JPS6122942B2 - - Google Patents

Info

Publication number
JPS6122942B2
JPS6122942B2 JP58232142A JP23214283A JPS6122942B2 JP S6122942 B2 JPS6122942 B2 JP S6122942B2 JP 58232142 A JP58232142 A JP 58232142A JP 23214283 A JP23214283 A JP 23214283A JP S6122942 B2 JPS6122942 B2 JP S6122942B2
Authority
JP
Japan
Prior art keywords
fruit juice
juice
tank
lees
lime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58232142A
Other languages
Japanese (ja)
Other versions
JPS60126066A (en
Inventor
Tadasu Sawabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58232142A priority Critical patent/JPS60126066A/en
Publication of JPS60126066A publication Critical patent/JPS60126066A/en
Publication of JPS6122942B2 publication Critical patent/JPS6122942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)
  • Non-Alcoholic Beverages (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は温州みかん等の柑橘類の搾汁粕中に残
存する果汁の回収方法および同果汁の回収装置に
関するものである。 温州みかんの搾汁粕、加工粕中には40重量%前
後、(対原料果実比20重量%前後)の果汁が抽出
されずに残存している。 一般に繊維状のもの、可塑性のあるもの、親水
性の強いもの等の性質を持つ物質は、機械的に搾
汁、脱水、濾過等の処理を行つた後も、固形物中
に75%以上の水分を含有するのが常であるが、温
州みかんの搾汁粕、加工粕も同様で80%を超える
水分が存在している。そして、その約半量が果汁
そのものであることが確認されている。 この搾汁粕、加工粕はそのまま膨大な乾燥経費
をかけて乾燥し飼料とするか、石灰処理を行つた
後脱水し、脱水滓は乾燥飼料へ、又脱水した液は
濃縮して、柑橘類果糖蜜とする方法のいずれかが
採用され実施されているが、製品価額がいずれも
低廉であり、採算が確保されていない。しかし、
これを工場廃棄物として投棄することは公害問題
を惹起するので許されず、止むなく処理している
のが実情で為に果汁工場の経営を著しく圧迫して
いる。 本発明はこの様に果汁でありながら果汁として
利用されずに見捨てられているものを、回収し、
果汁として活用することを目的するものである。
本発明の第1の発明に係る柑橘類の搾汁粕中に残
存する果汁の回収方法は、柑橘類の搾汁により得
られた搾汁粕や加工粕よりなる原料粕を、新鮮で
変質しない間に処理すべく小片に解砕し、これに
石灰を必要最小限量添加して石灰反応を十分行わ
せPH6.2〜6.6の酸性度に保つた後加圧搾汁して果
汁を回収し、該回収果汁中の不溶性固形物を遠心
分離、浮遊分離、ふるい分離の三者を組合わせた
ところの二段階の分離操作により物理的に除去す
ると共に、脱石灰、脱色、脱苦味処理を効果的に
行うための前処理として炭酸飽充処理を行い、次
いでイオン交換樹脂による脱石灰処理、活性炭及
びイオン交換樹脂の組合せによる脱色処理を行う
ことにより回収果汁とし、また該回収果汁が苦味
を呈する場合にはイオン交換樹脂により脱苦味処
