JPS61229462A - Production of nodular graphite cast iron - Google Patents

Production of nodular graphite cast iron

Info

Publication number
JPS61229462A
JPS61229462A JP7184585A JP7184585A JPS61229462A JP S61229462 A JPS61229462 A JP S61229462A JP 7184585 A JP7184585 A JP 7184585A JP 7184585 A JP7184585 A JP 7184585A JP S61229462 A JPS61229462 A JP S61229462A
Authority
JP
Japan
Prior art keywords
cast iron
molten metal
graphite
mold
spheroidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7184585A
Other languages
Japanese (ja)
Inventor
Takao Horie
孝男 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabeya Iron and Tool Works Ltd
Nabeya Co Ltd
Original Assignee
Nabeya Iron and Tool Works Ltd
Nabeya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabeya Iron and Tool Works Ltd, Nabeya Co Ltd filed Critical Nabeya Iron and Tool Works Ltd
Priority to JP7184585A priority Critical patent/JPS61229462A/en
Publication of JPS61229462A publication Critical patent/JPS61229462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To produce a nodular graphite cast iron which does not contain metallic oxides and non-metallic inclusions and has defectless quality by treating the molten cast iron with a graphite spheroidizing agent then passing the molten metal into a porous ceramic body having open cells. CONSTITUTION:Two split casting molds consisting of a cope and rag are superposed to form a casting mold 12 provided with a casting cavity 24, a runner 14 and a sprue 20. A reaction chamber 16 is provided in the mid-way of a runner 14 of such casting mold and a graphite spheroidizing agent 18 of an Mg alloy is preliminarily put therein. The porous body 10 consisting of the three-dimensional network skeletal structure having the open cells made of ceramics such as cordierite, alumina or silicon carbide is rested on the down stream thereof. The molten cast iron poured from a sprue 20 reacts with the graphite spheroidizing agent 18 in the chamber 16 and changes the graphite shape of the cast iron from the flake to spheroidal or nodular shape. The cast iron passes through the porous body 10 made of the ceramics in succession thereto so that the sand grains, oxides such as dross and non-metallic inclusions contained n the molten modular graphite cast iron are captured and the nodular graphite cast iron having the defectless quality is cast into the cavity 24.

Description

【発明の詳細な説明】 (技術分野) 本発明は球状黒鉛鋳鉄の製造方法に係り、特に球状黒鉛
鋳鉄の製造工程における溶湯の球状化処理作業において
、最も経済的且つ効果的に球状化溶湯を得ると同時に、
鋳型の鋳造キャビティ内に流入する溶湯中の金属酸化物
、非金属介在物などを除去することを兼ねた瞬間球状化
処理法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for manufacturing spheroidal graphite cast iron, and in particular, to a process for spheroidizing molten metal in the process of manufacturing spheroidal graphite cast iron. At the same time as getting
This invention relates to an instant spheroidization process that also serves to remove metal oxides, nonmetallic inclusions, etc. from the molten metal flowing into the casting cavity of the mold.

(従来技術とその問題点) 一般に、球状黒鉛鋳鉄の製造に際して、その溶湯の球状
化処理は、マグネシウム、セリウム、カルシウム、ラン
タン、ストロンチウム、リチウム等の金属をFe、Si
等の合金鉄として用いて、それを所定の溶湯に接触せし
めている。而して、多くの場合、経済性等を考慮して、
この球状化処理剤にはMg合金が用いられ、普通鋳鉄溶
湯の中へMgが0.030〜0.040%程度或いはそ
れ以上の割合で含有せしめられて、目的とする球状黒鉛
組織を得ている。
(Prior art and its problems) In general, when producing spheroidal graphite cast iron, the spheroidizing treatment of the molten metal is performed by adding metals such as magnesium, cerium, calcium, lanthanum, strontium, and lithium to Fe, Si, etc.
It is used as a ferroalloy such as, and is brought into contact with a predetermined molten metal. Therefore, in many cases, considering economic efficiency, etc.
Mg alloy is used for this spheroidizing agent, and Mg is contained in the molten cast iron at a ratio of about 0.030 to 0.040% or more to obtain the desired spheroidal graphite structure. There is.

ところで、この球状化処理剤として用いられるMgは、
鋳鉄溶湯の温度域で容易に沸騰する。そして、一般的に
普通の処理温度におけるMgの蒸気圧は大気圧の10倍
以上であり、溶湯に触れると、容易に燃焼する。このよ
うな条件の中で、少量のMgを溶湯中に正確な歩留りを
もって含有させることは非常に困難な作業といえる。
By the way, Mg used as this spheroidizing agent is
Easily boils in the temperature range of molten cast iron. Generally, the vapor pressure of Mg at normal processing temperatures is more than 10 times the atmospheric pressure, and when it comes into contact with molten metal, it easily burns. Under such conditions, it can be said that it is a very difficult task to incorporate a small amount of Mg into the molten metal with an accurate yield.

