JPS61229978A - Pressure generating device by working fluid - Google Patents

Pressure generating device by working fluid

Info

Publication number
JPS61229978A
JPS61229978A JP6945985A JP6945985A JPS61229978A JP S61229978 A JPS61229978 A JP S61229978A JP 6945985 A JP6945985 A JP 6945985A JP 6945985 A JP6945985 A JP 6945985A JP S61229978 A JPS61229978 A JP S61229978A
Authority
JP
Japan
Prior art keywords
working fluid
piston
working
pressure
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6945985A
Other languages
Japanese (ja)
Inventor
Tsutae Takeda
武田 傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6945985A priority Critical patent/JPS61229978A/en
Publication of JPS61229978A publication Critical patent/JPS61229978A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like

Abstract

PURPOSE:To make operation of working fluid at high cycle frequency with reduced heat loss and shortend response time by operating a working liquid less influenced by temperature change by working fluid which changes its volume by cooling and heating, and driving a motor by the working liquid. CONSTITUTION:A piston 2 is arranged to make sliding motion freely inside a cylinder 1 having a heat insulating wall 16 on its inner face. A working liquid 5 such as a working oil or the like with little influence caused by temperature change is received on one side of the piston 2 inside the cylinder 1, and so is a working fluid 4 such as a two-phase fluid or the like which expands by heat on the other side. And, the working fluid 4 is reciprocally heated or cooled by a heating body 7 or a cooling body 8 to be shrunk or expanded in order to drive the piston 2. Pressure is transitted to the working liquid 5 by the operation of the piston 2, and a motor is operated by the working liquid 5 by the above mechanism.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は容器内に作動流体を液体または気液二相の状態
で封入し、これを加熱、冷却することにより上記容器内
の圧力を変化させて、力を取り出す装置に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention involves sealing a working fluid in a liquid or gas-liquid two-phase state in a container, and changing the pressure inside the container by heating and cooling the working fluid. This relates to a device for extracting force.

一般に、ある容器内に一定量の純粋な液体(作動流体)
を封入し、これを密閉状態におく場合、該容器内は液体
とその蒸気のみで満されている状態となる。そこで、該
容器を外部から加熱し、液体の温度を上げると液体が蒸
発して容器内の蒸気量が増加し蒸気圧は上昇する。逆に
冷却すれば該蒸気量は気化時に奪った潜熱を外部に放出
して凝縮し液体に戻る。したがって、容器内の蒸気圧は
降下することになる。液体がこのような蒸発、凝縮の相
変化を起す場合、その温度レベルと潜熱の大きさ、蒸気
圧の大きさと比容積等との関係は該液体に特徴的な物性
値として与えられるものであるが、該蒸気圧は温度の上
昇とともに指数的増加を呈し、僅かな温度変化に対して
も該蒸気圧により、大きな力が発生する。これは気液二
相の場合のみならず、容器内を完全液体として密閉した
場合も、該液体の容積変化により大きな圧力変化を呈す
ものである。
Generally, a fixed amount of pure liquid (working fluid) in a container
When the container is sealed and kept in a sealed state, the inside of the container is filled only with the liquid and its vapor. Therefore, when the container is heated from the outside to raise the temperature of the liquid, the liquid evaporates, the amount of vapor inside the container increases, and the vapor pressure increases. Conversely, if it is cooled, the amount of vapor releases the latent heat taken away during vaporization to the outside, condenses, and returns to liquid. Therefore, the vapor pressure within the container will drop. When a liquid undergoes such a phase change of evaporation or condensation, the relationship between its temperature level, latent heat, vapor pressure, specific volume, etc. is given as a physical property value characteristic of the liquid. However, the vapor pressure exhibits an exponential increase as the temperature rises, and even a slight temperature change generates a large force due to the vapor pressure. This occurs not only in the case of a two-phase gas-liquid system, but also in the case where the container is completely sealed as a liquid, resulting in a large pressure change due to a change in the volume of the liquid.

