JPS61230002A - Interruption measuring method - Google Patents

Interruption measuring method

Info

Publication number
JPS61230002A
JPS61230002A JP60070637A JP7063785A JPS61230002A JP S61230002 A JPS61230002 A JP S61230002A JP 60070637 A JP60070637 A JP 60070637A JP 7063785 A JP7063785 A JP 7063785A JP S61230002 A JPS61230002 A JP S61230002A
Authority
JP
Japan
Prior art keywords
window
area sensor
measurement
light beam
wavefront
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60070637A
Other languages
Japanese (ja)
Other versions
JPH0652162B2 (en
Inventor
Junichi Kitabayashi
淳一 北林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP60070637A priority Critical patent/JPH0652162B2/en
Priority to US06/840,442 priority patent/US4744659A/en
Publication of JPS61230002A publication Critical patent/JPS61230002A/en
Publication of JPH0652162B2 publication Critical patent/JPH0652162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02084Processing in the Fourier or frequency domain when not imaged in the frequency domain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods
    • G01J9/0215Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods by shearing interferometric methods

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To simplify arithmetic and to improve measurement accuracy by designating the inclination theta of a reference wave with respect to a measurement wave and allowing to coincide the window both end parts with the boundary of an input flux at every line at the time of window processing prior to Fourier transformation. CONSTITUTION:When a plane wave in a direction Z is made incident on a beam splitter 10, it is bisected, and the going straight light beam is reflected by a subject to be measured 12, becomes the measured light beam, and inputted to an area sensor 18 through the splitter 10 and a lens 16. On the other hand, the turning left light beam is reflected by a tilting reflection mirror 14 to become a reference light beam, and is inputted to the area sensor 18 through the splitter 10 and the lens 16 by tilting by an angle theta. When (n) and D are an integer and a sampling section, respectively, a space frequency f0 (=tantheta/lambda, lambdameans wavelength) decides the relationship between the theta and the D so as to satisfy f0=n/D. In the window processing prior to Fourier transformation, the window both end parts are allowed to coincide with the boundary of the input flux at every line. Thus the arithmetic can be simplified and the measurement accuracy can be improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は、干渉測定方法に関する。[Detailed description of the invention] (Technical field) The present invention relates to an interference measurement method.

(従来技術) 干渉測定方法は、基準面からの反射光である参照光と、
測定面からの反射光である測定光とを干渉せしめ、その
干渉縞の解析により測定波面と参照波面との差異を知り
、測定面の形状を、高精度に測定する方法である。
(Prior art) The interference measurement method uses a reference light that is reflected light from a reference surface,
This is a method in which the shape of the measurement surface is measured with high precision by interfering with measurement light that is reflected light from the measurement surface and by analyzing the interference fringes to determine the difference between the measurement wavefront and the reference wavefront.

このような干渉測定方法のうちに、フーリエ変換を利用
する方法がある。すなわち、測定光と参照元とを所定面
内で互いに微小角θ傾けてエリアセンサーに入射せしめ
、両者の干渉縞をエリアセンサーによりウィンドウ処理
をして読取り、その結果をフーリエ変換することにより
、傾き角θに惑 より分離された3群の空間周波数のスペクトル群を得、
これらスペクトル群からひとつの単側波帯のみを選択し
、これを周波数軸上で傾き角θに対応する量だけスペク
トル移動し、これによって傾き成分を除去し、得られる
スペクトルに対し逆フーリエ変換と逆ウィンドウ処理と
を行ない、その結果から位相部分を算出することにより
、エリアセンサー上の測定波面の、参照波面からの偏差
を算出する測定方法である。
Among such interference measurement methods, there is a method using Fourier transform. In other words, the measurement light and the reference source are incident on the area sensor at a slight angle θ tilted to each other within a predetermined plane, the interference fringes of both are read by window processing by the area sensor, and the result is Fourier transformed to calculate the inclination. Obtaining three groups of spatial frequency spectra separated by the angle θ,
Select only one single sideband from these spectra, shift the spectrum by an amount corresponding to the tilt angle θ on the frequency axis, remove the tilt component, and apply inverse Fourier transform to the resulting spectrum. This measurement method calculates the deviation of the measurement wavefront on the area sensor from the reference wavefront by performing inverse window processing and calculating the phase part from the result.