従来、健全な球状黒鉛組織を得るために、また安全性、
経済性3歩留り9品質の再現性などを考慮しつつ、種々
の検討がなされ、各種の処理方法が選択され、実施され
て来た。
Conventionally, in order to obtain a healthy spheroidal graphite structure, safety and
Various studies have been made, and various processing methods have been selected and implemented, taking into account economic efficiency, yield, quality reproducibility, etc.

ここで、その方法を大きく分けると、その処理を鋳型の
外で行なう方法と鋳型内で行なう方法があり、そして前
者の鋳型外で行なう処理のなかで最も一般的に行なわれ
るのは、第1図に示される如きサンドインチ法である。
Here, the methods can be roughly divided into methods in which the treatment is performed outside the mold and methods in which the treatment is performed within the mold. Of the former treatment outside the mold, the most common method is the first method. This is the sandwich method as shown in the figure.

かかるサンドインチ法は、Mg合金の反応時間を考慮し
て、取鍋2の内径:Dと取鍋2の高さ:Hの比: D/
Hを、溶湯4の処理重量に応じて設計し、取鍋2の底面
へMg合金6を置き、その上へ溶湯4を入れ、溶湯4中
へMgを含有させる方法であり、また他の方法も、一定
の器の中で処理することから、基本的にはサンドインチ
法と類似する方法である。
In this sandwich method, the ratio of the inner diameter of the ladle 2: D to the height of the ladle 2: H is determined by considering the reaction time of the Mg alloy.
H is designed according to the processing weight of the molten metal 4, the Mg alloy 6 is placed on the bottom of the ladle 2, the molten metal 4 is poured on top of it, and Mg is contained in the molten metal 4, and there are other methods. This method is basically similar to the sandwich method because it is processed in a fixed container.

しかしながら、最も一般的なこの方法においても、Mg
合金等の歩留り2反応時の安全性などに問題を有し、更
にまたその最も大きな問題は、球状化処理後の時間に比
例して、Mg含有量が低下し、その効果が消失する消失
現象、所謂「フェーディング(Fading) Jを有
することである。
However, even in this most common method, Mg
There are problems with the yield of alloys, safety during reactions, etc., and the biggest problem is the disappearance phenomenon in which the Mg content decreases in proportion to the time after the spheroidization process and the effect disappears. , so-called "fading".

この球状化効果の消失現象は、酸化又は結合によりMg
が減少して行くことであり、黒鉛粒数が減ったり、黒鉛
の形状が悪くなったりして、球状化処理の直後から始ま
り擬片状黒鉛が現れる時点まで進行し続けるのである。
This phenomenon of disappearance of the spheroidization effect is due to oxidation or bonding of Mg.
The number of graphite particles decreases and the shape of graphite deteriorates, starting immediately after the spheroidization treatment and continuing to progress until pseudo-flake graphite appears.

従って、健全な溶湯を鋳型へ注湯するためには、時間的
な制約を大きく受けることとなる。
Therefore, pouring healthy molten metal into the mold is subject to significant time constraints.

一方、鋳型内における球状化処理法としてはインモール
ド法があり、この処理法は湯口系の一部である反応室に
球状化剤を装入しておき、注入と同時に球状化を行なう
ものである。
On the other hand, there is an in-mold method for spheroidizing treatment in a mold, in which a spheroidizing agent is charged into a reaction chamber that is part of the sprue system, and spheroidizing is performed at the same time as injection. be.

従って、このインモールド法は、Mgの歩留すが非常に
高く、環境、空気汚染の危険性が少ない等の利点を有し
、また球状化効果の消失現象の発生もないところから、
経済性1作業性、そして健全な球状黒鉛組織を得る上で
効果的な処理方法といえる。
Therefore, this in-mold method has advantages such as a very high Mg yield and low risk of environmental and air pollution, and also because it does not cause the loss of spheroidization effect.
It can be said that it is an effective treatment method in terms of economic efficiency, workability, and obtaining a healthy spheroidal graphite structure.

このように、現在、一般的に最も多く用いられているサ
ンドインチ法に対し、インモールド法は球状化効果の消
失現象もなく、発煙の防止と添加Mgの歩留りも高い、
多くの利点を持つものではあるが、この方法とても、現
在の段階では、鋳物製品への非金属介在物の混入等の問
題を有しているのである。
In this way, in contrast to the sand-inch method, which is currently the most commonly used method, the in-mold method does not lose the spheroidizing effect, prevents smoke generation, and has a high yield of added Mg.
Although this method has many advantages, at the current stage it has problems such as non-metallic inclusions being mixed into the cast product.