理を行うものである。 また、第2の発明に係る柑橘類の搾汁粕中に残
存する果汁の回収装置を、図面を参考にして説明
すれば、柑橘類の搾汁により得られた搾汁粕や加
工粕を小片に解砕する解砕機5、解砕機5によつ
て得られた小片と適量の石灰とを混和し石灰反応
を行なわせる石灰反応機6、石灰反応機6により
得られた脱水容易な物性の原料粕を圧搾搾汁し汁
液を得るパルププレス9、パスププレス9より出
た汁液を液体と固体とに分ける遠心分離機16、
遠心分離機16により得られた上澄液中の気体を
浮遊分離させると共に、液体と固体とに分ける振
動ふるい17、振動ふるい17から出た果汁を加
温する温湯循環加熱型プレート式加熱機23、プ
レート式加熱機23から出た加温果汁と、石灰乳
とを撹拌、混合、反応させるプレライミングタン
ク27、プレライミングタンク27から出た果汁
と、石灰乳と、炭酸ガスとを反応させる第1炭酸
飽充槽28、第1炭酸飽充槽28から出た果汁を
濾液と濾滓に分ける第1圧力濾過機30、第1圧
力濾過機30から出た果汁濾液と、炭酸ガスを混
合反応させる第2炭酸飽充器33、第2炭酸飽充
器33から出た果汁に更に炭酸ガスとの接触を行
なわせると共に蒸気吹込加熱を行う第2炭酸飽充
槽34、第2炭酸飽充槽34から出た果汁を濾液
と濾滓に分ける第2圧力濾過機37、第2圧力濾
過機37から直接、または脱石灰イオン交換樹脂
筒38を介して受取つた果汁濾液と活性炭スラリ
ーとを混合分散させる混合槽42、混合槽42か
ら出た活性炭スラリーと果汁との混合物を受取り
脱色させる脱色槽43、脱色槽43から引抜かれ
た果汁中の活性炭を濾過分離する活性炭用濾過器
45、活性炭用濾過器45を通過した果汁中のパ
ルプを微細化し均質化する高圧式ホモナイザー5
6、高圧式ホモナイザー56を通過した果汁と、
高圧式ホモナイザー56を通過することなく前記
活性炭用濾過器45を通過した果汁とを所定比率
で送る定量比例注入ポンプ59、定量比例注入ポ
ンプ59から出た2種類の果汁の混合汁液を殺菌
するプレート式殺菌装置64を含む装置からなる
ものである。 図面に基いて本発明の実施例を詳細に説明す
る。 まず、本発明の第1工程である回収果汁の抽出
分離装置について説明する。 1は搬送スクリユーコンベヤーで、回収果汁の
原料粕とする搾汁粕、加工粕を果汁工場より連続
的に搬送し、該原料粕はフイードビン(供給容
器)2に堆積される。フイードピン2の容量は処
理工程に支障を来たさない最少限とし、貯留時間
を最小限にすることにより原料の変質を防止する
様留意する。フイードビン2の中の原料粕は、ビ
ン下部に設けられたマルチスクリユーコンベヤー
により定量的にフイードスクリユーコンベヤー3
に投入され、解砕機5に送られるが、その間に石
灰定量フイーダー4より原料粕に見合つた規定量
の石灰を連続的且つ定量的に原料粕に均一に散布
し、石灰が添加された状態で解砕機5に供給さ
れ、一定の粒径以下の小片に解砕されると共に石
灰の均一混和が行なわれ第1反応コンベヤー6a
及び第2反応コンベヤー6bより成る石灰反応機
6に送られる。石灰反応機6では十分な混和と、
十分な反応時間が付与され、反応が終了し容易に
脱水出来る物性を呈するようになつた原料粕はフ
イードコンベヤー7に移り、次いでシユート8よ
りパルププレス9内に投入され搾汁が開始され
る。パルププレス9では原料粕はスクリユーとフ
ローテイングコーンとの間で圧搾搾汁され、汁液
はスクリーンを通過して受け皿に捕集され更に脱
水液取出パイプ10を経て受槽11に流れ込む。
一方、パルププレス9内の脱水されたケークはフ
ローテイングコーンにより形成された間隙を通過
して下部に落下しスクレツパープレートにより掻
き出されてプレスケーキ取出コンベヤー12に投
げ込まれ、スクリユーコンベヤーによりインクラ
インコンベヤー13に送り込まれ更に搬出スクリ
ユーコンベヤー14に移り、果皮乾燥工場に連続
的に搬出される。 前述の受槽11に流れ込んだ脱水液はポンプ1
5により横型連続遠心分離機16に定量的に供給