(目  的) 本発明は、上記の如きフーリエ変換を利用する干渉測定
方法を改良し、演算が容易で測定精度の高い干渉測定方
法の提供を目的としている。
(Objective) The present invention aims to improve the interference measurement method using Fourier transform as described above, and to provide an interference measurement method that is easy to calculate and has high measurement accuracy.

(構  成) 以下、本発明を説明する。(composition) The present invention will be explained below.

本発明の特徴は、以下にのべる点にある。The features of the present invention are as follows.

フーリエ変換や、その逆変換の演算は離散的に行なわれ
るのであるが、傾き角θに対応する空間周波数fo  
とサンプリング区間りとの間に、nを整数として、fo
 =n/D  が収立つように、θとDの関係を定める
。上記空間周波数fo  は、λを波長として、fO”
   tan fj  で与えられる。
Although Fourier transform and its inverse transform are performed discretely, the spatial frequency fo corresponding to the tilt angle θ
and the sampling interval, where n is an integer, fo
The relationship between θ and D is determined so that =n/D is satisfied. The above spatial frequency fo is fO'' where λ is the wavelength.
It is given by tan fj.

λ また、フーリエ変換に先立つウィンドウ処理においては
、読取りの各ラインごとに、ウィンドウ両端部を、入力
光束の境界部と一致させるように、スレッシュホールド
レベルヲ設ケル。
λ In addition, in window processing prior to Fourier transform, a threshold level is set for each line of reading so that both ends of the window coincide with the boundary of the input beam.

さらに、スペクトル移動の際に、1周期の出力周波数領
域を越える成分については、移動方向と反対方向に−だ
け移動させる。ここにdはサンプリングピッチである。
Furthermore, when moving the spectrum, components exceeding the output frequency range of one cycle are moved by - in the opposite direction to the moving direction. Here, d is the sampling pitch.

以下、図面を参照しながら、説明する。Description will be given below with reference to the drawings.

矛1図において、符号10はビームスプリッタ−符号1
2は測定対象物、符号14は平面鏡、符号16はレンズ
、符号18はエリアセンサーをそれぞれ示している。測
定対象物12は測定面を有する。平面鏡14 の鏡面は
基準面である。またX方向、2方向を図の如く定め、y
方向は1図面に直交する方向とする。平面鏡14は、そ
の鏡面の法線が、所定のxz面内でX方向に対して微小
角傾いている。
In Figure 1, the code 10 is the beam splitter - code 1
Reference numeral 2 indicates an object to be measured, reference numeral 14 indicates a plane mirror, reference numeral 16 indicates a lens, and reference numeral 18 indicates an area sensor. The measurement object 12 has a measurement surface. The mirror surface of the plane mirror 14 is a reference surface. In addition, the X direction and two directions are determined as shown in the figure, and the y
The direction is perpendicular to one drawing. The plane mirror 14 has a normal line to its mirror surface inclined at a small angle with respect to the X direction within a predetermined xz plane.

