JPS61229911A - Fluid pressure drive type tappet valve controller - Google Patents

Fluid pressure drive type tappet valve controller

Info

Publication number
JPS61229911A
JPS61229911A JP60071563A JP7156385A JPS61229911A JP S61229911 A JPS61229911 A JP S61229911A JP 60071563 A JP60071563 A JP 60071563A JP 7156385 A JP7156385 A JP 7156385A JP S61229911 A JPS61229911 A JP S61229911A
Authority
JP
Japan
Prior art keywords
valve
piston
discharge hole
rod
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60071563A
Other languages
Japanese (ja)
Inventor
Chukei Asada
浅田 忠敬
Masashi Yamakawa
山川 政志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60071563A priority Critical patent/JPS61229911A/en
Publication of JPS61229911A publication Critical patent/JPS61229911A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Actuator (AREA)

Abstract

PURPOSE:To achieve a reliably functionable valve mechanism by feeding pressure oil to a hydraulic mechanism provided at the upper end section of an intake and exhaust valve to open the valve while compressing a pneumatic piston through open- valve function and closing the valve with previous compression air when discharging oil from the hydraulic mechanism. CONSTITUTION:The upper end of the stem of an intake and exhaust valve 1 is fitted in the cylinder 7 while a hydraulic path changeover sleeve 62 is provided in the inner face of cylinder. The working oil is fed from a tank 10 through a pump 12, an accumulator 13 and a changeover valve 15 to the working oil supply system 9 or the oil path 14 to the tank while a portion of the oil path from the accumulator 13 will switch between the upper or the lower end of sleeve 62 and the oil discharge path 7- through a reducing valve 60 and a changeover valve 61. The changeover valves 15, 61 are functioned through a controller 16 while matching with specific engine timing to feed the pressure oil to the working oil supply system 9. When the hole in sleeve 62 will communicate with the interior of cylinder, the valve 1 is opened to compress the air in the chamber 5 by means of a pneumatic piston 4 while when closing the valve,the pneumatic pressure is used for discharging the pressure oil and for closing the valve.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、内燃機関の吸気弁または排気弁の開閉制御を
流体圧を用いて行なう流体圧駆動式動弁制御@置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a fluid pressure-driven valve control system for controlling the opening and closing of an intake valve or an exhaust valve of an internal combustion engine using fluid pressure.

従来の技術 内燃機関の高性能化を図るため、吸気弁または排気弁の
制御機構として、旧来のカム、タペット、ロッカーアー
ム系の動弁制御機構に替えて、特開昭53−13901
1号公報に示されるように流体圧で駆動される動弁I1
1御機構が、従来において提案されている。これによれ
ば、吸気弁または吸気弁の作動特性を任意に1ilII
Iでき、特にその開閉時期を制御して機関の有効仕事を
増大させるのに好都合となっている。
Conventional technology In order to improve the performance of internal combustion engines, the conventional valve control mechanism of cam, tappet, and rocker arm system was replaced with the control mechanism of the intake valve or exhaust valve using Japanese Patent Laid-Open No. 53-13901.
A valve train I1 driven by fluid pressure as shown in Publication No. 1
1 control mechanism has been proposed in the past. According to this, the intake valve or the operating characteristics of the intake valve can be arbitrarily adjusted to 1ilII.
It is particularly convenient for controlling the timing of opening and closing to increase the effective work of the engine.

第7図はこのような従来の流体圧駆動式動弁制御装置を
示し、41はシリンダカバー42に設けられた排気弁(
吸気弁)である。この排気弁41の弁棒の先端には、油
圧シリンダ43内を滑動するピストン44が形成され、
戻しばね45により排気弁41を閉弁付勢している。4
6は油タンクで、油圧ポンプ47および蓄圧器48を備
えた供給管路49が接続されている。50は排出管路で
ある。これら両管路49.50は絞り弁にて構成される
lIi制御弁51を介して油圧シリンダ43に接続され
ている。52はMIll弁操作HW1で、IIJw部5
3とアクチュエータ54とを有している。
FIG. 7 shows such a conventional fluid pressure driven valve control device, in which 41 is an exhaust valve (41) provided on a cylinder cover 42.
intake valve). A piston 44 that slides within a hydraulic cylinder 43 is formed at the tip of the valve stem of this exhaust valve 41.
A return spring 45 biases the exhaust valve 41 to close. 4
6 is an oil tank to which a supply pipe 49 equipped with a hydraulic pump 47 and a pressure accumulator 48 is connected. 50 is a discharge pipe. Both of these conduits 49 and 50 are connected to the hydraulic cylinder 43 via an IIi control valve 51 constituted by a throttle valve. 52 is MIll valve operation HW1, IIJw section 5
3 and an actuator 54.

一方、55は排気弁41の位置検出器で、位置検出信号
を制御部53へ出力している。
On the other hand, 55 is a position detector for the exhaust valve 41, which outputs a position detection signal to the control section 53.

このような構成において、弁41の速度すなわちピスト
ン44の速度は、開弁時における弁41のオーバーシュ
ートや、閉弁時における着座による振動、騒音を防止す
るため、適正に1IJIllシなければならない。この
ためには、ピストン44の行程の後半からこのピストン
44の速度を減速し、全開時および全開時(着座時)に
おける排気弁41の慣性力を極力小さくする必要がある
。このため、従来は位置検出器55により弁41の位置
を検出し、操作装置52により制御弁51の絞り量すな
わち油の流量を調節してこれに対処している。
In such a configuration, the speed of the valve 41, that is, the speed of the piston 44, must be adjusted appropriately to prevent overshoot of the valve 41 when the valve is opened and vibration and noise due to seating when the valve is closed. For this purpose, it is necessary to reduce the speed of the piston 44 from the latter half of its stroke and to minimize the inertial force of the exhaust valve 41 when it is fully open and when it is fully open (seated). Conventionally, this has been dealt with by detecting the position of the valve 41 with the position detector 55 and adjusting the amount of restriction of the control valve 51, that is, the flow rate of the oil, with the operating device 52.