(従来技術) このような二相流体を月いた圧力発生装置、並びに動力
装置の2〜3に関しその原理的なものは存在しているが
、これら従来例は加熱、並びに冷却により蒸発、凝縮を
行う作動流体が直接シリンダ、モータ等に作用し作動す
るものである。
(Prior art) There are two to three types of pressure generators and power units that use two-phase fluids in principle, but these conventional examples do not allow evaporation or condensation through heating and cooling. The working fluid directly acts on cylinders, motors, etc. to operate them.

しかし、熱源及び冷却源から相当層れた所まで該作動流
体を導く場合、加熱したはずの作動流体が途中で冷えて
しまったり、逆に冷却したはずの作動流体が途中の余熱
により加熱されたりし、該作動流体の蒸発、凝縮の相変
化に要す時間がかかり応答時間が長くなってしまう。し
たがって、ごく限られた分野での適応に制限され、特に
サイクル頻度の高い動力源として用いることはできなか
った。
However, when the working fluid is led to a place far away from the heat source and cooling source, the working fluid that should have been heated may cool down on the way, or conversely, the working fluid that should have been cooled may be heated due to residual heat on the way. However, the phase change of evaporation and condensation of the working fluid takes time, resulting in a long response time. Therefore, it is limited to application in very limited fields, and cannot be used as a power source with a particularly high cycle frequency.

(本発明の解決しようとする問題点) このように、加熱、冷却される作動流体でもって、直接
シリンダ、モータ、ダイヤフラム、特殊な膨張体等を作
動させる場合、周囲との断熱の不良により応答時間が長
くかかる欠点があり、特に該熱源、冷却源から相当層れ
た箇所に作動流体から発生する蒸気圧等を導く場合には
大きな問題である。
(Problems to be Solved by the Invention) As described above, when directly operating a cylinder, motor, diaphragm, special expansion body, etc. with a working fluid that is heated or cooled, the response is due to poor insulation with the surroundings. This method has the disadvantage that it takes a long time, which is a big problem especially when the vapor pressure generated from the working fluid is introduced to a location considerably distant from the heat source or cooling source.

本発明はこの問題の解決を目的として開発されたもので
、熱源、冷却源から遠く離れたシリンダ等を高いサイク
ル頻度で作動させることのできる圧力発生装置を提供す
るものである。
The present invention was developed to solve this problem, and provides a pressure generating device that can operate a cylinder or the like far away from a heat source or cooling source at a high cycle frequency.

(問題点を解決するための手段) 作動流体を直接シリンダやモータ等に導く場合、シリン
ダー内壁間との熱伝達、またシリンダやモータまでの導
管との熱の出入りは多少を問わず無  視することはで
きず、この結果必然的に応答時間が長くなる。そこで、
本発明ではシリンダやモータに直接作用する作動液を作
動流体とは別に用い、作動流体の圧力変動は断熱性の高
い材質で構成されたピストン等を介して、上記作動液を
作動させる。したがって該作動液は作動流体の温度変化
に影響されず常に一定温度で流動し、途中の導管等での
熱影響を受けることなく作用する。ここで作動液とは特
に限定するものではないが、粘度の低い作動油を用いる
のが一般的である。
(Measures to solve the problem) When directing working fluid to a cylinder or motor, etc., ignore heat transfer between the inner walls of the cylinder and heat transfer to and from conduits leading to the cylinder or motor, regardless of the degree of heat transfer. This inevitably results in longer response times. Therefore,
In the present invention, a hydraulic fluid that directly acts on the cylinder or the motor is used separately from the working fluid, and pressure fluctuations in the working fluid actuate the hydraulic fluid through a piston or the like made of a highly insulating material. Therefore, the working fluid always flows at a constant temperature without being affected by temperature changes of the working fluid, and acts without being affected by heat in conduits or the like along the way. Although the hydraulic fluid is not particularly limited, it is common to use a hydraulic fluid with a low viscosity.