今、ビームスプリッタ−10に対し、平面波が左方から
2方向に入射すると、この平面波はビームスプリッタ−
10により2分割され、一方は、測定対象物12Vc、
他方は平面鏡14に′入射する。測定対象物12に入射
した平面波は、測定面により反射され、測定光となりビ
ームスプリッタ−10に入射し、X方向へ反射され、レ
ンズ16を介してエリアセンサー18に入射し、エリア
センサー18の受光面上に測定面形状に応じた位相形状
を形成する。この位相形状なWA (x )とする。こ
の位相形状は、本来はx、yの関数としてWA(x、 
Y)  と書くべきものである。一方平面鏡14に入射
した平面波は、反射されて参照波となり、ビームスプリ
ッタ−10、レンズ16を介してエリアセンサー18に
入射する。この参照波の波面は平面である。参照光は、
平面鏡14の傾きのため、測定光に対し微小角θだけ傾
いてエリアセンサー18に入射する。従って参照波面は
X方向に対して傾いたものとなる。この参照波面〔参照
波の位相形状〕をWB (x )とする。測定光と参照
元とは干渉しエリアセンサー上に干渉縞を生ずる。
Now, when a plane wave enters the beam splitter 10 in two directions from the left, this plane wave enters the beam splitter 10 in two directions.
10, one is the measurement target 12Vc,
The other beam is incident on the plane mirror 14. The plane wave incident on the measurement object 12 is reflected by the measurement surface, becomes measurement light, enters the beam splitter 10, is reflected in the X direction, enters the area sensor 18 via the lens 16, and is received by the area sensor 18. A phase shape corresponding to the shape of the measurement surface is formed on the surface. Let WA (x) be this phase shape. This phase shape is originally WA(x,
It should be written as Y). On the other hand, the plane wave incident on the plane mirror 14 is reflected and becomes a reference wave, which is incident on the area sensor 18 via the beam splitter 10 and the lens 16. The wavefront of this reference wave is a plane. The reference light is
Due to the inclination of the plane mirror 14, the measuring light enters the area sensor 18 at an angle of a small angle θ. Therefore, the reference wavefront is inclined with respect to the X direction. Let this reference wavefront [phase shape of the reference wave] be WB (x). The measurement light and the reference source interfere, producing interference fringes on the area sensor.

測定波面WA (x )と参照波面WB(x)の相対的
な位置関係を、t−1図(1)に示す。
The relative positional relationship between the measurement wavefront WA (x) and the reference wavefront WB(x) is shown in t-1 diagram (1).

これらWA(x) 、 WB(x)の複素振幅分布を、
それぞ0、 < 、 )、J (wA(X) ” 2 
” fOX)  、 β(1)トすると、干渉縞の強度
分布g(x)  は、g(x) = a(x) 十o 
(x)cos (WA(x) + 2rfox〕=a(
x) + (L’(x)e””0x+*−J2πfOX C(x)e           (1)となる。ただ
し、fo  は、λを波長としてfO” 1/λtan
θ      (2)λ であり、a(x)=α(x)+  b(x) =2α(
X)β” x)  jWA(x)   * (x)、  C(x) =−e    、  C(x)
 =0(X)  −jWA(x)  である。これから
分るように、測定波面WA (x )の情報は、(1)
式の2項と6項に入っている。
The complex amplitude distribution of WA(x) and WB(x) is
0, < , ), J (wA(X) ” 2
”fOX), β(1), the intensity distribution of interference fringes g(x) is g(x) = a(x)
(x)cos (WA(x) + 2rfox)=a(
x) + (L'(x)e""0x+*-J2πfOX C(x)e (1). However, fo is fO"1/λtan where λ is the wavelength.
θ (2)λ, and a(x)=α(x)+b(x)=2α(
X) β” x) jWA(x) * (x), C(x) =-e, C(x)
=0(X)-jWA(x). As you can see, the information on the measured wavefront WA (x) is (1)
It is included in the 2nd and 6th terms of the equation.

この強度分布g(x)kサンプリング区間についてウィ
ンドウ処理を行ない、これをXに関してフーリエ変換す
ると。
Window processing is performed on this intensity distribution g(x)k sampling interval, and this is Fourier-transformed with respect to X.