すなわち、前述の如く、一般的に普通の処理温度におけ
るMgの蒸気圧は大気の10倍以上もあり、Mgの沸点
が比較的低い(約100℃)ために、極めて激しい反応
が惹起されるところから、そのエネルギーが反応室を形
成する鋳型壁を著しく損傷させ、砂粒を同時に鋳型の製
品(鋳造)キャビティ内へ混入させることと、反応直後
に溶湯は製品キャビティ内へと流入するために、反応時
に発生するMgOをベースとしたドロス等を除去するこ
となく、製品キャビティへ導き、混入せしめることとな
ることから、安定した球状化組織は得られても、その製
品は砂粒、ドロス混入等による外観不良、品質低下等の
大きな問題を惹起するのである。
That is, as mentioned above, the vapor pressure of Mg at normal processing temperatures is generally more than 10 times that of the atmosphere, and the boiling point of Mg is relatively low (approximately 100°C), so an extremely violent reaction occurs. This energy significantly damages the mold wall that forms the reaction chamber, causes sand grains to simultaneously enter the product (casting) cavity of the mold, and immediately after the reaction, the molten metal flows into the product cavity, causing a reaction. As MgO-based dross, which is sometimes generated, is guided into the product cavity and mixed in without being removed, even if a stable spheroidized structure is obtained, the product has a poor appearance due to sand grains, dross, etc. This causes major problems such as defects and quality deterioration.

(解決手段) 本発明は、上記の問題を解決するために為されたもので
あり、球状黒鉛化処理を鋳型内で安全に行ない、しかも
健全な溶湯を瞬間球状化処理手法に従って得るようにし
た、球状黒鉛鋳鉄の製造法にある。
(Solution Means) The present invention was made to solve the above-mentioned problems, and it is possible to carry out the spheroidal graphitization treatment safely in a mold, and to obtain a healthy molten metal according to the instant spheroidization treatment method. , in the manufacturing method of spheroidal graphite cast iron.

そして、その要旨とするところは、鋳型の鋳造キャビテ
ィに至る溶湯通路内に、かかる通路を仕切るように、連
続気孔を有する三次元網状骨格構造のセラミックス多孔
体を設置すると共に、該セラミックス多孔体よりも上流
側の溶湯通路内に位置するように、黒鉛を球状化乃至は
ノジュラー状に転換させる球状化処理剤を配置せしめ、
注湯された所定の溶湯中の黒鉛を、該球状化処理剤によ
り球状化乃至はノジュラー状に転換せしめた後、かかる
処理溶湯が、前記セラミックス多孔体を通じて前記鋳型
の鋳造キャビティー内に導かれるようにしたことを特徴
とする球状黒鉛鋳鉄の製造方法である。
The gist of this is that a ceramic porous body with a three-dimensional network skeleton structure having continuous pores is installed in the molten metal passage leading to the casting cavity of the mold so as to partition the passage, and A spheroidizing treatment agent for converting graphite into a spheroid or nodular shape is arranged so that the graphite is located in the molten metal passage on the upstream side,
After the graphite in the poured predetermined molten metal is converted into a spheroid or nodular shape by the spheroidizing treatment agent, the treated molten metal is guided into the casting cavity of the mold through the ceramic porous body. This is a method for producing spheroidal graphite cast iron, characterized in that:

より具体的には、第2図(a)〜(C1に示されるよう
な球状化処理コアを、第3図(al、 (b) ? 4
図(a)、 (b)に示されるように鋳型内へ設置し、
注湯して、所望の球状化処理を行なうのある。
More specifically, the spheroidized cores as shown in FIGS. 2(a) to (C1) are made into spheroidized cores as shown in FIGS.
Place it in the mold as shown in figures (a) and (b),
The desired spheroidization process can be carried out by pouring the molten metal.

すなわち、第3図(al及び(b)においては、第2図
(a)、 (b)に示される矩形ブロック状のセラミッ
クスフオーム(多孔体)10が、鋳型(砂型)12の溶
湯通路たる湯道14にそれを仕切るようにセットされて
おり、そしてこのセットされたセラミックスフオーム1
0の上流側の湯道14部分に中間室(反応室)16が設
けられ、そこに所定の球状、他剤18が収容されている
のである。
That is, in FIGS. 3A and 3B, the rectangular block-shaped ceramic foam (porous body) 10 shown in FIGS. A ceramic foam 1 is set on the path 14 to partition it, and this set ceramic foam 1
An intermediate chamber (reaction chamber) 16 is provided in the runner 14 portion on the upstream side of the runner 0, and a predetermined spherical and other agent 18 is accommodated therein.