以下、本発明に係る圧力発生装置の2〜3の実施例を図
面に基づいて詳細に説明する。
Hereinafter, two to three embodiments of the pressure generator according to the present invention will be described in detail based on the drawings.

(実施例) 第3図は本発明に係る作動流体圧力発生装置の具体例を
表わしたもので、シリンダc/)の内部にピストンQ)
が内蔵され、該ピストンc2)はシリンダ(1)の軸方
向に摺動可能とされ、外周部にはシリンダψ内壁間の漏
れを防止するためのシール(至)が取着されている。そ
して、該ピストンC)はシリンダV)内を2分割するこ
とになり、左側には作動流体−)カ右fli (出口側
)には作動液け)が注入されており、作動流体に)の蒸
発、凝縮または膨張により該ピストンQ)はシリンダレ
)内を摺動し、作動液け)を出口上)から流出、流入さ
せる。したがって、作動流体(財)内には加熱体(7)
と冷却体鎖が取着され、該作動流体に)の加熱、冷却を
行う。また、ピストン(2)の戻り工程を容易ならしも
ため出口侶)近くにスプリング(ワ)を取着してもよい
(Example) Fig. 3 shows a specific example of the working fluid pressure generating device according to the present invention, in which a piston Q) is installed inside a cylinder c/).
is built in, the piston c2) is slidable in the axial direction of the cylinder (1), and a seal is attached to the outer periphery to prevent leakage between the inner walls of the cylinder ψ. The piston C) divides the inside of the cylinder V) into two parts, and the left side is injected with working fluid -) and the right side is filled with a working fluid drain. Due to evaporation, condensation or expansion, the piston Q) slides in the cylinder tray) and causes the working fluid to flow out and into the outlet). Therefore, there is a heating element (7) in the working fluid (goods).
A cooling body chain is attached to the working fluid to heat and cool the working fluid. Additionally, a spring may be installed near the outlet port to facilitate the return process of the piston (2).

第2図は他の実施形態を表わしているもので、第3図の
場合と異なり、作動流体q)を直接シリンダ(1)内に
封入することなく、ペローズ(10)を介し一ズ<io
>内部まで導かれ、一方、冷却はシリンダ(/]とペロ
ーズ(IQ)外周部に存在する空洞(ll)を利用し、
冷却口(/2)から出入りする冷却剤により行っている
FIG. 2 shows another embodiment in which, unlike the case of FIG.
> Guided to the inside, while cooling utilizes the cavity (ll) existing on the outer periphery of the cylinder (/) and perose (IQ),
This is done by the coolant flowing in and out from the cooling port (/2).

第1図はさらに別の実施態様を表わしたものであって断
熱性を有するペローズ(10)を用いているが、該ペロ
ーズ(10)内には作動液け)を封入し、ペローズ(1
0)外部に作動流体に)を容tW(/3)との間に封入
している。なお、ペローズ(10’)が持つバネ特性に
より戻り工程の迅速化が達成される。この場合、作動流
体停)の加熱により上昇する圧力はペローズ(10)を
圧縮し、その結果軸方向に収縮して該ペローズ(10)
内の作動液σ)を出口方向に流出させ作動液を送り出す
FIG. 1 shows yet another embodiment, in which a perose (10) having heat insulating properties is used.
0) A working fluid (externally) is sealed between the volume tW (/3) and the volume tW (/3). Furthermore, due to the spring characteristics of the peroz (10'), the return process can be speeded up. In this case, the pressure rising due to the heating of the working fluid (stop) compresses the perrows (10), resulting in axial contraction of the perrows (10).
The hydraulic fluid σ) inside flows out toward the outlet and the hydraulic fluid is sent out.

また一方、第4図はペローズ(10)の可動端と、シリ
ンダ(/l)内に装着されたピストン(#)ヲロッド(
/7)で一体に連結したもので、断面積の大きいペロー
ズ(10)に作用する作動流体に)の圧力を、断面積の
小さいピストン(/j)で増圧する装置である。
On the other hand, Figure 4 shows the movable end of the perose (10) and the piston (#) rod () installed in the cylinder (/l).
/7), and is a device that increases the pressure of the working fluid acting on the perose (10), which has a large cross-sectional area, with a piston (/j), which has a small cross-sectional area.