とい5ス゛ベクトルが得られる。このスペクトル(3)
式は、傾き角θに応じた空間周波数fOにより6群A(
f)、cCf−’fo)、c*cf+ fo)K分離し
ている。もとめるべき測定波面WA(x) VC関する
清* 報は、単側波帯C(f−fO)とCCf+fO)VC含
まれている。そこで、このうち、ひとつの単側波帯c 
(f−fo )を選択する。
In this case, a 5-wave vector is obtained. This spectrum (3)
The formula is 6 groups A (
f), cCf-'fo), c*cf+fo)K separated. The detailed information regarding the measurement wavefront WA(x) VC to be determined includes single sidebands C(f-fO) and CCf+fO)VC. Therefore, among these, one single sideband c
Select (f-fo).

そのためには、(3)式の右辺のスペクトル群へ* (f)、C(f+fo)をフィルターで除去すればよい
。このようにして得られるC (f −fo )  を
、周波数軸上で、fo  だけ原点にむけて、スペクト
ル移動すると、C(f)なるスペクトルが得られるが、
このスペクトルC(f)では、傾き角θにもとづく傾き
成分が除去されている。そこで、C’(f)を逆フーリ
エ変換し、逆ウィンドウ処理するとC(x)が求められ
る。測定波面WA(x )はC(x)の位相部分である
から、WA (x )は、として与えられる。
To do this, *(f) and C(f+fo) may be removed from the spectrum group on the right side of equation (3) using a filter. If the spectrum of C (f − fo ) obtained in this way is moved toward the origin by fo on the frequency axis, a spectrum C(f) will be obtained, but
In this spectrum C(f), the tilt component based on the tilt angle θ has been removed. Therefore, C(x) is obtained by performing inverse Fourier transform on C'(f) and performing inverse window processing. Since the measured wavefront WA(x) is the phase part of C(x), WA(x) is given as.

測定波面WA(x)は、本来WA(x、y)  と記す
るべきものである背光に述べたが、エリアセンサー18
VCよろ読取は、y方向につ(・では、1ラインずつ行
なうので各ラインの読取結果についての演算プロセスで
は、これをXのみの関数WA(x)としてあつがってよ
い。
The measurement wavefront WA(x) should originally be written as WA(x, y), but as mentioned above, the area sensor 18
Since VC wobble reading is performed line by line in the y direction, in the calculation process for the reading results of each line, this can be treated as a function WA(x) of only X.

さて、周知の如く、離散的なフーリエ変換においては、
サンプリングピッチdでN個の値についてフーリエ変換
すると、周波数領域でのスペクトはサンプリング区間で
あってD=d・(N+1)で与えられる。
Now, as is well known, in the discrete Fourier transform,
When Fourier transform is performed on N values at a sampling pitch d, the spectrum in the frequency domain is a sampling interval and is given by D=d·(N+1).

例えば、矛1図(I)において、フーリエ変換されるべ
き強度分布g(x)が、破線の如きものとするとき、サ
ンプリングピンチdで、サンプリング区間り内のN点に
ついてフーリエ変換を行なうと、その結果は才1図(f
f)に示す如くなる。スペクトル()(f)は、ピンチ
が17Dで、周期1 / dの周期関数である。
For example, in Figure 1 (I), when the intensity distribution g(x) to be Fourier transformed is as shown by a broken line, if Fourier transform is performed on N points within the sampling interval with sampling pinch d, then The result is Figure 1 (f
f). The spectrum ()(f) is a periodic function with a pinch of 17D and a period of 1/d.

従って、空間周波数fo  Vc対して、nを整数とし
て、f、 =−とすると、スペクトルにおけるfO成分
は1区間にのみ表われることになり、(3)式における
C (f −fo ) 、  C*(f + fo )
  の広がりが抑制され、フィルター操作、スペクトル
移動操作を正確に行うことができ、演算も簡単化される
Therefore, for the spatial frequency fo Vc, if n is an integer and f, = -, the fO component in the spectrum will appear only in one interval, and C (f - fo ), C* in equation (3). (f + fo)
The spread of the spectrum is suppressed, filter operations and spectrum shifting operations can be performed accurately, and calculations are also simplified.