従って、鋳型12の湯道14の湯口20から注湯された
所定の鋳鉄溶湯は、先ず、中間室16内の球状化剤18
にて球状化処理を受け、次いでそのような球状化処理さ
れた溶湯がセラミックスフオーム10の多孔m織内を通
って所定の中子22を設けた(必要に応じて)鋳造キャ
ビティ24に導かれることとなる。そして、このセラミ
ックスフオーム10を通過するに際して、球状化処理溶
湯中に存在し、或いは混入する砂粒、ドロスなどの金属
酸化物や非金属介+’1. ”Mは、該セラミックスフ
オーム10の多孔網状m織に捕捉されて、鋳造キャビテ
ィ24側に流れ込むことがないところから、健全な、品
質の良い球状黒鉛鋳鉄製品が得られることとなるのであ
る。
Therefore, the predetermined molten cast iron poured from the sprue 20 of the runner 14 of the mold 12 is first poured into the spheroidizing agent 18 in the intermediate chamber 16.
The molten metal subjected to the spheroidization process is then guided through the porous weave of the ceramic foam 10 to a casting cavity 24 provided with a predetermined core 22 (if necessary). That will happen. When passing through this ceramic foam 10, metal oxides and non-metallic particles such as sand grains and dross that are present or mixed in the spheroidizing molten metal are removed. ``M'' is captured in the porous mesh-like weave of the ceramic foam 10 and does not flow into the casting cavity 24, so that a healthy, high-quality spheroidal graphite cast iron product can be obtained.

なお、第2図(C1に示されるセラミックスフオーム1
0は、第2図(blに例示のものとは異なり、溶湯流の
下流側に位置する面に形成された略円錐状突部26を有
しており、この円錐状突部26にt溶湯の流れを拡げて
、該セラミックスフオーム10内でのドロスなどの介在
物の捕捉を効果的に行ない得るようになっている。
In addition, the ceramic foam 1 shown in FIG. 2 (C1)
0 has a substantially conical protrusion 26 formed on the surface located on the downstream side of the molten metal flow, unlike the one illustrated in FIG. By widening the flow, inclusions such as dross can be effectively captured within the ceramic foam 10.

また、第4図(al及び(b)に示される本発明の他の
実施形態にあっては、鋳型12の湯道14の湯溜め28
内に、それを仕切るようにして、セラミ・ツクスフオー
ム30がセットされている。そして、このセラミックス
フオーム30には、その上流側の面に凹所32が設けら
れて、この凹所32内に所定の球状化剤18が収容せし
められることにより、注湯された溶湯がこの球状化剤1
8にて球状化処理を受けた後、セラミックスフオーム3
0の多孔編状組織を通って鋳造キャビティ24に導かれ
るようになっているのである。
Further, in another embodiment of the present invention shown in FIGS.
Ceramic foam 30 is set inside to partition it. The ceramic foam 30 is provided with a recess 32 on its upstream surface, and a predetermined spheroidizing agent 18 is accommodated in the recess 32, so that the poured molten metal becomes spherical. curing agent 1
After undergoing spheroidization treatment in step 8, ceramic foam 3
0 through the porous knitted structure into the casting cavity 24.

このようなセラミックスフオーム30の凹所32内に収
容、保持される球状化剤18は、溶湯との接触効果を高
める上においては粒子状形態であることが望ましいが、
その他すング状、ブロック状などに成形されたものであ
っても何等差支えな(、更にまた凹所32を設けること
なく、単なる平坦なセラミックスフオーム10上に所定
の球状化剤18を載置、支持せしめた状態下において、
湯道14を流れる溶湯に接触せしめるようにすることも
可能である。
The spheroidizing agent 18 accommodated and held in the recess 32 of the ceramic foam 30 is preferably in a particulate form in order to enhance the effect of contact with the molten metal.
There is no problem even if it is formed into a shape such as a ring shape or a block shape. Under supported conditions,
It is also possible to contact the molten metal flowing through the runner 14.

なお、かかる球状化処理コア<to、30)には、コー
ジェライトアルミナ、SiC等を主成分とした、空孔率
が高く (例えば80〜90%程度)、連続気孔の三次
元網状骨格構造を有するセラミックフオームに、その目
的とする球状黒鉛鋳鉄若しくはCV鋳鉄の材質に応じて
造られた球状化剤(Fe−3i −Ml?、  li’
e−3i−Ca−RE−Mg、N i−Mg)を装填若
しくは装填出来るスペースを有するものが、好適に用い
られることとなる。
The spheroidized core <to, 30) has a high porosity (for example, about 80 to 90%) and has a three-dimensional network skeleton structure of continuous pores, which is mainly composed of cordierite alumina, SiC, etc. A spheroidizing agent (Fe-3i-Ml?, li') made according to the material of spheroidal graphite cast iron or CV cast iron is added to the ceramic foam having
A material having a space in which it can be loaded or loaded with (e-3i-Ca-RE-Mg, Ni-Mg) is preferably used.