ペローズCIO”)の内部空間は空洞(//)になって
おり、該空洞(/l)はペローズ(10)の伸縮に伴う
内部体積の変化に追従するとともに作動流体に)と作動
液σ)の間の熱移動を防止している。
The internal space of the Peroz CIO") is a cavity (//), and the cavity (/l) follows the change in internal volume as the Peroz (10) expands and contracts, and is used as a working fluid) and a working fluid σ). Prevents heat transfer between

さらに第5図は、第1図のペローズCl0−a)の内部
に第2のペローズ(70−b)を取り着け、中心部に作
動液ひ)を封入し、さらに第1のペローズCl0−a)
と第2のペローズ(10−1+)で形成された空間に第
2の作動流体(+−b)を封入したものである。外部か
らの加熱により作動流体(1l−a )は温度上昇に伴
い圧力及び体積を増加させ、この変化はペローズ<1o
−a>、作動流体(g−t+ >、さらにペローズ(1
0−b)を介して作動液け)に伝達されて行く。作動流
体(4!−a)から伝達されてくる温度、圧力及び体積
の変化に対し作動流体(≠−b)の種類、及び封入量を
適宜設定することにより、送り出される作動液(1)の
流量、圧力に種々の変化が得られ°る。
Furthermore, FIG. 5 shows that a second perose (70-b) is attached to the inside of the perose (70-a) shown in FIG. )
A second working fluid (+-b) is sealed in a space formed by a second perose (10-1+) and a second perose (10-1+). Due to external heating, the working fluid (1l-a) increases in pressure and volume as the temperature rises, and this change is caused by Peroz < 1o
-a>, working fluid (g-t+>, and further Peroz (1
0-b) to the hydraulic fluid drain). By appropriately setting the type and amount of the working fluid (≠-b) in response to changes in temperature, pressure, and volume transmitted from the working fluid (4!-a), the amount of the working fluid (1) to be delivered can be controlled. Various changes in flow rate and pressure can be obtained.

このように、本発明に係る作動流体圧力発生装置は作動
流体q)と作動液σ)を用い、加熱、冷却により蒸発、
凝縮、または容積変化する所の作動流体(t)からの圧
力を該作動液(至)に伝え、作動液(1)を介してシリ
ンダ、モータ、ダイヤフラム、特殊な膨張体等に作用さ
せたもので、以下のごとき効果を得ることができる。
As described above, the working fluid pressure generating device according to the present invention uses the working fluid q) and the working fluid σ), and evaporates it by heating and cooling.
Pressure from the working fluid (t) where it condenses or changes in volume is transmitted to the working fluid (t) and applied to cylinders, motors, diaphragms, special expansion bodies, etc. via the working fluid (1). You can obtain the following effects.

(効果) (1)  本発明の作動流体圧力発生装置は、極く限ら
れた箇所のみで作動流体の加熱、冷却を行い、優れた断
熱効果を有し、他の部分からの熱の出入りはなく、発生
圧を温度変化のない作動液け)に伝達しているため、応
答時間は短く、高いサイクル頻度をもって作動すること
が可能である。
(Effects) (1) The working fluid pressure generating device of the present invention heats and cools the working fluid only in extremely limited areas, has an excellent heat insulation effect, and prevents heat from entering and exiting from other parts. Since the generated pressure is transmitted to the working fluid without any temperature change, the response time is short and it is possible to operate with a high cycle frequency.