発明が解決しようとする問題点 ところが、このような従来のものでは、■ 制御弁操作
装置ff52はその構成が複雑となって高価となる。
Problems to be Solved by the Invention However, in such a conventional device, (1) the control valve operating device ff52 has a complicated structure and is expensive.

■ 排気弁41の位置検出器55が必要となる。■ A position detector 55 for the exhaust valve 41 is required.

■ 排気弁41の速度制御のための制御弁51は、大流
量用で高価なものが必要となる。
(2) The control valve 51 for controlling the speed of the exhaust valve 41 is for a large flow rate and needs to be expensive.

という問題がある。There is a problem.

また、近年、機関の高性能化を図るためこの機関の有効
仕事を増大させる傾向にあり、ガス流れの特性上から排
気弁41すなわちピストン44の速度を上昇させる必要
が生じている。このことは、油圧シリンダ43への供給
油流量の増大を意味し、ピストン44の行程に要する時
間が短縮されることを意味している。すなわち、現状の
180rp−の機関では前記時間は約3O−secとな
るが、ピストン44の速度を2倍にすると約151se
Cとなる。上記従来の装置では、このようにきわめて短
い時間内に制御弁51を動作させて供給油流量を制御し
なければならず、これを実現することは困難であるとい
う問題もある。
Furthermore, in recent years, there has been a trend to increase the effective work of engines in order to improve their performance, and it has become necessary to increase the speed of the exhaust valve 41, that is, the piston 44, due to the characteristics of gas flow. This means that the flow rate of oil supplied to the hydraulic cylinder 43 is increased, and the time required for the stroke of the piston 44 is shortened. That is, in the current 180 rpm engine, the time is about 3 O-sec, but if the speed of the piston 44 is doubled, it becomes about 151 sec.
It becomes C. In the conventional apparatus described above, the control valve 51 must be operated within such an extremely short period of time to control the supply oil flow rate, and there is a problem in that it is difficult to realize this.

そこで本発明は、簡単な構成で確実に動作し、しかも高
速制御の可能な流体圧駆動式動弁IIIwJ装置を得る
ことを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a fluid pressure-driven valve operating IIIwJ device that has a simple configuration, operates reliably, and is capable of high-speed control.

問題点を解決するための手段 上記目的を達成するため本発明による流体圧駆動式動弁
制御′@匿は、 吸気弁または排気弁に連動する棒状ピストンを、機関燃
焼室の上方に設けられた流体圧シリンダに滑動可能に嵌
挿し、 前記棒状ピストンに、この棒状ピストンの端面からその
内部に向かう軸心方向の流体通路を形成するとともに、
この棒状ピストンの側面から前記流体通路に向けて員遇
する供給排出孔を形成し、前記流体圧シリンダの側壁に
、前記供給排出孔に連通する連通口を形成し、 前記棒状ピストンと流体圧シリンダとの間に、棒状ピス
トンの摺動方向に沿った第1の位置と第2の位置との間
で往復虐動可能な筒状のサブピストンを嵌装し、 このサブピストンに、このサブピストンが前記第1の位
置にあることには、前記吸気弁または排気弁の着座状態
における前記供給排出孔と連通口とを連通させるととも
に、前記吸気弁または排気弁の最大弁リフト状態におけ
る前記供給排出孔と連通口とを遮断させ、かつ前記サブ
ピストンが第2の位置にあるときには、前記最大弁リフ
ト状態における前記供給排出孔と連通口とを連通させる
とともに、前記着座状態における前記供給排出孔と連通
口とを遮断させる連通路を形成し、前記吸気弁または排
気弁の開閉にともなう流体圧シリンダ内での棒状ピスト
ンの摺動により、前記吸気弁または排気弁の最大リフト
の手前および着座の手前で流路を徐々に絞り込み可能な
ように、前記供給排出孔と連通路とのうち必要個所の断
面を軸心方向に先細り状に形成したものである。
Means for Solving the Problems In order to achieve the above object, the fluid pressure-driven valve train control according to the present invention has a rod-shaped piston interlocked with an intake valve or an exhaust valve, which is installed above the combustion chamber of the engine. slidably inserted into a fluid pressure cylinder, forming an axial fluid passage in the rod-shaped piston from an end surface of the rod-shaped piston toward the inside thereof;
A supply and discharge hole is formed extending from a side surface of the rod-shaped piston toward the fluid passage, and a communication port that communicates with the supply and discharge hole is formed in a side wall of the fluid pressure cylinder, and the rod-shaped piston and the fluid pressure cylinder are connected to each other. A cylindrical sub-piston that can reciprocate between a first position and a second position along the sliding direction of the rod-shaped piston is fitted between the sub-piston and the sub-piston. is in the first position, the supply and discharge hole communicates with the communication port when the intake valve or exhaust valve is in the seated state, and the supply and discharge hole is in communication with the communication port when the intake valve or exhaust valve is in the maximum valve lift state. When the hole and the communication port are cut off and the sub-piston is in the second position, the supply/discharge hole in the maximum valve lift state communicates with the communication port, and the supply/discharge hole in the seated state communicates with the sub-piston. A communication passage is formed to cut off the communication port, and by the sliding of a rod-shaped piston within the fluid pressure cylinder as the intake valve or exhaust valve opens and closes, In order to gradually narrow down the flow path, the cross section of the supply/discharge hole and the communicating path is tapered in the axial direction at necessary locations.