され重力の3200倍という遠心力により固液の分離
沈降が行なわれ、上澄液(清澄液)は液排出口よ
り、又沈澱した固形物(パルプ)は内部に設けら
れたスクリユーにより固形排出口に夫々別々に排
出され、上澄液は振動ふるい17に送り込まれ、
分離固形は、分離粕捕集コンベヤー18に受けら
れ、プレスケーキ取出コンベヤー12に送られプ
レスケーキと共に搬出されて行く。振動ふるい1
7に供給された脱水液は80〜100メツシユのふる
いにより篩別され、不溶性固形遠沈量1.0〜2.0Vo
l/Vol%程度の回収粗果汁が得られ、粗回収果汁
受槽19に受けられる。又分離粕は分離粕捕集コ
ンベヤー18に入り遠心分離粕と同様に移動し、
乾燥果皮工場に運ばれて処理される。この様にし
て搾汁粕、加工粕中に付着し、抱き込まれて残存
している果汁は抽出され、分離されて、粗回収果
汁として、回収される。以上が回収果汁の抽出分
離装置である。 次に本発明の第2工程である回収果汁の精製装
置では粗回収果汁受槽19からポンプ20により
送られた粗回収果汁はバランスタンク21に入り
フイードポンプ22によりプレート式加熱機23
に連続的且つ定量的に送り込まれ、温湯循環加熱
方式により55℃に加温される。石灰乳調整槽24
に於いて濃度20゜Be’に調整された石灰乳を石
灰乳フイードポンプ25にて粗回収果汁量に見合
う規定量を連続的に引き出して、加温された粗回
収果汁と共にプレライミングタンク27に送り約
3分間十分に撹拌混合され反応した後、オーバー
フローして第1炭酸飽充槽28に貯留される。第
1炭酸飽充槽28は3基以上を設け、仕入、炭酸
飽充、引き出しが約10分のサイクルで順次行なわ
れるので3基の槽は規則的に3つの操作を繰返し
行なうため連続操作となり停滞することはない。
炭酸飽充は石灰乳フイードポンプ26より定量的
に石灰乳が注加されると共に炭酸ガス供給設備よ
り定量的に炭酸ガスが送り込まれ槽内で反応が行
なわれる。炭酸飽充により生成した沈澱物は圧入
ポンプ29により反応終了した回収果汁と共に第
1炭酸飽充槽28より引き抜かれ第1圧力濾過機
30にて濾過され濾液と濾滓とに分けられた後濾
滓は廃棄され、濾液のみが、受槽31に集めら
れ、フイードポンプにより第2炭酸飽充操作のた
め液量に見合つた炭酸ガスと共に第2炭酸飽充器
33に送り込まれ特殊な混合機械により均一に混
合接触されて反応をし、次いで第2炭酸飽充槽3
4にて、機械的に未反応の炭酸ガスとの接触を行
なうことにより反応を完結し、更に加熱器35に
より直接蒸気吹込みによる加熱が行われ80℃に温
度制御したる後受槽36に受ける。次いで濾過面
積1m2当たり0.8Kgの硅藻土でプレコートしたる
第2圧力濾過機37にて濾過操作を行ない濾液と
濾滓とに分け濾滓は廃棄し濾液は精製の度合(カ
ルシウム存在の許容量)により直接、或は脱石灰
イオン交換樹脂筒38を通過処理することによる
カルシウムの除去を行なつた後ポンプ付受槽39
に送られ、脱色のための前処理操作が終了し、次
いで脱色工程に移る。 活性炭を粉末状で取扱うのは不便であり確実性
を欠くので、活性炭分散槽40に於いて一定濃度
の活性炭スラリーを造り活性炭定量フイードポン
プ41により回収果汁量に見合つた量だけ定量的
に引き出し混合槽42にて均一に分散せしめたる
後、脱色槽43に入れ脱色操作を行なう。脱色は
活性炭との接触の度合と時間により吸着されるの
で、3槽設け夫々の槽は回分式であるが装置とし
ては連続となるよう計画されている。脱色の完了
した回収果汁は圧入ポンプ44により脱色槽43
から引き抜かれ活性炭用濾過機45に圧送活性炭
を濾過分離し濾液はクツシヨンタンク46に受け
圧送ポンプ47にて精密濾過機48に送り込み完
全に清澄な液とする。回収果汁は原果汁に還元し
使用するのを原則としており原果汁そのものに特
有の色調を持つているので敢て無色透明は要求し
ない。原果汁の色調を害なわぬ程度に脱色されれ
ば十分なるが故に活性炭脱色のみで脱色操作を終
了させる場合もあるが、長期間保存の場合褐変等
を起し若干色調の変化を来たす場合もあるので脱
