JPS61229485A - Method and device for diffusion joining of metallic material - Google Patents

Method and device for diffusion joining of metallic material

Info

Publication number
JPS61229485A
JPS61229485A JP6843685A JP6843685A JPS61229485A JP S61229485 A JPS61229485 A JP S61229485A JP 6843685 A JP6843685 A JP 6843685A JP 6843685 A JP6843685 A JP 6843685A JP S61229485 A JPS61229485 A JP S61229485A
Authority
JP
Japan
Prior art keywords
vibration
bonding
joining
pressure
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6843685A
Other languages
Japanese (ja)
Inventor
Tsutomu Konuma
小沼 勉
Satoshi Ogura
小倉 慧
Hiroshi Takayasu
博 高安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6843685A priority Critical patent/JPS61229485A/en
Publication of JPS61229485A publication Critical patent/JPS61229485A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove the oxide and gas on the interface, to destroy the microundulation on the surface and to shorten the joining time by giving a vibration on the joining interface prior to the joining at the joining temp. CONSTITUTION:The vibration by an exciter 1 is transmitted to a spacer 4 by an exciting rod 3 and further transmitted to the material 5 to be joined which is held by the spacer 4. This vibration vibrates on the joining face with the joining material 5 being held by the spacer 4 of the above of a load bearing base 7. The vibration acts at right angles on the joining face. A space is opened on the joining face so that no load is placed thereon in advance, a pressure rod 2 is descended on starting of the vibration and when the pressure is increased with the contact of the joining face to be pressurized, the vibration becomes overload and only the pressure remains with the actuation of a stopping circuit. It is held at the temp. lower than the melting point of the material to be joined by reducing the pressure slowly after holding the pressure for the prescribed time and by raising the heating temp. by a heater 8 simultaneously.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、金属材料の接合時の加圧に係り、特に好適な
拡散接合方法、及びそれを実施するための装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to pressurization during bonding of metal materials, and particularly to a suitable diffusion bonding method and an apparatus for carrying out the method.

〔発明の背景〕[Background of the invention]

拡散接合は真空あるいは不活性ガス雰囲気中で接合材の
再結晶温度以上に加熱し適当な加圧を行い原子拡散で接
合するものである。したがって、加圧方法とその時期が
重要な接合因子である。
Diffusion bonding involves heating the bonding material above its recrystallization temperature in a vacuum or an inert gas atmosphere, applying appropriate pressure, and bonding by atomic diffusion. Therefore, the method and timing of pressurization are important bonding factors.

従来の加圧方法は特公昭59−48713号公報の第2
図に示されるように接合材の融点以下の温度に加熱して
行き、その温度に達した時に一定の圧力、1lL1〜1
0ゆ/−2を一定の加熱時間1分〜2時間を与えるもの
である。加圧力は接合面の接触に寄与させるものであり
、接合材に均等加圧が重要であることを述べている。
The conventional pressurization method is the second one of Japanese Patent Publication No. 59-48713.
As shown in the figure, the bonding material is heated to a temperature below the melting point, and when that temperature is reached, a constant pressure of 1lL1~1
0 Yu/-2 for a constant heating time of 1 minute to 2 hours. The application force contributes to the contact between the joining surfaces, and it is stated that it is important to apply uniform pressure to the joining materials.

しかしながら、該方法では、静圧であるため接合面のミ
クロ的な突起が降伏し接触面が仕上げのままより増加す
るが完全ではない。また、この突起の平滑度が悪いと加
圧力を増加させなければならない。加圧時における被接
合面近傍からの微量のガス放出や、それによる被接合面
の不純物の除去についての加圧の効果については配慮さ
れていなかった。
However, in this method, due to the static pressure, the micro protrusions on the joint surface yield and the contact surface increases compared to the finished state, but it is not perfect. Moreover, if the smoothness of the protrusion is poor, the pressing force must be increased. No consideration was given to the release of a small amount of gas from the vicinity of the surfaces to be joined during pressurization and the effect of pressurization on the removal of impurities from the surfaces to be joined due to this.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の加圧方法で考慮されていなかっ
た昇温過程における被接合面の微量ガスの放出とそれに
伴う不純物の除去を効果的に行い、接合面の空孔や非金
属の介在物に基因する欠陥を防止した拡散接合方法及び
その装置を提供することにある。
The purpose of the present invention is to effectively release trace gases from the surfaces to be joined during the temperature rising process and remove accompanying impurities, which were not considered in conventional pressurization methods, and to eliminate pores and non-metallic surfaces from the surfaces to be joined. An object of the present invention is to provide a diffusion bonding method and an apparatus therefor that prevent defects caused by inclusions.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明の第1の発明は金属材料の
拡散接合方法に関する発明であって、一対の金属材料接
合材を拡散接合する方法において、該被接合材を所定温
度に加熱する工程、該加熱中及び/又は加熱後に接合面
が互いに接触しない距離において接合材の少なくとも一
方に振動を与える加振工程、該加振後に接合面を接触さ
せ圧力を加える工程の各工程を包含することを特徴とす
る。
To summarize the present invention, the first aspect of the present invention relates to a method for diffusion bonding metal materials, and in the method for diffusion bonding a pair of metal material bonding materials, the materials to be bonded are heated to a predetermined temperature. step, a vibrating step of applying vibration to at least one of the bonding materials at a distance where the bonding surfaces do not contact each other during and/or after the heating, and a step of bringing the bonding surfaces into contact and applying pressure after the vibration. It is characterized by