而して、今仮に1モールドへの鋳込重量30kgの製品
を造る時、サンドインチ法においては、処理時のMgの
反応を穏やかにし、また白煙の発生を滅じ、作業環境と
安全性に十分な注意を払うが、本発明方法においては、
比較的Mgの含有率の高い合金鉄を用いることが可能で
、例えば球状化処理後の溶湯中のMg%を0.04%と
設定した時、8%のMgを含むMg合金を0.5%添加
すれば良く、従って30kgの鋳込重量に対しては、球
状化剤としてのMg合金は150gと、少量の添加量で
よいと同時に、球状化処理コアが、連続気孔のセラミッ
クスフオームの鋳鉄系フィルターであるため、球状化剤
の装填部への形状限定がなく、塊状、粒状の何れにおい
ても可能となる。そして、その溶湯に対する清浄化効果
は、複雑な三次元の連続気孔中を通過し、製品キャビテ
ィへ達するため、非金属介在物の混入は極少となると同
時に、溶湯の製品キャビティへ注入する際の整流効果を
十分に発揮し、健全な球状黒鉛鋳鉄の球状化処理法とな
るのである。
Therefore, when manufacturing a product with a casting weight of 30 kg per mold, the sand inch method moderates the reaction of Mg during processing, eliminates the generation of white smoke, and improves the working environment and safety. However, in the method of the present invention,
It is possible to use a ferroalloy with a relatively high Mg content. For example, when the Mg% in the molten metal after spheroidization treatment is set to 0.04%, the Mg alloy containing 8% Mg is 0.5%. Therefore, for a casting weight of 30 kg, the Mg alloy as a spheroidizing agent only needs to be added in a small amount of 150 g. Since it is a system filter, there is no restriction on the shape of the loading part of the spheroidizing agent, and it is possible to use either lumps or granules. The cleaning effect on the molten metal is that it passes through complex three-dimensional continuous pores and reaches the product cavity, which minimizes the amount of non-metallic inclusions, and at the same time, the rectification when the molten metal is injected into the product cavity. This is a highly effective and sound method for spheroidizing spheroidal graphite cast iron.

(作用・効果) 現在、鋳造工場において実施されている球状化処理法は
、鋳型内、外の方法において、経済性。
(Function/Effect) The spheroidization process currently implemented in foundries is economical both inside and outside the mold.

生産性2品質の安全性に対し検討を加えながら採用され
ているが、各々に一長一短が存する。
They have been adopted with consideration given to productivity, quality, and safety, but each has its advantages and disadvantages.

最も一般的な球状化処理法であるサンドインチ法におい
ては、容易な球状化処理法であるが、球状化効果の消失
現象のため、球状化処理後から注湯比の時間的制約を受
けるし、またその為に球状化処理溶湯の自動注湯システ
ム化に問題を残す等、将来へ向けての鋳造工程の無人化
、自動化の方向づけには、望ましい処理方法とは言えな
い。
The most common spheroidizing method, the sand inch method, is an easy spheroidizing method, but due to the disappearance of the spheroidizing effect, the pouring ratio is subject to time constraints after the spheroidizing process. In addition, this method leaves problems in the automatic pouring system for spheroidized molten metal, and cannot be said to be a desirable processing method in the direction of unmanned and automated casting processes in the future.

一方、鋳型内球状比処理法としてのインモールド法は、
球状化効果の消失現象は無く、Mg合金の歩留りの向上
、作業環境の向上環、多くの利点があるが、ドロス等の
非金属介在物の製品キャビティ内混入により、凝固後、
製品内外面の欠陥とを生ずる等の問題を有し、その着想
は優れ、経済性、安全性2作業性、そして球状化効果の
消失現象がないことによる溶湯の自動注湯システム化が
可能等の多くのメリットを有しながら、実際の採用には
至っていいのが現状である。
On the other hand, the in-mold method as a spherical ratio treatment method in the mold is
There is no disappearance of the spheroidization effect, and there are many advantages such as improved yield of Mg alloy and improved working environment, but due to the contamination of non-metallic inclusions such as dross into the product cavity,
The idea is excellent, economical, safe, easy to work with, and there is no loss of spheroidizing effect, making it possible to create an automatic pouring system for molten metal. Although it has many advantages, the current situation is that it is not suitable for actual adoption.

本発明は前述した鋳型内における球状化処理方法の欠陥
を解決するものといえる。
It can be said that the present invention solves the deficiencies of the above-mentioned in-mold spheroidizing method.

先ず、第一に、鋳型内球状比処理方法の一番の効果とし
て、球状化効果の消失現象はなく、Mg合金の歩留り向
上2反応煙は少ない等の利点は多く、品質の安定性、経
済性2作業環境の向上、安全性等に、多くの効果を挙げ
ることが出来る。
First of all, the most important effect of the in-mold spheroidization treatment method is that there is no disappearance of the spheroidization effect, and there are many advantages such as improved yield of Mg alloy 2 less reaction smoke, stability of quality, and economy. It can have many effects, such as improving the work environment and safety.