には、予め定められたDK対してf、 =−を満足り するように、傾き角θを定める方法(矛1の方法)と、
他の測定器で傾き角θを正確に測定し、f。
There is a method of determining the inclination angle θ so as to satisfy f, = - for a predetermined DK (method of spear 1),
Accurately measure the inclination angle θ with another measuring device, and measure f.

=−を満足するようにサンプリング区間を調整する方法
(矛2の方法)とがある。
There is a method (method 2) of adjusting the sampling interval so as to satisfy =-.

矛1の方法は、エリアセンサー18として、出力がサン
プルホールドされ、す/プリングピッチdが固定・され
るものを用いる場合に有効である。矛2の方法は、出力
が連続的で、サンプリングピッチdを可変にできるよう
なエリアセンサーを用いる場合に、角θの許容誤差が厳
しいときに有効である。
The first method is effective when using an area sensor 18 whose output is sampled and held and whose spring/pull pitch d is fixed. The second method is effective when using an area sensor with continuous output and variable sampling pitch d, and when the tolerance of the angle θ is strict.

また、エリアセンサー18による読取りは、X方向につ
いてはX方向の複数ラインとして読みとられるのである
が、この場合に、各ラインについてDの値を共通にし、
信号強度方向にスレッシュホールドレベルを設けて、ウ
ィンドウの広さを可変とし、各ラインごとに、ウィンド
ウ両端部を入力光束の境界部と一致させることにより、
測定精度を高めることができる。
In addition, the reading by the area sensor 18 is read as multiple lines in the X direction, but in this case, the value of D is set in common for each line,
By setting a threshold level in the direction of signal strength, making the width of the window variable, and aligning both ends of the window with the boundary of the input beam for each line,
Measurement accuracy can be improved.

さらに、スペクトル移動を行うとき、FFTプ周波数領
域での結果が出力される。従って、側波帯C(f −f
O)  を周波数軸の原点側へf、  たけへ移動させ
ることにより、正確かつ容易に逆変換を実行できる。
Furthermore, when performing spectral shifting, the results in the FFT frequency domain are output. Therefore, the sideband C(f − f
By moving O) toward the origin of the frequency axis by f, the inverse transformation can be performed accurately and easily.

2次元の波面形状VA (x 、 y )  を知るに
は、平面鏡14の法線をxy面に平行な面内でX方向に
対して微小角傾け、X方向について、前記と同様の方法
で1ライン分のみの形状ケもとめ、求められたX方向1
247分の形状に、先に求められたX方向の各ライン(
X方向へ並列している)の形状をのせてやればよい。
To find the two-dimensional wavefront shape VA (x, y), the normal line of the plane mirror 14 is tilted at a small angle with respect to the X direction in a plane parallel to the xy plane, and Find the shape only for the line, and find the X direction 1
In the shape of 247 minutes, each line in the X direction (
It is sufficient to place the shapes (parallel to each other in the X direction).

以下、コンピューターによるシミニレ−ジョン例を示す
An example of computer-generated staining is shown below.

矛2図において(1)は、エリアセンサー上の測定波面
WA (x )を示す。(1)は、測定光と参照光との
おりなす干渉縞の光強度分布、(1)は、(1)に示す
光強度分布に、ウィンドウ処理を行った状態を示す。ウ
ィンドウ関数Wは、た、ウィンドウ両端部は入射光東端
部と一致させている。(IV)は、(■)の結果をフー
リエ変換した状態、(V)は、単側波帯C(f −fo
 )  をスペクトル移動して傾き成分を除去した状態
、(■)は(V)のスペクトルに対し、逆フーリエ変換
と逆ウィンドウ処理を捲して得られるC(x)Kつき、
その絶対値1c(x)lと、その位相部公転さネ欠C(
X) )すなわちWA(x)を示す図、才2図(■)は
、才2図(1)に示すWA(x)と、上記の如く算出さ
れたWA(X) (72図〔■〕)との差異、すなわち
、測定誤差を示す。この図から明らかなように両端部を
のぞけば、 WA(X)は、極めて良好に測定されてい
る。
In Figure 2, (1) shows the measured wavefront WA (x) on the area sensor. (1) shows the light intensity distribution of interference fringes formed by the measurement light and the reference light, and (1) shows the state where window processing is performed on the light intensity distribution shown in (1). The window function W has both ends of the window coincident with the east end of the incident light. (IV) is the Fourier transformed state of the result of (■), (V) is the single sideband C(f −fo
) with the spectrum moved and the slope component removed, (■) is the spectrum of (V) with C(x)K obtained by inverse Fourier transform and inverse window processing,
Its absolute value 1c(x)l and its phase part revolution C(
X) ), that is, the diagram showing WA(x), Figure 2 (■) shows the WA(x) shown in Figure 2 (1) and WA(X) calculated as above (Figure 72 [■] ), that is, the measurement error. As is clear from this figure, WA(X) is measured extremely well except at both ends.