また本発明の第2の発明は、上記の方法に使用する装置
に関する発明であって、該装置が、該被接合材を加熱す
る丸めの加熱設備、該被接合材に膨圧力を加えるための
加圧設備、該被接合材の少なくとも一方に振動を与える
ための加振設備の各設備を包含することを特徴とする。
A second invention of the present invention relates to an apparatus used in the above method, which apparatus includes a round heating equipment for heating the materials to be joined, and a device for applying a swelling force to the materials to be joined. It is characterized in that it includes a pressurizing equipment and a vibration equipment for applying vibration to at least one of the materials to be joined.

金属材料中には充分管理された製造工程で作られた材料
にも数千ppm〜数十pPmのガスを不純物として含有
する。これらのガスは材料中に空孔又は非金属介在物と
して存在する。これらのガス成分は高温の金属中で溶解
度が増すので加熱部分に集まる傾向があシ、接合面の高
温部分はガス濃度が高い。そこで本発明においては、接
合面を振動させてミクロ的な起伏面を変形破壊させて同
時に少なくともその部分のガスを材料中から放出させる
。同時に昇温過程で放出されるガスによって生ずる接合
界面の酸化物を機械的に除去することが出来る。また、
材料表面の起伏が振動で破壊されるため材料の新しい面
が現われて接合時の金属の拡散が容易となるので、信頼
性の高い接合面が得られる。
Metal materials, even those made through well-controlled manufacturing processes, contain several thousand ppm to several tens of ppm of gas as impurities. These gases are present in the material as pores or nonmetallic inclusions. Since the solubility of these gas components increases in high-temperature metals, they tend to collect in heated areas, and the gas concentration is high in the high-temperature areas of the bonding surfaces. Therefore, in the present invention, the joint surface is vibrated to deform and break the microscopic undulating surface, and at the same time, the gas in at least that portion is released from the material. At the same time, it is possible to mechanically remove oxides at the bonding interface caused by gas released during the temperature rising process. Also,
As the undulations on the material surface are destroyed by vibration, a new surface of the material appears and metal diffusion during bonding is facilitated, resulting in a highly reliable bonded surface.

接合時に与える周波数は50 Hss −S D KH
zまで選択することが出来る。50 Hg 未満の周波
数では接合界面の酸化物の除去は出来ない。
The frequency given during bonding is 50 Hss - S D KH
You can select up to z. At frequencies below 50 Hg, oxides at the bonding interface cannot be removed.

また、30 K)IZ超では酸化物を除去するに必要な
振動を得ることが困難で結果的に酸化物は除去できない
Further, if the temperature exceeds 30 K) IZ, it is difficult to obtain the vibration necessary to remove the oxide, and as a result, the oxide cannot be removed.

なお、周波数が低い場合、振幅を大きくして接合界面の
接触による作用で酸化物を除去する。
Note that when the frequency is low, the amplitude is increased to remove oxides by the action of contact at the bonding interface.

また、周波数が高い場合は振幅を小さくしても良く運動
のエネルギーで酸化物がはく離々脱する。これら振幅は
与える周波数によって異なるが5μm〜2 o o p
mの範囲で選択することが効果的である。
Furthermore, when the frequency is high, the amplitude may be reduced, and the oxide will be peeled off by the energy of the movement. These amplitudes vary depending on the frequency applied, but are between 5 μm and 2 o o p
It is effective to select within the range of m.

接合面の粗さが粗い場合や、材質的に比較的硬さが低い
ものは低周波数−高振幅の条件を選択し、細かな表面や
、硬い材質は高周波数−低振幅が良い。振動時間は接合
界面が接触しない時は任意の時間で良いが少なくとも3
分以上が望ましく、接合界面が接触したら数秒の短時間
で良い。
If the joint surface is rough or the material is relatively hard, select the low frequency-high amplitude condition, and if the surface is fine or the material is hard, select the high frequency-low amplitude condition. The vibration time can be any time if the bonding interface does not contact, but it should be at least 3
The time is preferably at least 1 minute, and once the bonding interface comes into contact, a short time of several seconds is sufficient.