作用 したがって、流体圧シリンダの側部と、この流体圧シリ
ンダに滑動可能に嵌挿される棒状ピストンの側部とに作
動流体の流路を形成したことから、吸気弁または排気弁
の行程すなわち流体圧シリンダへの流量は、供給排出孔
等の軸心方向の寸法取りのみによって制御されることに
なるため、従来のような複雑な制御弁操作装置は不要と
なり、また制御弁は方向切換弁にて構成できて流量制御
は必要としないことから高速応答が可能になるうえに安
価なものとすることができる。また、供給排出孔等のう
ち必要箇所の断面を軸心方向に先細り状に形成したため
、吸気弁または排気弁の最大リフトの手前および着座の
手前で作動流体の流速すなわちこれら弁の速度を低下で
き、オーバーシュートや着座時の振動、騒音を確実に防
止できることになる。
Therefore, since a working fluid flow path is formed between the side of the fluid pressure cylinder and the side of the rod-shaped piston that is slidably fitted into the fluid pressure cylinder, the stroke of the intake valve or exhaust valve, that is, the fluid pressure The flow rate to the cylinder is controlled only by the axial dimensions of the supply and discharge holes, etc., so there is no need for a conventional complicated control valve operating device, and the control valve is a directional valve. Since it can be configured easily and does not require flow rate control, it can provide high-speed response and can be made at low cost. In addition, because the cross section of the necessary parts of the supply/discharge hole etc. is tapered in the axial direction, the flow velocity of the working fluid, that is, the speed of these valves, can be reduced before the maximum lift of the intake or exhaust valves and before they are seated. , it is possible to reliably prevent overshoot, vibration and noise when seating.

実施例 以下、本発明の一実施例について説明する。第1図にお
いて、1はシリンダカバー2に設けられた排気弁(吸気
弁)で、この排気弁1の弁棒の先端には、シリンダカバ
ー2の上面に設けられた空気シリンダ3内を滑動する空
気圧縮ピストン4が一体に形成されている。5は空気室
、6は空気室5への空気供給路である。空気シリンダ3
の上部には流体圧シリンダとしての油圧シリンダ7が一
体に形成され、一方、空気圧縮ピストン4には油圧シリ
ンダ7に滑動可能に嵌入される棒状ピストン8が一体に
形成されている。棒状ピストン8と油圧シリンダ7との
間には、筒状のサブピストン62が嵌装されている。9
は油圧シリンダ7への作動油供給系で、10は油タンク
、11は油圧ポンプ12および蓄圧器13を備えた供給
管路、14は排出管路である。また、15は切換弁にて
構成されるill m弁、16はその制御装置である。
EXAMPLE An example of the present invention will be described below. In FIG. 1, reference numeral 1 denotes an exhaust valve (intake valve) provided on the cylinder cover 2, and the tip of the valve stem of the exhaust valve 1 slides in an air cylinder 3 provided on the top surface of the cylinder cover 2. An air compression piston 4 is integrally formed. 5 is an air chamber, and 6 is an air supply path to the air chamber 5. air cylinder 3
A hydraulic cylinder 7 as a fluid pressure cylinder is integrally formed in the upper part of the hydraulic cylinder 7, while a rod-shaped piston 8 which is slidably fitted into the hydraulic cylinder 7 is integrally formed with the air compression piston 4. A cylindrical sub-piston 62 is fitted between the rod-shaped piston 8 and the hydraulic cylinder 7. 9
1 is a hydraulic oil supply system to the hydraulic cylinder 7, 10 is an oil tank, 11 is a supply pipe line equipped with a hydraulic pump 12 and a pressure accumulator 13, and 14 is a discharge pipe line. Further, 15 is an illm valve constituted by a switching valve, and 16 is a control device thereof.

また、69は供給管路11がら分岐されて油圧シリンダ
7に接続される第1の接続管路、7oは排出管路14か
ら分岐されて油圧シリンダ7に接続される第2の接U管
路である。両接続管路69.70の途中にはυ制御装置
16にて動作される切換弁61が設けられ、この切換弁
61と供給管路11との閤における接、続管路69の途
中には減圧弁60が設けられている。
Further, 69 is a first connecting pipe branched from the supply pipe line 11 and connected to the hydraulic cylinder 7, and 7o is a second connecting pipe branched from the discharge pipe line 14 and connected to the hydraulic cylinder 7. It is. A switching valve 61 operated by the υ control device 16 is provided in the middle of both the connecting pipes 69 and 70, and a switch valve 61 is provided in the middle of the connecting pipe 69 to connect the switching valve 61 and the supply pipe 11 at the hook. A pressure reducing valve 60 is provided.