第二は、球状化処理コアが空孔率が高い連続気孔の三次
元網状骨格構造を有したセラミックスフオームの鋳鉄系
フィルターであるため、Mg合金に溶湯が触れた時の激
しい反応によるエネルギーも球状化処理コアが吸収し、
鋳型壁の損傷は少なく、また、溶湯と共に流入したスラ
グ、溶湯が流れて来た湯口系の砂粒、そしてMg合金が
溶湯と反応した時のMgOをベースとするドロス等の非
金属介在物は、全て、この球状化処理コアがフィルター
として作用してそれらを濾過することとなり、製品キャ
ビティ内へは清浄溶湯のみが注入され、以て健全な鋳造
品の製作が可能となり、従来の鋳型肉処理法の欠陥が大
きく改善されることとなるのである。
Second, because the spheroidized core is a ceramic foam cast iron filter with a three-dimensional network skeleton structure of continuous pores with high porosity, the energy generated by the intense reaction when molten metal comes into contact with the Mg alloy is also absorbed into the spheroidal shape. The processed core absorbs
There was little damage to the mold wall, and nonmetallic inclusions such as slag that flowed in with the molten metal, sand grains from the sprue system through which the molten metal flowed, and MgO-based dross when the Mg alloy reacted with the molten metal were removed. In all cases, this spheroidized core acts as a filter and filters them, and only clean molten metal is injected into the product cavity, making it possible to produce sound castings and eliminating the need for conventional mold processing methods. This will greatly improve the defects.

第三は、球状化処理コアあるいは中間室内へ充填する球
状化剤の種類と添加量を選ぶことにより、球状黒鉛鋳鉄
の材質の範囲を同一溶湯で選ぶことが出来ることにある
。このことは、鋳造工場内に複数の造型ラインを存し、
各々が異なった材質である時、従来はその都度具なった
球状化処理を必要としたが、本発明によればその必要性
はなくなり、多材質、少量生産が容易に可能となること
を意味する。
Third, by selecting the type and amount of the spheroidizing agent to be filled into the spheroidizing core or the intermediate chamber, a range of materials for the spheroidal graphite cast iron can be selected using the same molten metal. This means that there are multiple molding lines within the foundry.
Conventionally, when each material was made of different materials, a separate spheroidization process was required each time, but according to the present invention, this is no longer necessary, which means that multi-material, small-volume production is easily possible. do.

また、従来から、球状化処理溶湯の無人自動化注湯シス
テムの導入は球状化効果の消失現象への配慮を必要とし
、また注湯時の溶湯の流れが脈動を生じ、静かに注湯出
来ず、湯口系鋳型壁をt員傷させたりしたが、本発明に
よる球状化処理コアは、溶湯の濾過・と溶湯の流れを整
流する等の効果を有し、従来から問題となっていた無人
自動化注湯システムの導入に、大きく貢献すると思われ
る。
In addition, conventionally, the introduction of an unmanned automatic pouring system for spheroidizing molten metal requires consideration of the phenomenon of loss of spheroidizing effect, and the flow of molten metal during pouring pulsates, making it difficult to pour quietly. However, the spheroidized core according to the present invention has the effect of filtering the molten metal and rectifying the flow of the molten metal, and has the effect of unmanned automation, which has been a problem in the past. It is believed that this will greatly contribute to the introduction of hot water pouring systems.

従って、本発明は、球状化処理法の鋳型肉処理としてそ
の意義は大きく、鋳造業界の将来へ向けての新しい試み
ともなるものである。
Therefore, the present invention has great significance as a mold meat treatment using the spheroidization process, and represents a new attempt for the future of the casting industry.

なお、この球状化処理法は、C■鋳鉄における少量の球
状化材を処理する処理法としても十分採用出来ることか
ら、多目的球状化処理方法とも言えるものである。
This spheroidizing method can also be fully adopted as a method for treating a small amount of spheroidizing material in C■ cast iron, so it can be said to be a multi-purpose spheroidizing method.

(実施例) 次に、本発明を更に具体的に明らかにするために、従来
から多く採用されているサンドインチ法と、インモール
ド法と、本発明による瞬間球状化処理法との比較実験を
行なった例を示す。
(Example) Next, in order to clarify the present invention more specifically, a comparative experiment was conducted between the sand inch method, the in-mold method, and the instant spheroidization treatment method according to the present invention, which have been widely adopted in the past. Here is an example of what was done.

実験は、第1図に示されるようなサンドインチ手法によ
る球状化処理後、鋳型に注湯する方法、セラミックスフ
オームを用いない従来のインモールド法、第4図に示さ
れる球状化処理コアを用いた本発明方法とで行ない、材
質はFCD50とした。使用した片状黒鉛鋳鉄と球状化
剤の化学組成を、下記第1表に示す。
The experiment was conducted using the method of pouring the metal into a mold after spheroidization using the sand inch method as shown in Figure 1, the conventional in-mold method that does not use ceramic foam, and the spheroidization process shown in Figure 4. The material was FCD50. The chemical compositions of the flake graphite cast iron and spheroidizing agent used are shown in Table 1 below.