その他、本発明の接合は、拡散接合の常法で行ってよい
In addition, the bonding of the present invention may be performed by the conventional method of diffusion bonding.

まず、接合面間に接合を促進させる中間材を設けること
ができ、中間材がなくてもよい。中間材は31日1等を
含む合金、被接合材よシも低融点の金属又は合金でよい
First, an intermediate material that promotes bonding can be provided between the joining surfaces, and there is no need for an intermediate material. The intermediate material may be an alloy containing 31-day-1 grade, and the material to be joined may also be a metal or alloy with a low melting point.

また、接合は真空中で行ってもよい。Further, the bonding may be performed in a vacuum.

更に、前記加熱工程においては、接合部の接合材を溶融
することなく、中間金属が存在する場合には、中間金属
が溶融しない温度範囲の高温に加熱し、加振、加圧に続
いて、後熱処理を施して接合を行ってもよい。
Furthermore, in the heating step, without melting the bonding material of the joint part, if an intermediate metal is present, heating to a high temperature in a temperature range in which the intermediate metal does not melt, followed by vibration and pressure, Bonding may be performed by performing post-heat treatment.

別法として、前記加熱工程における温度を接合温度とし
、加振し、圧力を加えて接合を完了させてもよい。
Alternatively, the temperature in the heating step may be set to the bonding temperature, and the bonding may be completed by applying vibration and pressure.

他方、装置においても、通常のように、接合部を真空室
としてよく、またスペーサを使用してもよい。換言すれ
ば、加振設備が通常の拡散接合装置に付加されたものに
相当する。
On the other hand, in the device as well, the joint portion may be a vacuum chamber, or a spacer may be used, as usual. In other words, it corresponds to a vibration equipment added to a normal diffusion bonding apparatus.

〔発明の実施例] 以下、本発明を実施例によシ更に具体的に説明するが、
本発明はこれらに限定されない。
[Examples of the Invention] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited thereto.

なお、第1図は本発明装置の1例の断面概略図であり、
第2図は本発明方法の1例における時間(横軸)と、温
度、加振及び加圧力(縦軸)との関係を示すグラフであ
る。
Note that FIG. 1 is a schematic cross-sectional view of an example of the device of the present invention,
FIG. 2 is a graph showing the relationship between time (horizontal axis), temperature, excitation and pressure (vertical axis) in one example of the method of the present invention.

実施例1 以下、本発明の1実施例を第1図に示す拡散接合装置の
構成図を用いて説明する。1は加振装置で、2の加圧ロ
ッドと共に構成され、3の加振ロッドによル振動が、4
のスペーサに伝達される。更にこの振動は4に保持され
た5の被接合材に伝達される。この振動は7の荷重受台
上の4のスペーサに保持された5の接合材との接合面で
振動する。6は真空室で、8のヒータからの輻射熱を冷
却する構造となっている。5の被接合材は一対のSUE
 14材で板厚の平行度を正確に得るため機械加工で仕
上げ、更に、接合面は10〜6μmの粗さに仕上げた。
Embodiment 1 Hereinafter, one embodiment of the present invention will be described using the configuration diagram of a diffusion bonding apparatus shown in FIG. Reference numeral 1 is a vibration excitation device, which is configured with a pressure rod 2, and the vibration rod 3 generates vibrations, and the vibration rod 4
is transmitted to the spacer. Further, this vibration is transmitted to the welded material 5 held at 4. This vibration vibrates at the joint surface of the load holder 7 with the joining material 5 held by the spacer 4. 6 is a vacuum chamber, which has a structure to cool the radiant heat from the heater 8. The material to be joined in 5 is a pair of SUE
14 material was machined to ensure accurate parallelism of the plate thickness, and the joint surfaces were finished to a roughness of 10 to 6 μm.

その後、その面にボロンを数僑含むNi−0r材を約1
5pmの厚さを目標に被接合材の上部側の材料、すなわ
ち加振ロッド3によって伝達される材料の接合面のみに
蒸着させた。振動は第1図から判るように接合面に直角
に作用する。第2図は前記のように接合時の温度と加振
と加圧力の相対的な関係を示すグラフである。なお真空
炉は10−5トールに保持して行った。
After that, about 1 layer of Ni-0r material containing some boron was applied to that surface.
Aiming for a thickness of 5 pm, the vapor was deposited only on the upper side of the materials to be joined, that is, on the joining surface of the material transmitted by the vibrating rod 3. As can be seen from FIG. 1, the vibration acts perpendicularly to the joint surface. FIG. 2 is a graph showing the relative relationship between temperature, vibration, and pressure during bonding as described above. The vacuum furnace was maintained at 10-5 Torr.