矛5図は、従来法による測定のシミュレーションを示す
。(1)〜(■)の各図は1,172図における(1〕
〜(■)にそれぞれ対応している。矛3図(II)は、
干渉縞g(x)(同図(I)〕にウィンドウ処理を捲し
た状態を示す。ウィンドウ関数Wは、 であって、ウィンドウ両端部は、入力元束の端部と合致
していない。
Figure 5 shows a simulation of measurement using the conventional method. Each figure (1) to (■) is (1) in figure 1,172.
~(■) corresponds to each. The spear 3 figure (II) is
The interference fringe g(x) ((I) of the same figure) shows a state in which window processing has been applied.The window function W is as follows, and both ends of the window do not match the ends of the input source bundle.

このため、矛3図(VI[)に示すように全体にわたっ
て誤差が生じている。
Therefore, as shown in Figure 3 (VI[), errors occur throughout.

(効 果) 以上、本発明によれば、新規な干渉測定方法を提供でき
る。本発明は上記の如くに構成されているので、従来法
に比し演算が簡単化され、測定精度も向上する。
(Effects) As described above, according to the present invention, a novel interference measurement method can be provided. Since the present invention is configured as described above, calculations are simplified and measurement accuracy is improved compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を説明するための図、矛2図は、本発
明の測定方法のシミュレーションの1例を示す図、矛3
図は従来の測定方法のシミュレーションの1例を示す図
である。 10・・・ビームスプリッタ−112・・・測定対象物
、14・・・平面鏡、16・・・レンズ、18・・・エ
リアセンサー、WA(x)・・・測定波面、WB (x
 )・・・参照波面烏? ■ i −/ρ」 1十f− !        (1/1wr) −/ρ」 一7jp、j   j
Figure 1 is a diagram for explaining the present invention, Figure 2 is a diagram showing an example of simulation of the measuring method of the present invention,
The figure is a diagram showing an example of a simulation of a conventional measurement method. 10...Beam splitter-112...Measurement object, 14...Plane mirror, 16...Lens, 18...Area sensor, WA(x)...Measurement wavefront, WB (x
)...Reference wave front crow? ■ i −/ρ” 10f−! (1/1wr) −/ρ” 17jp, j j

Claims (1)