色イオン変換樹脂筒49にて脱色操作を行なうこ
ともある。又後者による脱色を併用することによ
り活性炭の使用量を減ずることが出来る。脱色を
終了した回収果汁中にナリンギン、リモニン、ノ
ミリン等苦味を呈する物質が存在し果汁に還元し
たとき苦味物質が障害を来すような場合には受槽
50、フイードポンプ51を経て、脱苦味イオン交
換樹脂筒52にて苦味物質を吸着除去したる後、
冷却機53により常温にまで冷却したる後、回収
果汁ストレージタンク54に貯留され、次の還元
工程を持つ。 これ等一連の精製操作により回収果汁は原果汁
にもどしても何等異味異臭を感じず、異和感のな
い状態にまで精製されたことになる。本発明の第
三工程である回収果汁の還元装置を説明する。最
後に、原果汁はパルプ量の調整を終えた後、高圧
式ホモジナイザー56にてパルプを微細化し均質
化したる後原果汁ヘツドタンク57に送り込む。
このヘツドタンク57は一定水位を保つよう工夫
されており過剰な原果汁はオーバフローし、ホモ
ジナイザー56前の槽にフイードバツクされる。
一方精製回収果汁はフイードポンプ55により回
収果汁ヘツドタンク58に送り込まれ、水位制御
装置により一定水位が保持されるよう工夫されて
いる。原果汁ヘツドタンク57、回収果汁ヘツド
タンク58中の原果汁並に回収果汁は定量比例注
入ポンプ59によりあらかじめ定められた比率で
吸入され、吐出されて、合流し、パイプラインミ
キサー60にて均一に混合され脈動緩衝混合タン
ク61内で更に均一化されると共に脈動が打ち消
され正常流となつてバランスタンク62に送り込
まれる。これにより原果汁と回収果汁の二種類の
果汁が一定の比率で一体となり一つの果汁となつ
た。この様にして得た果汁はフイードポンプ63
によりプレート式殺菌機64に送り込み殺菌し既
設真空濃縮機により従来通り濃縮し濃縮果汁とな
し、ドラム罐に充填冷凍貯蔵し、二次加工の原料
となる。 又原果汁に還元せず精製回収果汁をそのまま濃
縮し、凍結して二次加工の原料とすることもあ
る。 温州みかん搾汁粕よりの果汁の回収設備の概要
は以上の通りであるが、このシステムは温州みか
ん以外の柑橘類例えば夏みかん、八朔、伊予柑、
ネーブル、レモン等の雑柑類の搾汁粕並びにパイ
ナツプルの加工粕よりの果汁回収にもそのまま利
用することが出来る。 以上、果汁の回収装置について説明したが、こ
れに基いて更に詳細な果汁の回収方法や効果につ
いて説明する。 搾汁操作により発生した搾汁粕及び仕上篩別機
(フイニシヤー)パルプ調整用遠心分離機より排
出する加工粕は貯留することなく新鮮なうちに直
ちに果汁回収のための操作を開始することが良質
な果汁を回収するための第1条件である。 新鮮な原料粕を先ず解砕機(デイスインテイグ
レーター)5により10m/m角以下の大きさに解
砕し、次いでこれに対し0.2〜0.3重量%の石灰を
均一に添加し20〜30分間と言う十分な石灰反応時
間を与えることにより粘稠性のあつた搾汁粕、加
工粕または粕中に存在するペクチンが石灰と反応
しペクチン酸カルシウムに変化することにより粘
稠性を失ない抱き込んでいた果汁を含む水分を解
離し手で握つても容易に脱水される様な状態にま
で性状が変化する。この様な粕をパルププレス9
に導き連続的に脱水し脱水液と脱水滓とに分け
る。この操作をライミング及び搾汁と称し、柑橘
類果糖蜜の製造に於いても同様の操作が行なわれ
るが、果汁回収のための操作では石灰添加量は
必要最小限の量とする。十分な接触反応時間を
与えることにより少ない石灰量で完全な石灰反応
をさせる。反応終了時のPHは6.2〜6.6の範囲と
する。パルププレス9の脱水は無理な圧搾や、
摩擦をさける様静かに搾汁するよう留意する等を
厳守せねばならない。これが良質な果汁を回収す
るための第2の条件である。 石灰反応操作に於いて、PH6.2〜6.6の範囲で反
応を終了すれば、圧縮性、離水性共に良好で、パ
ルププレス9の能力も最高値を示し、脱水液は粘
稠性なく、不溶性固形量の含有も最小値を示す。
これに対しPH6.0以下の場合では、十分な石灰反