次に、油圧シリンダ7まわりを第2図にもとづいて詳細
に説明する。同図a、eは排気弁1が着座したときの状
態を示し、また同図す、cは排気弁1が最大リフトとな
ったときの状態を示し、さらに同図dは着座寸前の状態
を示している。図示のように、棒状ピストン8には、そ
の端面17がらその内部に向かう軸心方向の流体通路1
8が形成されるとともに、その側面19がら流体通路1
8に向けて貫通する半径方向の供給排出孔2oが形成さ
れている。22は棒状ピストン8と油圧シリンダとのク
リアランス室である。棒状ピストン8における供給排出
孔20と端面17との間には、小径の軟着廃用排出孔2
3が同様に貫通されている。29は軟着廃用排出孔23
に合わせて棒状ピストン8の外周に形成された環状構で
ある。
Next, the hydraulic cylinder 7 and its surroundings will be explained in detail based on FIG. 2. Figures a and e show the state when the exhaust valve 1 is seated, figures c and c show the state when the exhaust valve 1 reaches its maximum lift, and figure d shows the state just before it is seated. It shows. As shown, the rod-shaped piston 8 has an axial fluid passage 1 extending from its end surface 17 toward its interior.
8 is formed and the side surface 19 of the fluid passage 1 is formed.
A radial supply/discharge hole 2o penetrating toward 8 is formed. 22 is a clearance chamber between the rod-shaped piston 8 and the hydraulic cylinder. Between the supply and discharge hole 20 of the rod-shaped piston 8 and the end face 17, there is a small-diameter soft-wearing and waste discharge hole 2.
3 is similarly penetrated. 29 is a soft clothing waste discharge hole 23
This is an annular structure formed on the outer periphery of the rod-shaped piston 8 in accordance with the above.

サブピストン62は、その内面に、棒状ピストン8が軸
心まわりに回転しても常に供給排出孔2oに連通可能な
環状溝64を有している。この環状@64の周囲数箇所
には、棒状ピストン8の供給排出孔20と油圧シリンダ
7の連通口24とを連通させる連通路63が形成されて
いる。サブピストン62は、棒状ピストン8の摺動方向
に沿った第1の位置(第2図a、b)と第2の位置(第
2図c、d、e)との間で往復摺動可能とされ、その軸
方向両端は段付きに形成されて、油圧シリンダ7との間
に油圧室65.66、を構成している。なお、第2図f
は、サブピストン62の一部切欠全体斜視図を示してい
る。
The sub-piston 62 has an annular groove 64 on its inner surface that can always communicate with the supply/discharge hole 2o even when the rod-shaped piston 8 rotates around its axis. Communication passages 63 are formed at several locations around the annular @ 64 to communicate the supply/discharge hole 20 of the rod-shaped piston 8 and the communication port 24 of the hydraulic cylinder 7 . The sub-piston 62 can reciprocate between a first position (a, b in Fig. 2) and a second position (c, d, e in Fig. 2) along the sliding direction of the rod-shaped piston 8. Both ends in the axial direction are formed stepwise to form hydraulic chambers 65 and 66 between the hydraulic cylinder 7 and the hydraulic cylinder 7. In addition, Fig. 2 f
shows a partially cutaway overall perspective view of the sub-piston 62.

油圧シリンダ7の内面には、連通口24に対応して環状
溝26が形成されており、サブピストン62が軸心まわ
りに回動しても連通口24と連通路63すなわち供給排
出孔20とを常に連通可能なようにされている。28は
軟着座用流体排出口としての軟智座用差動油排出口で、
軟着廃用排出孔23に合わせて小径に形成されている。
An annular groove 26 is formed on the inner surface of the hydraulic cylinder 7 in correspondence with the communication port 24, so that even when the sub-piston 62 rotates around the axis, the communication port 24 and the communication path 63, that is, the supply and discharge hole 20, are connected. communication is possible at all times. 28 is a differential oil discharge port for the soft seat, which serves as a fluid discharge port for the soft seat;
It is formed to have a small diameter to match the soft clothing waste discharge hole 23.

なお、サブピストン62の上端部は、軟着廃用排出孔2
3と軟着座用作動油排出口28とを連通(第2図c、d
、e)あるいは遮断(第2図a、b)可能となっている
。67、68はそれぞれサブピストン62駆動用の流体
供給排出口で、油圧室65.66に合わせて形成される
とともに、萌述の接続管路69.70がそれぞれ接続さ
れている。
Note that the upper end of the sub-piston 62 is located at the soft-fitting waste discharge hole 2.
3 and the soft seating hydraulic oil outlet 28 (Fig. 2 c, d)
, e) or shut off (Fig. 2 a, b). Reference numerals 67 and 68 denote fluid supply and discharge ports for driving the sub-piston 62, which are formed to match the hydraulic chambers 65 and 66, and are connected to connection pipes 69 and 70, respectively.

次に第2図gをも参照して、各部の位置関係を説明する
。第2FRaの着座状態では、サブピストン62の環状
溝64の上縁と、供給排出孔20の下縁とは互いに距離
Aだけ離れている。また、軟着農用作動油排出口28と
同排出孔23とはサブピストン62の上端部により遮断
されている。第2図すの最大リフトの状態では、連通路
63に対応した環状溝64の下縁と供給排出孔20の上
縁とが一致し、両者は遮断される。この状態でサブピス
トン62が変位すると、第2図gに示すように環状溝6
4と供給排出孔2Gとが再び連通する。第2図gに示す
着座寸前の状態では、環状溝64の上縁と供給排出孔2
0の下縁とが一致して両者は遮断され、かつ軟着廃用排
出孔23と軟着農用作動油排出口28が互いに連通する
。第2図gの着座状態では、環状溝64の上縁と供給排
出孔20の下縁とは、互いに距離Bだけうツブしている
Next, the positional relationship of each part will be explained with reference to FIG. 2g. In the seated state of the second FRa, the upper edge of the annular groove 64 of the sub-piston 62 and the lower edge of the supply/discharge hole 20 are separated by a distance A from each other. Further, the soft agricultural hydraulic oil discharge port 28 and the discharge hole 23 are blocked by the upper end portion of the sub-piston 62. In the state of maximum lift shown in FIG. 2, the lower edge of the annular groove 64 corresponding to the communication path 63 and the upper edge of the supply/discharge hole 20 are aligned, and the two are blocked. When the sub-piston 62 is displaced in this state, the annular groove 62 is displaced as shown in FIG. 2g.
4 and the supply/discharge hole 2G communicate with each other again. In the state just before seating shown in FIG. 2g, the upper edge of the annular groove 64 and the supply/discharge hole 2
0 coincides with the lower edge of the soft-wearing agricultural oil discharge hole 23 and the soft-wearing agricultural hydraulic oil outlet 28 to communicate with each other. In the seated state shown in FIG. 2g, the upper edge of the annular groove 64 and the lower edge of the supply/discharge hole 20 are offset by a distance B from each other.