【特許請求の範囲】 測定光と参照光とを所定面内で互いに微小角θ傾けてエ
リアセンサーに入射せしめ、測定光と参照光との干渉縞
を、エリアセンサーにより、ウィンドウ処理して上記所
定面に平行な方向へ読取り、読取結果をフーリエ変換す
ることにより、上記傾き角θにより分離された3群の空
間周波数のスペクトル群を得、これらスペクトル群から
ひとつの単側波帯のみを選択し、これを周波数軸上で、
上記傾き角θに対応する量だけずらすスペクトル移動を
行うことによって、傾き成分を除去し、得られるスペク
トルに対し逆フーリエ変換と逆ウィンドウ処理とを行な
い、その結果から位相部分を算出することにより、エリ
アセンサー上における測定光の波面の、参照波面からの
偏差を算出する干渉測定方式において、 空間周波数fo(=1/λtanθ,λは波長)が、n
を整数、Dをサンプリング区間として、fo=n/Dを
満足するように、傾き角θとサンプリング区間Dとの関
係を定め、 フーリエ変換に先立つウィンドウ処理において各ライン
ごとウィンドウ両端部を、入力光束の境界部と一致させ
るように、スレッシェホールドレベルを設け、 かつ、上記スペクトル移動する際、1周期の出力周波数
領域をこえる成分については、移動方向と反対方向に−
(d;サンプリングピッチ)だけ移動させることを特徴
とする、干渉測定方法。
[Claims] The measurement light and the reference light are incident on the area sensor at a slight angle θ tilted to each other within a predetermined plane, and the interference fringes between the measurement light and the reference light are window-processed by the area sensor to obtain the above-mentioned predetermined information. By reading in a direction parallel to the plane and Fourier transforming the reading results, three groups of spatial frequency spectra separated by the above-mentioned inclination angle θ are obtained, and only one single sideband is selected from these spectral groups. , on the frequency axis,
By moving the spectrum by an amount corresponding to the tilt angle θ, the tilt component is removed, and the obtained spectrum is subjected to inverse Fourier transform and inverse window processing, and the phase part is calculated from the result. In an interferometric measurement method that calculates the deviation of the wavefront of measurement light on an area sensor from a reference wavefront, the spatial frequency fo (=1/λtanθ, λ is the wavelength) is n
is an integer and D is the sampling period, the relationship between the tilt angle θ and the sampling period D is determined so that fo=n/D is satisfied, and in the window processing prior to Fourier transform, both ends of the window for each line are A threshold level is set so as to coincide with the boundary of
An interference measurement method characterized by moving by (d; sampling pitch).
JP60070637A 1985-03-20 1985-04-03 Interferometry method Expired - Lifetime JPH0652162B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60070637A JPH0652162B2 (en) 1985-04-03 1985-04-03 Interferometry method
US06/840,442 US4744659A (en) 1985-03-20 1986-03-17 Method of and apparatus for measuring the shape of a wavefront

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070637A JPH0652162B2 (en) 1985-04-03 1985-04-03 Interferometry method

Publications (2)

Publication Number Publication Date
JPS61230002A true JPS61230002A (en) 1986-10-14
JPH0652162B2 JPH0652162B2 (en) 1994-07-06

Family

ID=13437356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070637A Expired - Lifetime JPH0652162B2 (en) 1985-03-20 1985-04-03 Interferometry method

Country Status (1)

