP electrode materials C
: Optimal combination can be selected.

(3)成形収縮率が小さくなったことから寸法安定性が
格段C:向上した。
(3) Since the molding shrinkage rate was reduced, the dimensional stability was significantly improved.

(4)  グラスファイバの添加I:より、フェルドラ
インの強度が実用上問題とならない程度まで向上し、ま
たクラックの発生の問題はほぼ完全に解消された。
(4) Addition of glass fiber I: The strength of the feldline was improved to such an extent that it was not a practical problem, and the problem of cracking was almost completely resolved.

(51CP電極および枠材との間のかみつき寸法lを3
±15■とじたとき、最も好ましいかみつき状態が得ら
れるよう(:なったばかりでなく、cp電極の多少の位
置ズレが起っても支障なく成形できるよう(:なった。
(The biting dimension l between the 51CP electrode and the frame material is 3
Not only was it possible to obtain the most preferable biting condition when the sheets were closed by ±15 squares, but also molding was possible without any trouble even if the CP electrode was slightly misaligned (:).

(6)CP電極と枠材との間の一体化を増すためC第2
図〜第6図C;示したような凹凸面を設けると有利であ
り、この結果実用上十分なかみつき強度が得られる。
(6) C2 to increase integration between the CP electrode and the frame material
Fig. 6C: It is advantageous to provide an uneven surface as shown, and as a result, a practically sufficient biting strength can be obtained.

以上、述べた各種の効果を有することから、従来長時間
を要したアニール処iを行なわなくても平坦で変形の起
らない実用上十分な強度を有する枠付電極を歩留りよく
しかも従来の半分以下の所要時間で製造することができ
るのである。
Because of the various effects mentioned above, it is possible to produce framed electrodes that are flat, do not deform, and have sufficient strength for practical use without the need for annealing, which conventionally required a long time, and at a yield that is half that of conventional methods. It can be manufactured in the following required time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は枠付電極(:おける枠体とcp電極端部の接合
状態を示す一部断面図、第2図〜第6図はcp電極端部
の加工状態を示す一部斜視図である。 1・・・枠体、2・・・cp電極、L・・・かみつき距
離。 代理人 弁理士 木 村 三 朗 −〜
Fig. 1 is a partial cross-sectional view showing the bonding state of the frame body and the end of the CP electrode in the framed electrode (:), and Figs. 2 to 6 are partial perspective views showing the processing state of the end of the CP electrode. 1... Frame body, 2... CP electrode, L... Biting distance. Agent: Patent attorney Sanro Kimura

Claims (2)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂にカーボンブラック等の導電性の無
機物を混練したカーボンプラスチック電極に熱可塑性樹
脂にガラス単繊維またはガラス単繊維とマイカフレーク
を混練配合したコンパウンドを用いて電極用枠を成形し
たことを特徴とする積層電池の電極用枠。
(1) A carbon plastic electrode made by kneading a conductive inorganic material such as carbon black into a thermoplastic resin, and a compound made by kneading a thermoplastic resin with glass single fibers or glass single fibers and mica flakes were used to form an electrode frame. A frame for electrodes of a laminated battery characterized by the following.
(2)MFI8〜40の高密度ポリエチレンを熱可塑性
樹脂として用い、これに20〜50重量%のガラス単繊
維、0〜30重量%のマイカフレークを混練・配合した
コンパウンドを用いる特許請求の範囲第1項記載の電極
用枠。
(2) A compound in which high-density polyethylene with an MFI of 8 to 40 is used as a thermoplastic resin, and 20 to 50% by weight of single glass fibers and 0 to 30% by weight of mica flakes are kneaded and blended is used. The electrode frame described in item 1.
JP60071243A 1985-04-05 1985-04-05 Frame for electrode of stacked cell Pending JPS61230267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071243A JPS61230267A (en) 1985-04-05 1985-04-05 Frame for electrode of stacked cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071243A JPS61230267A (en) 1985-04-05 1985-04-05 Frame for electrode of stacked cell

Publications (1)

Publication Number Publication Date
JPS61230267A true JPS61230267A (en) 1986-10-14

Family

ID=13455061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071243A Pending JPS61230267A (en) 1985-04-05 1985-04-05 Frame for electrode of stacked cell

Country Status (1)

Country Link
JP (1) JPS61230267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182306A1 (en) * 2016-04-18 2017-10-26 Robert Bosch Gmbh Electrochemical cell including electrode isolation frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017182306A1 (en) * 2016-04-18 2017-10-26 Robert Bosch Gmbh Electrochemical cell including electrode isolation frame

Similar Documents

Publication Publication Date Title
US6017653A (en) Method of manufacturing modular molded components for a bipolar battery and the resulting bipolar battery
US3703417A (en) Heat sealed flexible envelope separator and battery embodying same
KR100901563B1 (en) Polymer-metal complex of end plate for fuel cell and manufacturing method for it
JP3978429B2 (en) Conductive resin molding
JPS63314770A (en) Manufacture of sealed lead accumulator
US20030027030A1 (en) Fuel-cell separator, production of the same, and fuel cell
US20240213580A1 (en) Flexible, heat-conducting, insulating, and viscous phase change heat dissipation sheet, and preparation method therefor and battery thermal management system thereof
US20040195724A1 (en) Method of manufacturing separator for fuel cell
US5182178A (en) Suppression of electrolyte leakage from the terminal of a lead-acid battery
JPS61230267A (en) Frame for electrode of stacked cell
US7381493B2 (en) Separator for fuel cell and process for producing the same
CN115832348B (en) Composite bipolar plate for vanadium battery and preparation method thereof
JP2003059501A (en) Manufacturing method of fuel cell separator, manufacturing method of intermediate molding and intermediate molding
JP4587177B2 (en) Manufacturing method of fuel cell separator
JP4660082B2 (en) Fuel cell separator
JPS5851665B2 (en) storage battery
KR20170000500A (en) Composite materials end plate for fuel cell
JPH03138865A (en) Separator for fuel cell
KR20160126021A (en) Molding process for making fuel cell components
US20030203266A1 (en) Polymer electrolyte membrane fuel cell separator plate composition
KR101322400B1 (en) Method for Molding Sealing Film
JPS6348777A (en) Manufacture of sealed type lead storage cell
JPH02273469A (en) Sealed lead-acid battery
JP2004079456A (en) Manufacturing method of separator for fuel cell
JP2005276770A (en) Separator for fuel cells, process and apparatus for manufacturing the same