以下、上記構成による動作を説明する。まず排気弁開弁
行程においては、第2図gに示す状態において、第1図
のll1lll@1116からの信号によりυ制御弁1
5を中立位置から油圧ポンプ12につながる供給管路1
1に切換える。すると高圧の作動油は、連通口24に達
し、サブピストン62の通路63を経て、供給排出孔2
0から流体通路18を経てクリアランス室22に導入さ
れる。そして、クリアランス室22の油圧力が、第1図
に示す*m燃焼室のガス圧力P2による荷重FZと空気
室5の圧力Paによる荷重1”aを加えた荷重から排気
圧力Pexによる荷11Faxを引いた荷重よりも大き
な力となったときに、棒状ピストン8は下降を始める。
The operation of the above configuration will be explained below. First, in the exhaust valve opening stroke, in the state shown in Fig. 2g, the υ control valve 1 is
Supply pipe 1 connecting 5 to the hydraulic pump 12 from the neutral position
Switch to 1. Then, the high-pressure hydraulic oil reaches the communication port 24, passes through the passage 63 of the sub-piston 62, and enters the supply and discharge hole 2.
0 into the clearance chamber 22 via the fluid passage 18. Then, the hydraulic pressure in the clearance chamber 22 is increased by the load 11Fax due to the exhaust pressure Pex from the load FZ due to the gas pressure P2 in the *m combustion chamber shown in Fig. 1 and the load 1''a due to the pressure Pa in the air chamber 5. When the force becomes larger than the pulled load, the rod-shaped piston 8 begins to descend.

すなわち、棒状ピストン8の受圧面積AON油圧Pを用
いて、P > (F Z + F a −F e X 
) / A 。
That is, using the pressure receiving area AON oil pressure P of the rod-shaped piston 8, P > (F Z + F a - F e
)/A.

のときに、棒状ピストン8は下降を始め、RH的に第2
図すの最大リフト点に至る。
At this time, the rod-shaped piston 8 starts to descend and reaches the second position in terms of RH.
The maximum lift point shown in the figure is reached.

第3図は、排気弁1のリフトすなわち棒状ピストン8の
行程と、排気弁1の速度すなわち棒状ピストン8の速度
と、前記速度を決定する作動油流量とを、開弁行程およ
び閉弁行程について示したものである。ここで棒状ビス
、トン8の速度は、旧来のカム駆動式動弁装置で実現さ
れている速度変化のパターンの概略に合わせて描かれて
いる。
FIG. 3 shows the lift of the exhaust valve 1, that is, the stroke of the rod-shaped piston 8, the speed of the exhaust valve 1, that is, the speed of the rod-shaped piston 8, and the hydraulic oil flow rate that determines the speed for the valve opening stroke and the valve closing stroke. This is what is shown. Here, the speed of the rod-shaped screw, ton 8, is drawn in accordance with the outline of the speed change pattern realized in a conventional cam-driven valve train.

第4図は、棒状ピストン8の下降時における供給排出孔
2Gとサブピストン62の環状11364との間の開口
面積の変化を、前記排気弁1のリフトおよび棒状ピスト
ン8の速度とともに示したものである。
FIG. 4 shows the change in the opening area between the supply/discharge hole 2G and the annular portion 11364 of the sub-piston 62 when the rod-shaped piston 8 is lowered, together with the lift of the exhaust valve 1 and the speed of the rod-shaped piston 8. be.

ここでは供給排出孔20の断面形状を円形としているた
め、この断面形状は軸心方向に先細り状となり、排気弁
1が最大リフトとなる手前では開口面積すなわち作動油
の流路が徐々に絞り込まれることになる。これにより棒
状ピストン8は行程の後半から確実に減速され、このた
め制御弁15における流111節により棒状ピストン8
の速度制御を行なう必要はなくなり、この制御弁15は
切換式の安価なもので十分となり、かつ高速応答が可能
となる。
Here, since the cross-sectional shape of the supply/discharge hole 20 is circular, this cross-sectional shape becomes tapered in the axial direction, and the opening area, that is, the flow path of the hydraulic oil, is gradually narrowed before the exhaust valve 1 reaches its maximum lift. It turns out. As a result, the rod-shaped piston 8 is reliably decelerated from the latter half of the stroke, and therefore the rod-shaped piston 8 is
It is no longer necessary to perform speed control, and an inexpensive switching type control valve 15 is sufficient, and high-speed response is possible.

第4図において、■に示す位W1(第2図b)で前記開
口面積はOとなり、作動油の供給は止まるが、排気弁1
の慣性力および作動油のもれ込み等が存在づるため、排
気弁1は第2図すから僅かな距離りだけ進んで止まる。
In FIG. 4, at the position W1 shown in ■ (FIG. 2 b), the opening area becomes O, and the supply of hydraulic oil is stopped, but the exhaust valve 1
Because of the inertial force of the exhaust valve 1 and the leakage of hydraulic oil, the exhaust valve 1 advances a short distance from that shown in FIG. 2 and then stops.