Country Link
JP (1) JPH0652162B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image
JP2002202112A (en) * 2000-11-06 2002-07-19 Fujitsu Ltd Shape measuring apparatus
JP2002296003A (en) * 2001-03-29 2002-10-09 Fuji Photo Optical Co Ltd Method and device for analyzing fourier transform fringe
WO2006030482A1 (en) * 2004-09-13 2006-03-23 Mitsubishi Denki Kabushiki Kaisha Laser beam path length difference detector, laser phase controller and coherent optical coupler
WO2007088789A1 (en) * 2006-02-01 2007-08-09 Tokyo Institute Of Technology Surface shape measuring method and device using the same
JP2011107140A (en) * 2009-11-20 2011-06-02 Mitsutoyo Corp Apparatus and method for determining height map of surface of object
JP2015111074A (en) * 2013-12-06 2015-06-18 東京エレクトロン株式会社 Method of determining distance, method of eliminating electricity from electrostatic chuck, and processing apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583619B2 (en) * 2000-09-13 2010-11-17 富士フイルム株式会社 Method for detecting fringe image analysis error and method for correcting fringe image analysis error
JP2002162205A (en) * 2000-09-13 2002-06-07 Fuji Photo Optical Co Ltd Method for detecting and correcting analytical error of striped image
JP2002202112A (en) * 2000-11-06 2002-07-19 Fujitsu Ltd Shape measuring apparatus
JP2002296003A (en) * 2001-03-29 2002-10-09 Fuji Photo Optical Co Ltd Method and device for analyzing fourier transform fringe
JP4610117B2 (en) * 2001-03-29 2011-01-12 富士フイルム株式会社 Fourier transform fringe analysis method and apparatus
WO2006030482A1 (en) * 2004-09-13 2006-03-23 Mitsubishi Denki Kabushiki Kaisha Laser beam path length difference detector, laser phase controller and coherent optical coupler
US7440478B2 (en) 2004-09-13 2008-10-21 Mitsubishi Electric Corporation Laser beam path length difference detector, laser phase controller, and coherent optical coupler
JPWO2006030482A1 (en) * 2004-09-13 2008-05-08 三菱電機株式会社 Laser optical path length difference detection device, laser phase control device, and coherent optical coupling device
JP4786540B2 (en) * 2004-09-13 2011-10-05 三菱電機株式会社 Laser optical path length difference detection device, laser phase control device, and coherent optical coupling device
US7852489B2 (en) 2006-02-01 2010-12-14 Tokyo Institute Of Technology Method for measuring surface profile, and apparatus using the same
WO2007088789A1 (en) * 2006-02-01 2007-08-09 Tokyo Institute Of Technology Surface shape measuring method and device using the same
JP4710078B2 (en) * 2006-02-01 2011-06-29 国立大学法人東京工業大学 Surface shape measuring method and apparatus using the same
KR101257538B1 (en) 2006-02-01 2013-04-24 토레 엔지니어링 가부시키가이샤 Surface shape measuring method and device using the same
JP2011107140A (en) * 2009-11-20 2011-06-02 Mitsutoyo Corp Apparatus and method for determining height map of surface of object
JP2015111074A (en) * 2013-12-06 2015-06-18 東京エレクトロン株式会社 Method of determining distance, method of eliminating electricity from electrostatic chuck, and processing apparatus

Also Published As

Publication number Publication date
JPH0652162B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
Mertz Auxiliary computation for Fourier spectrometry
US10635049B2 (en) Ellipsometry device and ellipsometry method
US10444004B2 (en) Phase shift interferometer
CN107917680B (en) Minute angle method for quickly identifying based on balzed grating,
KR100916618B1 (en) Method for measuring thickness profile of thin-film layers by dispersive white-light interferometry based on spectroscopic reflectometry
US10746537B2 (en) Radius-of-curvature measurement by spectrally-controlled interferometry
JPH05119284A (en) Polarization device
JPH05281048A (en) Method for evaluating spatial wave head by relationship of intensity
JPS61230002A (en) Interruption measuring method
KR20210065007A (en) Ellipsometer and inspection device for inspecting semiconductor device
US5239364A (en) Light phase difference measuring method using an interferometer
Lee et al. Precision profile measurement of aspheric surfaces by improved Ronchi test
JP2002333371A (en) Wavemeter
CN105115940B (en) Optical material refractive index curve measuring method and device
JP3304111B2 (en) Apparatus and method for measuring refractive index distribution of refractive index distribution type optical element
CN109374133B (en) Asymmetric spatial heterodyne spectrometer based on improved Koster prism
US20190378737A1 (en) Overlay Measurement Using Phase and Amplitude Modeling
JPH0449642B2 (en)
KR20190091144A (en) Method measuring thickness and refractive index of planar samples based on fabry-perot interferometer
JP4799766B2 (en) Planar shape measuring method in phase shift interference fringe simultaneous imaging device
Lim et al. Technique for measuring the groove density of a diffraction grating with elimination of the eccentricity effect
US7956630B1 (en) Real-time effective-wavelength error correction for HDVSI
JP2011102751A (en) Method and apparatus for measuring plate thickness of birefringent substrate
US20030202186A1 (en) Method and apparatus for ultra high-resolution interferometry
Gerchman et al. Differential technique for accurately measuring the radius of curvature of long radius concave optical surfaces

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term