したがって、シリンダQ)から送り出される作動液け)
は、該シリンダωから相当層れても配管を行うことで何
ら支障なく作動することができ、さらに、熱源が特定さ
れないので、例えば自然界や宇宙はもとより、自動車、
電車、さらには大きな構造物の集中あるいは分散膨圧力
発生装置として十分可能となり、また作動流体を完全液
体状態で使用した場合には、僅かな温度変化が大きな圧
力として発生し、特にこれも比較的高圧領域での温度変
化に顕しい圧力変動を呈し得る。
Therefore, the hydraulic fluid discharged from the cylinder Q)
can operate without any problem even if the cylinder ω is far away from the cylinder ω by installing piping, and since the heat source is not specified, it can be used not only in the natural world and the universe, but also in automobiles,
It is fully possible to use it as a concentrated or distributed expansion pressure generator for electric trains and even large structures.Also, when the working fluid is used in a completely liquid state, a small temperature change will generate a large pressure, which is also relatively small. Temperature changes in the high pressure region can exhibit significant pressure fluctuations.

(2)  また、直接作動流体に)が作用しないため、
モータ、シリンダ、膨張体に熱が伝わらず、アクチュエ
ータ等の温度上昇はあり得ない。
(2) Also, since the () does not act directly on the working fluid,
Heat is not transferred to the motor, cylinder, and expansion body, so there is no possibility of temperature rise in the actuator, etc.

(3)  特に第1図に示すように、ペローズ(10)
の外部に作動流体(9))を容器(13)との間に封入
した場合、該ペローズ(10)は内圧より外圧に対する
耐圧が高く、また伸張状態により圧縮状態の方が耐圧が
高いため、該ペローズ(10)の寿命は長くなり、さら
に該ペローズCIO>内部にも作動液0)を封入すれば
作動流体(りと作動液け)間には圧力のバランスが保た
れ得る。
(3) Especially as shown in Figure 1, Peroz (10)
When a working fluid (9) is sealed between the container (13) and the outside of the perose (10), the perose (10) has a higher pressure resistance against external pressure than the internal pressure, and the pressure resistance is higher in the compressed state due to the expanded state. The life of the Perows (10) is extended, and if the hydraulic fluid is also sealed inside the Perows (10), pressure balance can be maintained between the working fluids.

(4)  本発明の作動流体圧力発生装置はセンサーと
して応用することもできる。例えば、圧力センサーの場
合、作動流体の温度を一定に保っておき、外部からの圧
力変化を容積(変位)変化として検出でき、また温度セ
ンサーの場合には、該温度変化を圧力若しくは容!!(
変位)の変化として取り出し得る。
(4) The working fluid pressure generating device of the present invention can also be applied as a sensor. For example, in the case of a pressure sensor, the temperature of the working fluid is kept constant and changes in pressure from the outside can be detected as a change in volume (displacement), and in the case of a temperature sensor, the temperature change can be detected as a change in volume (displacement). ! (
It can be extracted as a change in displacement).

(5)  さらに、該装置をスプリングとして応用する
場合、圧力(荷重)の変動は容積(変位)を変化させ、
特に作動流体を湿り蒸気領域で使用すれば一定荷重で大
きなストローク変化を得ることができ、またバネ定Wk
(バネ特性)は作動流体温度を変化させることで容易に
変り得る。
(5) Furthermore, when the device is applied as a spring, fluctuations in pressure (load) change volume (displacement),
In particular, if the working fluid is used in the wet steam region, a large stroke change can be obtained with a constant load, and the spring constant Wk
(spring characteristics) can be easily changed by changing the working fluid temperature.

これらの他にダンパーやアキュムレータとしての応用も
十分可能である。
In addition to these, applications as dampers and accumulators are also fully possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明に係る二相流体圧力発生装
置の実施例をそれぞれ形式を変えて表わしたものである
。 (ハ(/ll)・・・シリンダ   (2に/s)・・
・ピストンJ・・・・・シール    CII)・・・
・・作動流体け)・・・・・作動液    2)・・Φ
・・出 口(7)・・・・・加熱体    鎖・・−〇
冷却体(ワ)lIII・・Φスプリング    (10
)・・・・ペローズ(//)Φ・・・空 洞    (
/2)II・・・冷却口(/3)・・・・容 器   
 (/6)・・・・断熱壁(17)・・・・ロッド 特許出願人     武 1)  イ書。
FIGS. 1 to 5 show different embodiments of the two-phase fluid pressure generating device according to the present invention. (ha(/ll)...Cylinder (2/s)...
・Piston J...Seal CII)...
・・Hydraulic fluid drain)・・・・Hydraulic fluid 2)・・Φ
・・Outlet (7)・・・・Heating body chain・−〇Cooling body (wa) lIII・・Φ spring (10
)... Peroz (//) Φ... Hollow (
/2) II...Cooling port (/3)...Container
(/6)・・・Insulating wall (17)・・・Rod patent applicant Takeshi 1) Book I.