これは第4図の■に示す位置に相当し、ここで排気弁1
が全開となるように設定されている。排気弁1が全開と
なると、燃焼室内ガス圧力による荷重は小さくなってい
ることから、作動油による油圧力と空気室5の荷重Fa
とがほぼ釣合っていると考えられる。
This corresponds to the position shown in Figure 4, where exhaust valve 1
is set to be fully open. When the exhaust valve 1 is fully opened, the load due to the gas pressure in the combustion chamber is small, so the hydraulic pressure due to the hydraulic oil and the load Fa in the air chamber 5 are reduced.
It is thought that they are almost balanced.

これにより、オーバーシュート防止用のクツシジン機構
やストッパ等を省略できる。なお、供給排出孔20と環
状$64との連通が絶たれた後、適当時期にII制御弁
5を中立位置に戻し、油圧シリンダ71体への作動油の
供給を遮断する。その後、切換弁61を切換え、第2図
Cに示すようにサブピストン62を加降させ、再び供給
排出孔20と環状溝64とを連通させて閉弁行程に備え
る。このとき、連通口24内には密閉油だけしか存在し
ないので、棒状ピストン8は変位しない。またサブピス
トン62は低圧作動油圧だけで容易に駆動できるため、
減圧弁60により供給管路11からの作動油を減圧して
使用する。なお、別駆動の低圧ポンプから作動油を供給
すれば、8!1$1動力を低減できる。
This makes it possible to omit an overshoot prevention mechanism, stopper, and the like. Note that after the communication between the supply and discharge hole 20 and the annular valve 64 is cut off, the II control valve 5 is returned to the neutral position at an appropriate time to cut off the supply of hydraulic oil to the hydraulic cylinder 71 body. Thereafter, the switching valve 61 is switched, the sub-piston 62 is moved up and down as shown in FIG. At this time, since only sealing oil exists in the communication port 24, the rod-shaped piston 8 is not displaced. In addition, since the sub-piston 62 can be easily driven using only low-pressure hydraulic pressure,
The pressure of the hydraulic oil from the supply pipe 11 is reduced by the pressure reducing valve 60 and used. Note that if hydraulic oil is supplied from a separately driven low-pressure pump, the power can be reduced by 8!1$1.

排気弁閉弁行程においては、制御弁15を中立状態から
排出管路14に接続する。これにより系内の圧力が低下
し、油圧シリンダ7内で棒状ピストン8を押付けていた
作動油は、供給排出孔2oがらサブピストン62の連通
路63および連通口24経て排出される。これにより油
圧力が低下するため、空気室5の空気荷重Faにより棒
状ピストン8は変位を受ける。このときのピストン速度
および排出油流量の関係も第3図に示されている。
In the exhaust valve closing stroke, the control valve 15 is connected to the exhaust pipe line 14 from a neutral state. As a result, the pressure in the system decreases, and the hydraulic oil that was pressing against the rod-shaped piston 8 in the hydraulic cylinder 7 is discharged through the supply and discharge hole 2o through the communication passage 63 and the communication port 24 of the sub-piston 62. As a result, the hydraulic pressure decreases, and the rod-shaped piston 8 is displaced by the air load Fa in the air chamber 5. The relationship between the piston speed and the discharged oil flow rate at this time is also shown in FIG.

第5図は、このときの供給排出孔2oとサブピストン6
2の環状溝64との間の開口面積の変化を、第4図と同
様に示すものである。ここでも、供給排出孔20の断面
形状は円形となっている。閉弁行程の後半、特に開口面
積が微小となる■に示す位置から後は、棒状ピストン8
の速度は急激に減少し、■に示す位置く第2図dに相当
)では開口面積は0となり、作動油の排出は無くなる。
FIG. 5 shows the supply/discharge hole 2o and the sub-piston 6 at this time.
The change in the opening area between the second annular groove 64 and the second annular groove 64 is shown in the same manner as in FIG. Also here, the cross-sectional shape of the supply/discharge hole 20 is circular. In the latter half of the valve closing stroke, especially after the position shown in ■ where the opening area is minute, the rod-shaped piston 8
The speed decreases rapidly, and at the position (corresponding to Figure 2 d) shown in (2), the opening area becomes 0, and there is no discharge of hydraulic oil.

しかし、排気弁1の慣性力により棒状ピストン8はさら
に変位し、この後はサブピストン62が先に軟着廃用作
動油排出口28と軟着座用排出孔23との遮断を解除し
ているため、軟着廃用作動油排出口28と軟着座用排出
孔23とが連通する。これによりこれら排出口28と排
出孔23との閑の開口面積が徐々に増大し、ダンパのl
l能を果たすことになる。このため排気弁1は第2図e
の距離8間でその速度が徐々に低下することになって軟
着座が実現され、第5図のVで示す位置で完全に着座す
る。
However, the rod-shaped piston 8 is further displaced by the inertia force of the exhaust valve 1, and after this, the sub-piston 62 first releases the interruption between the soft-fitting and waste hydraulic oil outlet 28 and the soft-seating drain hole 23. Therefore, the soft seating waste hydraulic oil discharge port 28 and the soft seating discharge hole 23 communicate with each other. As a result, the open area of the discharge port 28 and the discharge hole 23 gradually increases, and the damper's l.
It will fulfill its function. For this reason, the exhaust valve 1 is
The speed gradually decreases over a distance of 8 to achieve soft seating, and the robot is completely seated at the position indicated by V in FIG.

なお、上記においては、供給排出孔20の断面形状が円
形のものを示したが、たとえば第6図a。
In the above description, the supply/discharge hole 20 has a circular cross-sectional shape, but for example, as shown in FIG. 6a.

bに示すようなものであってもよい。It may be as shown in b.