接合温度は被接合材の融点よシ低い温度である1070
℃で第2図のaまで昇温するが、この接合温度前a′の
時期に接合材に振動を与えたその周波数1d 20 K
Hzで振幅は20μmである。
The joining temperature is lower than the melting point of the materials to be joined.1070
℃, the temperature rises to a in Figure 2, but the frequency of vibration applied to the bonding material at time a' before this bonding temperature is 1d 20 K
The amplitude is 20 μm at Hz.

接合面は予め荷重が加わらないように空間をあけ振動開
始と共に加圧ロッドを降下させ加圧させる接合面が接触
し圧力が増加すると振動はオーバロッドになシ停止回路
が作動し、圧力(12ゆ/■1)のみとなる。この振動
を実質的な接触を生ずるまで、3分以上行った。実質的
な接触が生じた後は10〜15秒の短時間で良い。
Leave a space in advance so that no load is applied to the joint surfaces, and when the vibration starts, the pressure rod is lowered and the pressure is applied. When the joint surfaces contact and the pressure increases, the vibration goes over the rod. The stop circuit is activated, and the pressure (12 Yu/■1) only. This vibration was continued for over 3 minutes until substantial contact was made. A short period of 10 to 15 seconds may be sufficient after substantial contact has occurred.

圧力を加えた後、この圧力を除荷し再度振動を与えると
接合の程度により振動することがあるがその場合は前回
より多少大きな圧力を加える。なお圧力の保持時間は5
分程度で良く、その後徐々に圧力を低下させると同時に
加熱温度を上昇させ被接合材の融点より低い温度である
1100℃で10分保持した。
After applying pressure, if this pressure is removed and vibration is applied again, vibration may occur depending on the degree of bonding, but in that case, apply a slightly higher pressure than the previous time. The pressure holding time is 5
After that, the pressure was gradually lowered and at the same time the heating temperature was raised and held at 1100° C., which is a temperature lower than the melting point of the materials to be joined, for 10 minutes.

このようにして接合した接合部断面をミクロ観察した結
果、接合部分の組織は微細で空胴欠陥の存在は認められ
なかった。
As a result of microscopic observation of the cross-section of the joint thus joined, it was found that the structure of the joint was fine and no cavity defects were observed.

実施例2 次にBUB 304とジルコニウム合金についても行っ
た。この場合中間金属の蒸着は省略し上記した条件と同
様にして行った。その結果、接合面に欠陥はなく完全な
接合状態を呈していた。
Example 2 Next, BUB 304 and a zirconium alloy were also tested. In this case, the vapor deposition of the intermediate metal was omitted and the same conditions as above were used. As a result, there were no defects on the bonded surfaces and a perfect bonded state was observed.

〔発明の効果] 本発明によれば接合温度で接合前の接合界面に振動を与
えるので、その界面の酸化物やガスを除去することが出
来、更に表面のミクロ的な起伏を破壊し新しい金属面を
形成するので、接合時間を著しく短縮することが出来る
。また界面の酸化物が除去されるので接合面は清浄とな
シ強度的にも冶金的にも優れた接手が得られる効果があ
る。
[Effects of the Invention] According to the present invention, since vibration is applied to the bonding interface before bonding at the bonding temperature, oxides and gases at the interface can be removed, and furthermore, microscopic undulations on the surface are destroyed and new metal is formed. Since a plane is formed, the bonding time can be significantly shortened. In addition, since the oxides at the interface are removed, the joint surface is clean and a joint with excellent strength and metallurgy can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の拡散接合装置の1例の断面概略図、第
2図は本発明方法の1例における温度と加振及び加圧力
との相対的な関係を示すグラフである。 1:加振装置、2:加圧ロッド、3:加振ロッド、4ニ
スペーサ、5:被接合材、6:真空室、7:荷重受台、
8:ヒータ
FIG. 1 is a schematic cross-sectional view of one example of the diffusion bonding apparatus of the present invention, and FIG. 2 is a graph showing the relative relationship between temperature and excitation and pressing force in one example of the method of the present invention. 1: Vibration device, 2: Pressure rod, 3: Vibration rod, 4 Ni spacer, 5: Material to be joined, 6: Vacuum chamber, 7: Load holder,
8: Heater

Claims (1)