Claims (3)

【特許請求の範囲】[Claims] (1)容器内に作動流体を密閉し、該作動流体を加熱若
しくは冷却することで発生する容積変動をペローズまた
はピストン等を介して作動液に伝達し、該作動液を導く
ことで外部に圧力を付与することを特徴とする作動流体
による圧力発生装置。
(1) The working fluid is sealed in a container, and the volume fluctuation that occurs when the working fluid is heated or cooled is transmitted to the working fluid via a bellows or piston, etc., and the working fluid is guided to create pressure outside. A pressure generating device using a working fluid, characterized in that it provides:
(2)上記作動流体を気液二相の状態で使用した特許請
求の範囲第1項記載の作動流体による圧力発生装置。
(2) A pressure generating device using a working fluid according to claim 1, wherein the working fluid is used in a gas-liquid two-phase state.
(3)上記作動流体として完全液体を使用した特許請求
の範囲第1項記載の作動流体による圧力発生装置。
(3) A pressure generating device using a working fluid according to claim 1, wherein a complete liquid is used as the working fluid.
JP6945985A 1985-04-02 1985-04-02 Pressure generating device by working fluid Pending JPS61229978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6945985A JPS61229978A (en) 1985-04-02 1985-04-02 Pressure generating device by working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6945985A JPS61229978A (en) 1985-04-02 1985-04-02 Pressure generating device by working fluid

Publications (1)

Publication Number Publication Date
JPS61229978A true JPS61229978A (en) 1986-10-14

Family

ID=13403254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6945985A Pending JPS61229978A (en) 1985-04-02 1985-04-02 Pressure generating device by working fluid

Country Status (1)

Country Link
JP (1) JPS61229978A (en)

Similar Documents

Publication Publication Date Title
JP6603701B2 (en) Air conditioner with at least one heat pipe, in particular a thermosyphon
WO2002088536A1 (en) Fluidic-piston engine
DE112008001613T5 (en) Energy transfer machine and method
US9151520B2 (en) Device for varying the pressure of a pneumatic fluid through displacement of liquid droplets and heat pump using such a device
US3303642A (en) Motor
US3502138A (en) Means for regulating thermal energy transfer through a heat pipe
BR112020010737A2 (en) method for transferring heat between two or more means and systems for carrying out that method
WO1988009906A1 (en) Energy recovery apparatus
US7908855B2 (en) Fluidic oscillator
US5881801A (en) Thermally driven liquid pressure generating apparatus
JPS61229978A (en) Pressure generating device by working fluid
AU2005252431A1 (en) Fluidic oscillator
US3732040A (en) Pump for delivering heated fluids
US20150247654A1 (en) Direct use of acoustic power in stirling engine for heat removal
US20170268805A1 (en) Field-active heat pumping using liquid materials
US3777485A (en) Vaporized fluid powered engine
Daoud et al. A novel Franchot engine design based on the balanced compounding method
US3815363A (en) Multiple cycle tidal regenerator engine
SU1070420A1 (en) Heat transfer device
NO124080B (en)
US6282908B1 (en) High efficiency Malone compressor
US6698200B1 (en) Efficiency thermodynamic engine
SU688689A1 (en) Volumetric pump
Török et al. Isothermal compressors and expanders
US3474641A (en) Heat-actuated regenerative compressor system