第1表 鋳型は砂型を用い、その他の実験条件は、水平鋳込みと
し、製品は機械部品、製品型114kg。
Table 1: A sand mold was used as the mold, and the other experimental conditions were horizontal casting.The product was a mechanical part, and the product mold weighed 114 kg.

鋳込み重量20kgとし、球状化処理剤はサンドイツチ
法では0.7%、インモールド法と本発明に従う瞬間球
状化処理法は0.4%とした。
The casting weight was 20 kg, and the spheroidizing agent was 0.7% in the Sanderuch method and 0.4% in the in-mold method and the instant spheroidizing method according to the present invention.

本実験中、サンドインチ法における注湯前の球状化処理
の際の激しい反応は、他の二つの方法の注湯時には全く
認められなかった。本実験を行なった製品から採取され
た実体試験片は、引張強さ: 51〜52.5 kg/
mm” 、伸び率:16〜19%の数値を呈し、本発明
の実施製品における機械的強度は、他方法と変わりない
ことが認められた。
During this experiment, the violent reaction during the spheroidization process before pouring in the Sand Inch method was not observed at all during pouring in the other two methods. The actual test piece taken from the product used in this experiment had a tensile strength of 51 to 52.5 kg/
mm", elongation rate: 16 to 19%, and it was confirmed that the mechanical strength of the product according to the present invention was the same as that of other methods.

なお、顕微鏡による組織写真の検討から、優秀なノジエ
ラー構造を確認することが出来、製品外観においても、
インモールド法におけるようなドロス、砂喰み等の不良
はなく、優秀な鋳肌であり、発煙、添加Mgの歩留り2
作業性、製品外観等に関し、本発明の効果を確認するこ
とが出来た。
In addition, by examining the microstructure photographs, we were able to confirm an excellent nozzier structure, and the product appearance also showed
There are no defects such as dross or sand eating like in the in-mold method, and the casting surface is excellent, and the yield of smoke and added Mg is 2.
It was possible to confirm the effects of the present invention in terms of workability, product appearance, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のサンドインチ法による球状化処理法を説
明するための略図であり、第2図(a)は本発明にて用
いられるセラミックスフオームの一例を示す斜視図、第
2図(blは第2図(a)のセラミックスフオームの横
断面図、第2図(C1は他の異なるセラミックスフオー
ムの例を示す第2図(b)に対応する図であり、第3図
(a)は本発明の実施形態の一例を示す鋳型断面説明図
、第3図[b)は第3図(a)におけるA部拡大図であ
り、第4図(a)は本発明の実施形態を他の一例を示す
鋳型断面説明図、第4図(b)は第4図(a)における
B部拡大図である。
FIG. 1 is a schematic diagram for explaining the conventional spheroidizing method using the sand inch method, FIG. 2(a) is a perspective view showing an example of the ceramic foam used in the present invention, and FIG. is a cross-sectional view of the ceramic foam in FIG. 2(a), FIG. 2(C1 is a diagram corresponding to FIG. 2(b) showing another example of a different ceramic foam, and FIG. FIG. 3 (b) is an enlarged view of part A in FIG. 3 (a), and FIG. FIG. 4(b) is an enlarged view of part B in FIG. 4(a), which is an explanatory diagram of a mold cross section showing an example.

Claims (3)

【特許請求の範囲】[Claims] (1)鋳型の鋳造キャビティに至る溶湯通路内に、かか
る通路を仕切るように、連続気孔を有する三次元網状骨
格構造のセラミックス多孔体を設置すると共に、該セラ
ミックス多孔体よりも上流側の溶湯通路内に位置するよ
うに、黒鉛を球状化乃至はノジュラー状に転換させる球
状化処理剤を配置せしめ、注湯された所定の溶湯中の黒
鉛を、該球状化処理剤により球状化乃至はノジュラー状
に転換せしめた後、かかる処理溶湯が、前記セラミック
ス多孔体を通じて前記鋳型の鋳造キャビティー内に導か
れるようにしたことを特徴とする球状黒鉛鋳鉄の製造方
法。
(1) A ceramic porous body with a three-dimensional network skeleton structure having continuous pores is installed in the molten metal passage leading to the casting cavity of the mold so as to partition the passage, and a molten metal passage on the upstream side of the ceramic porous body A spheroidizing agent for converting graphite into spheroidal or nodular shapes is placed inside the spheroidizing agent, and the graphite in the poured molten metal is converted into spheroidal or nodular shapes by the spheroidizing agent. A method for producing spheroidal graphite cast iron, characterized in that the treated molten metal is introduced into a casting cavity of the mold through the ceramic porous body.
(2)前記球状化処理剤が、前記鋳型の溶湯通路に通ず
るように、該鋳型内に設けられた中間室内に収容され、
前記注湯された溶湯が該中間室内の球状化処理剤による
球状化処理を受けた後、前記セラミックス多孔体を通過
せしめられるようにしたことを特徴とする特許請求の範
囲第1項記載の製造方法。
(2) the spheroidizing agent is housed in an intermediate chamber provided in the mold so as to communicate with the molten metal passage of the mold;
The manufacturing method according to claim 1, wherein the poured molten metal is allowed to pass through the ceramic porous body after being subjected to a spheroidizing treatment using a spheroidizing agent in the intermediate chamber. Method.
(3)前記球状化処理剤が、前記セラミックス多孔体に
支持乃至は保持され、前記注湯された溶湯が該球状化処
理剤による球状化処理を受けた後、直ちに前記セラミッ
クス多孔体を通過せしめられるようにしたことを特徴と
する特許請求の範囲第1項記載の製造方法。
(3) The spheroidizing agent is supported or held by the ceramic porous body, and the poured molten metal is passed through the ceramic porous body immediately after being spheroidized by the spheroidizing agent. The manufacturing method according to claim 1, characterized in that the method is characterized in that:
JP7184585A 1985-04-04 1985-04-04 Production of nodular graphite cast iron Pending JPS61229462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7184585A JPS61229462A (en) 1985-04-04 1985-04-04 Production of nodular graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7184585A JPS61229462A (en) 1985-04-04 1985-04-04 Production of nodular graphite cast iron