また、上記においては、供給排出孔20の断面形状を先
細り状としたが、サブピストン62の連通路63の断面
形状を先細り状としてもよく、このときは環状溝64を
棒状ピストン8側に形成する必要がある。
Further, in the above, the cross-sectional shape of the supply/discharge hole 20 is tapered, but the cross-sectional shape of the communication passage 63 of the sub-piston 62 may be tapered. In this case, the annular groove 64 is formed on the rod-shaped piston 8 side. There is a need to.

発明の効果 以上述べたように本発明によると、従来のような複糧な
り4御弁操作1111は不要となり、またυ制御弁は方
向切換弁にて構成できて流mi制御は必要としないこと
から高速応答が可能になるうえに安価なものとすること
ができ、また供給排出孔等のうち必mtm所の断面を軸
心方向に先細り状に形成したため、弁の最大リフトの手
前および着座の手前で作動流体の流速すなわち前記弁の
速度を低下でき、オーバーシュートや着座時の振動、騒
音を確実に防止できる。
Effects of the Invention As described above, according to the present invention, there is no need for the conventional multi-feed, four-control valve operation 1111, and the υ control valve can be configured with a directional switching valve, so flow mi control is not required. It is possible to achieve high-speed response from the valve and to make it inexpensive, and since the cross section of the necessary mtm part of the supply/discharge hole etc. is formed into a tapered shape in the axial direction, The flow velocity of the working fluid, ie, the velocity of the valve, can be reduced at the front, and overshoot, vibration and noise during seating can be reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のシステム図、第2因は油圧
シリンダまわりの詳細および作動要領図、第3図は弁リ
フトとピストン速度と作動油流量との関係を示す因、第
4図は開弁時の開口面積の変化を示す図、第5図は閉弁
時の開口面積の変化を示す図、第6図は供給排出孔の他
の形状例を示す図、第7図は従来例のシステム図である
。 1・・・排気弁(吸気弁)、3・・・空気シリンダ、4
・・・空気圧縮ピストン、7・・・油圧シリンダ(流体
圧シリンダ)、8・・・棒状ピストン、18・・・流体
通路、20・・・供給排出孔、23・・・軟着座用排出
孔、24・・・連通口、28・・・軟着座州作動油排出
口(軟着圧用流体排出口)、62・・・サブピストン、
83・・・連通路、64・・・環状溝 代理人   森  本  義  弘 第1図 4−・女気1圧、嶋ピストン 7− 抽圧シ9yy”(A4本圧シランタ゛)I−・−
硝(Kピストン 第3図 第に図
Fig. 1 is a system diagram of one embodiment of the present invention, the second factor is a diagram of details around the hydraulic cylinder and operation procedure, Fig. 3 is a factor showing the relationship between valve lift, piston speed, and hydraulic oil flow rate, and the fourth factor is a diagram showing the relationship between valve lift, piston speed, and hydraulic oil flow rate. Figure 5 shows the change in opening area when the valve is open, Figure 5 shows the change in opening area when the valve is closed, Figure 6 shows another example of the shape of the supply/discharge hole, and Figure 7 shows the change in opening area when the valve is closed. It is a system diagram of a conventional example. 1... Exhaust valve (intake valve), 3... Air cylinder, 4
... Air compression piston, 7 ... Hydraulic cylinder (fluid pressure cylinder), 8 ... Rod-shaped piston, 18 ... Fluid passage, 20 ... Supply and discharge hole, 23 ... Soft seating discharge hole , 24... Communication port, 28... Soft seating hydraulic oil outlet (soft seating pressure fluid outlet), 62... Sub piston,
83...Communication path, 64...Annular groove agent Yoshihiro Morimoto Fig. 1 4--Female 1 pressure, Shima piston 7- Extraction pressure 9yy" (A4 main pressure silant) I--
(K piston Fig. 3)

Claims (1)