【特許請求の範囲】 1、一対の金属材料接合材を拡散接合する方法において
、該被接合材を所定温度に加熱する工程、該加熱中及び
/又は加熱後に接合面が互いに接触しない距離において
接合材の少なくとも一方に振動を与える加振工程、該加
振後に接合面を接触させ圧力を加える工程の各工程を包
含することを特徴とする金属材料の拡散接合方法。 2、前記圧力を加える工程に続いて前記所定温度より高
い温度に加熱して拡散接合を行う特許請求の範囲第1項
記載の金属材料の拡散接合方法。 3、前記所定温度が接合温度であり、該圧力を加える工
程で接合を完了する特許請求の範囲第1項記載の金属材
料の拡散接合方法。 4、一対の金属材料接合材を拡散接合する装置において
、該被接合材を加熱するための加熱設備、該被接合材に
圧力を加えるための加圧設備、該被接合材の少なくとも
一方に振動を与えるための加振設備の各設備を包含する
ことを特徴とする金属材料の拡散接合装置。
[Claims] 1. In a method of diffusion bonding a pair of metal material bonding materials, the step of heating the materials to be bonded to a predetermined temperature, and the step of bonding at a distance where the bonding surfaces do not come into contact with each other during and/or after the heating. A method for diffusion bonding metal materials, the method comprising the following steps: a vibrating step of applying vibration to at least one of the materials, and a step of bringing bonding surfaces into contact and applying pressure after the vibration. 2. The method for diffusion bonding metal materials according to claim 1, wherein following the step of applying pressure, diffusion bonding is performed by heating to a temperature higher than the predetermined temperature. 3. The method for diffusion bonding metal materials according to claim 1, wherein the predetermined temperature is a bonding temperature, and the bonding is completed in the step of applying the pressure. 4. In an apparatus for diffusion bonding a pair of metal material joining materials, heating equipment for heating the materials to be joined, pressurizing equipment for applying pressure to the materials to be joined, and vibration on at least one of the materials to be joined. 1. A diffusion bonding apparatus for metal materials, characterized in that it includes vibration equipment for imparting vibration.
JP6843685A 1985-04-02 1985-04-02 Method and device for diffusion joining of metallic material Pending JPS61229485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6843685A JPS61229485A (en) 1985-04-02 1985-04-02 Method and device for diffusion joining of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6843685A JPS61229485A (en) 1985-04-02 1985-04-02 Method and device for diffusion joining of metallic material

Publications (1)

Publication Number Publication Date
JPS61229485A true JPS61229485A (en) 1986-10-13

Family

ID=13373652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6843685A Pending JPS61229485A (en) 1985-04-02 1985-04-02 Method and device for diffusion joining of metallic material

Country Status (1)

Country Link
JP (1) JPS61229485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101860A1 (en) * 2019-01-25 2020-07-30 Nils Haneklaus Diffusion joining method and device therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019101860A1 (en) * 2019-01-25 2020-07-30 Nils Haneklaus Diffusion joining method and device therefor

Similar Documents

Publication Publication Date Title
JP6396852B2 (en) Method for manufacturing composite wafer having oxide single crystal thin film
JP6563360B2 (en) Method for manufacturing composite wafer having oxide single crystal thin film
KR20180014701A (en) METHOD FOR MANUFACTURING COMPOSITE WAFER WITH OXIDE SINGLE CRYSTAL FILM
US4645115A (en) Method of bonding ceramic article
JPS61229485A (en) Method and device for diffusion joining of metallic material
JPS63295061A (en) Method for preventing welding defect by ultrasonic excitation
JPS6222712B2 (en)
JPH0520392B2 (en)
JP2814779B2 (en) Disc brake pad back metal and surface treatment method thereof
JPS5944148B2 (en) Diffusion welding method
JPS59227777A (en) Manufacture of ceramics
JPS63270460A (en) Sputtering target
Olson et al. Joining III: Diffusion Bonding
Mitskevich Ultrasonic welding of metals
JPS63188483A (en) Ultrasonic joining method for metal and ceramics
Slattery et al. Development of tungsten brush structures for PFC armor applications
WO2003106091A1 (en) Method for fixing metal foam to a metal plate
JP2878478B2 (en) Ultrasonic welding method for metal
JPS63264283A (en) Method for joining heat resistant materials
JPS63209808A (en) Method of machining ceramics
JP4538671B2 (en) Dissimilar metal joining method and apparatus
KR20220157416A (en) Laminar Preparation Process
JPS59184775A (en) Pressure welding of ceramic member to metal member
JPH0569120A (en) Method for brazing aluminum material through ultrasonic waves
JPH10120474A (en) Bonding between aluminum and ceramic