Publications (1)

Publication Number Publication Date
JPS61229462A true JPS61229462A (en) 1986-10-13

Family

ID=13472281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7184585A Pending JPS61229462A (en) 1985-04-04 1985-04-04 Production of nodular graphite cast iron

Country Status (1)

Country Link
JP (1) JPS61229462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832105A (en) * 1988-01-13 1989-05-23 The Interlake Corporation Investment casting method and apparatus, and cast article produced thereby
US4867227A (en) * 1987-08-07 1989-09-19 Metallgesellschaft Aktiengesellschaft Process and apparatus for inoculating cast iron
US5033531A (en) * 1989-07-26 1991-07-23 Foseco International Limited Casting of molten iron and filters for use therein
US5263532A (en) * 1987-01-12 1993-11-23 Honda Giken Kogyo Kabushiki Kaisha Mold casting process and apparatus and method for producing mechanical parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216840A (en) * 1985-03-23 1986-09-26 Nabeya:Kk Instantaneous inoculation casting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216840A (en) * 1985-03-23 1986-09-26 Nabeya:Kk Instantaneous inoculation casting method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263532A (en) * 1987-01-12 1993-11-23 Honda Giken Kogyo Kabushiki Kaisha Mold casting process and apparatus and method for producing mechanical parts
US4867227A (en) * 1987-08-07 1989-09-19 Metallgesellschaft Aktiengesellschaft Process and apparatus for inoculating cast iron
US4832105A (en) * 1988-01-13 1989-05-23 The Interlake Corporation Investment casting method and apparatus, and cast article produced thereby
US5033531A (en) * 1989-07-26 1991-07-23 Foseco International Limited Casting of molten iron and filters for use therein

Similar Documents

Publication Publication Date Title
US5033531A (en) Casting of molten iron and filters for use therein
CA2105372A1 (en) Non-porous carbon molding (foundry) sand and method of casting
US5755271A (en) Method for casting a scroll
US4037643A (en) Nodularizing treatment employing unitized modifying agent
US4424853A (en) Foundry practices
CN106521297B (en) A kind of method for reducing Form in High Nickel Austenite Nodular Cast Iron turbine case internal flaw
US3126597A (en) Decarburization in casting of steel
JPS61229462A (en) Production of nodular graphite cast iron
US4040821A (en) Nodularizing catalyst for cast iron and method of making same
US4202397A (en) Method of continuously casting molten metal
US4003424A (en) Method of making ductile iron treating agents
CA1178014A (en) Foundry practices
Zhang et al. Gold jewellery casting: Technology design and defects elimination
EP0785835B1 (en) Moulds and cores made of crushed and graded magnetite ore and process for casting metal using them
CN101612645A (en) A kind of method of shell immersion, pouring and flame retarding during magnesium alloy investment casting
US4955427A (en) Placement of particulates onto refractory filters for liquid metals
US3080628A (en) Method of and a mold and ingate system for casting metals
JPH04176810A (en) Spheroidizing treatment of molten cast iron and ladle for its spheroidized treatment
JPS61216840A (en) Instantaneous inoculation casting method
Hack The filtration of steel castings
JPS6221458A (en) Vertical casting method
US3426833A (en) Process for the manufacture of steel ingots
Pacyniak et al. Ductile cast iron obtaining by Inmold method with use of LOST FOAM process
SU489414A1 (en) Method of treating iron
JPH04100671A (en) Thermal insulation method for molten metal