【特許請求の範囲】 1、内燃機関の吸気弁または排気弁の開閉制御を流体圧
を用いて行なう流体圧駆動式動弁制御装置において、 前記吸気弁または排気弁に連動する棒状ピ ストンを、機関燃焼室の上方に設けられた流体圧シリン
ダに滑動可能に嵌挿し、 前記棒状ピストンに、この棒状ピストンの 端面からその内部に向かう軸心方向の流体通路を形成す
るとともに、この棒状ピストンの側面から前記流体通路
に向けて貫通する供給排出孔を形成し、 前記流体圧シリンダの側壁に、前記供給排 出孔に連通する連通口を形成し、 前記棒状ピストンと流体圧シリンダとの間 に、棒状ピストンの摺動方向に沿った第1の位置と第2
の位置との間で往復摺動可能な筒状のサブピストンを嵌
装し、 このサブピストンに、このサブピストンが 前記第1の位置にあることには、前記吸気弁または排気
弁の着座状態における前記供給排出孔と連通口とを連通
させるとともに、前記吸気弁または排気弁の最大弁リフ
ト状態における前記供給排出孔と連通口とを遮断させ、
かつ前記サブピストンが第2の位置にあるときには、前
記最大弁リフト状態における前記供給排出孔と連通口と
を連通させるとともに、前記着座状態における前記供給
排出孔と連通口とを遮断させる連通路を形成し、 前記吸気弁または排気弁の開閉にともなう 流体圧シリンダ内での棒状ピストンの摺動により、前記
吸気弁または排気弁の最大リフトの手前および着座の手
前で流路を徐々に絞り込み可能なように、前記供給排出
孔と連通路とのうち必要箇所の断面を軸心方向に先細り
状に形成したことを特徴とする流体圧駆動式動弁制御装
置。 2、棒状ピストンは、吸気弁または排気弁が着座する直
前に流体圧シリンダに形成された軟着座用流体排出口と
軸心方向の流体通路とを連通させる軟着座用排出孔を有
することを特徴とする特許請求の範囲第1項に記載の流
体圧駆動式動弁制御装置。
[Scope of Claims] 1. In a fluid pressure-driven valve control device that uses fluid pressure to control the opening and closing of an intake valve or exhaust valve of an internal combustion engine, a rod-shaped piston that interlocks with the intake valve or exhaust valve is connected to the engine. It is slidably inserted into a fluid pressure cylinder provided above the combustion chamber, and forms an axial fluid passage in the rod-shaped piston from the end surface of the rod-shaped piston toward the inside thereof, and from the side surface of the rod-shaped piston. A supply and discharge hole penetrating toward the fluid passage is formed, a communication port communicating with the supply and discharge hole is formed in a side wall of the fluid pressure cylinder, and a rod-shaped piston is disposed between the rod-shaped piston and the fluid pressure cylinder. a first position along the sliding direction and a second position along the sliding direction of the
A cylindrical sub-piston that can be slid back and forth between the sub-piston and the first position is fitted into the sub-piston, and when the sub-piston is in the first position, the intake valve or the exhaust valve is seated. communicating the supply/discharge hole and the communication port, and blocking the supply/discharge hole and the communication port when the intake valve or the exhaust valve is in a maximum valve lift state;
and when the sub-piston is in the second position, a communication passage is provided that allows communication between the supply and discharge hole in the maximum valve lift state and the communication port, and blocks off the supply and discharge hole and the communication port in the seated state. The flow path can be gradually narrowed before the maximum lift of the intake valve or exhaust valve and before the seating of the intake valve or exhaust valve by sliding a rod-shaped piston within the fluid pressure cylinder as the intake valve or exhaust valve opens and closes. A fluid pressure-driven valve control device characterized in that a cross section of a necessary portion of the supply/discharge hole and the communication passage is tapered in the axial direction. 2. The rod-shaped piston is characterized by having a soft seating discharge hole that communicates the soft seating fluid discharge port formed in the fluid pressure cylinder immediately before the intake valve or the exhaust valve is seated with the fluid passage in the axial direction. A fluid pressure driven valve train control device according to claim 1.
JP60071563A 1985-04-03 1985-04-03 Fluid pressure drive type tappet valve controller Pending JPS61229911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60071563A JPS61229911A (en) 1985-04-03 1985-04-03 Fluid pressure drive type tappet valve controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60071563A JPS61229911A (en) 1985-04-03 1985-04-03 Fluid pressure drive type tappet valve controller

Publications (1)

Publication Number Publication Date
JPS61229911A true JPS61229911A (en) 1986-10-14

Family

ID=13464303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60071563A Pending JPS61229911A (en) 1985-04-03 1985-04-03 Fluid pressure drive type tappet valve controller

Country Status (1)

Country Link
JP (1) JPS61229911A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191714A (en) * 2008-02-14 2009-08-27 Man Diesel Filial Af Man Diesel Se Tyskland Exhaust valve actuator for large-size two-cycle diesel engine
CN103388502A (en) * 2013-07-31 2013-11-13 哈尔滨工程大学 Full changeable electro-hydraulic air valve driving device
CN109372607A (en) * 2018-10-23 2019-02-22 中船动力研究院有限公司 Multistage draining exhaust valve and its working method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191714A (en) * 2008-02-14 2009-08-27 Man Diesel Filial Af Man Diesel Se Tyskland Exhaust valve actuator for large-size two-cycle diesel engine
CN103388502A (en) * 2013-07-31 2013-11-13 哈尔滨工程大学 Full changeable electro-hydraulic air valve driving device
CN109372607A (en) * 2018-10-23 2019-02-22 中船动力研究院有限公司 Multistage draining exhaust valve and its working method

Similar Documents

Publication Publication Date Title
US5531192A (en) Hydraulically actuated valve system
US7621258B2 (en) Injector of a fuel injection system of an internal combustion engine
JP2000507327A (en) Fuel injection device for internal combustion engine
US5609134A (en) Operating mechanism for an engine brake valve of an internal combustion engine
US20040065277A1 (en) Free piston engine
US6145492A (en) Control valve for a fuel injection valve
KR970001858A (en) Multi-stage open-valve device
JPH04224215A (en) Engine brake for air compression type internal combustion engine
US6892955B2 (en) Fuel injection device for an internal combustion engine
US6886510B2 (en) Engine valve actuator assembly with dual hydraulic feedback
JPH02221673A (en) Fuel injection device
JP3564149B2 (en) Device for hydraulically operating an exhaust valve of a reciprocating internal combustion engine
JPS61229911A (en) Fluid pressure drive type tappet valve controller
GB2394000A (en) Arrangement of an i.c. engine poppet valve and hydraulic actuator
US6959673B2 (en) Engine valve actuator assembly with dual automatic regulation
JPS6128708A (en) Control device of fluid pressure-driven tappet valve
WO2001079672A1 (en) Two stage concentric egr valves
GB2353568A (en) Control valve for a fuel injector
US6928966B1 (en) Self-regulating electrohydraulic valve actuator assembly
US6886513B2 (en) Valve mechanism comprising a variable cross-section of a valve opening
KR910000670B1 (en) Hydraulic actuating mechanism for a gas exchange valve of an internal combustion engine
JPS61118515A (en) Valve drive device in engine
JP3821906B2 (en) Load holding switching valve device
JP2713803B2 (en) Exhaust gas recirculation system using water-cooled EGR valve
US20040074456A1 (en) Device for controlling gas exchange valves