応状態では無く、粘稠性が残存し、圧搾性が悪
く、離水性が十分ではない。この為パルププレス
9内での圧搾効率が悪く、脱水ケークを吐出させ
る力が低下するので、処理能力が低下し、脱水ケ
ーキの含水率が増加し、脱水液の流出も減少す
る。単に微細な固形物は脱水ケークに補促されに
くく、脱水液中に流出するので、不溶性固形物の
量も増加するので、品質並びに操作上に悪い結果
をもたらす。又PH7.0を超えるとアルカリ性とな
り外果皮、じようのう膜、砂じよう膜等より不必
要な成分の溶出が始まり、粘稠性が出て来る。更
に圧縮性が極めて良くなるため、パルププレス9
内で脱水ケークが固着し吐出されにくくなり、従
つて強圧の現象が生まれ、不溶性固形物の流出も
うながされて脱水液の品質は低下する。 以上の理由から石灰反応終了時のPHは厳格に行
なわれるべきであり、従来の乾燥果皮や柑橘類果
糖蜜造と同一視することは出来ない。 パルププレス9により搾汁された液(プレスリ
カー)は含水率80%の搾汁粕・加工粕を原料と
した場合原料粕に対し44.35重量%、脱水粕は73
%含水率のものが55.65重量%搾取される。一般
に柑橘類果糖蜜の製造の際はプレスケーキの含む
水率は71.5〜72%なるが故に果汁回収を目的とす
る場合には若干収率を落し、軽く搾汁することに
より良質なプレスリカーを得る様計画されてい
る。脱水された脱水粕は従来の加工方法と同様そ
のまま或は乾燥されて飼料となる。そしてプレス
リカーは回収果汁の原液となる。 回収果汁の原料となるプレスリカーの性状は(1)
液中の可溶性固形物量は果汁と同様が若干多くな
る。(2)不溶性固形量は遠心沈降機による沈降試験
の結果9.0Vol/Vol%前後である。(3)PH値は石灰処
理の最終値を同じでPH6.4前後である。(4)精油含
有量は900PPM前後である。(5)色調は黄黒褐色を
呈している。 プレスリカーの物性(2)項に記述のようにプレス
リカー中には9.0Vol/Vol%前後の不溶性固形物を
浮遊或は懸濁しているが、これ等は外果皮、じよ
うのう膜、砂じよう膜等果汁以外のものが流出混
入した結果で果汁とはなり得ない。従つてこれ等
は急速に取り除かねばならない。更に不溶性固形
物を取り除く理由として、その後の加工操作例
えば、炭酸飽充、濾過、イオン交換樹脂処理等の
操作を著しく阻害する。不溶性固形物より時間
と共に果汁として不必要な成分が溶出し、品質を
低下させるの二点が挙げられる。従つて、脱水液
中の不溶性固形物を出来得る限り取り除くことが
第3の条件である。 不溶性固形物の除去には、先ず横型連続遠心分
離機16或は自動排出型遠心分離機により65〜70
%の固形物を分離除去し、次いで分離操作により
混入した微細な気泡による浮上分離効果を利用、
80〜100メツシユのスクリーンを付した振動ふる
い17にて濾過し固形量2.0Vol/Vol%以下(総固
形物回収率80%以上)とする。 従来不溶性固形物の除去は前記二種類の機種の
いずれか又は両者を使用する場合でも篩別操作を
先にし、前処理機とし、遠心分離機を仕上げ処理
機とする組合せが一般的であるが、高速に回転す
る遠心分離機より放出される分離液は噴霧状を呈
しこれを捕集した時微細な球状水滴がその周囲の
空気と共に凝集するので、多量の細かい気泡を抱
き込んだ液となる。この気泡が微細な固形物を付
着、時間と共に浮上気泡の層を形成するのでこの
気泡を取り除くことにより固形物を排除するので
浮上分離法であるが、振動ふるい17にて処理す
る場合、破壊されず消えない気泡はスクリーンの
目を通過しないので付着している固形物も泡と共
に分離回収され、スクリーン目以下の粒径の固形
物も取り除くことが出来る。この二段の固形物除
去操作により第3の条件を満足させる。 この様にして得た脱水液果汁そのものではある
が、搾汁その他の過程で温州みかんに含まれる
種々の可溶性成分すなわち、蔗糖、還元糖、有機
及び無機塩類有機酸、ペクチン、ガム物質色素及
び蛋白質を溶有しており、更にこれに不溶解性物
質として、気泡の外に、繊維物質及び精油を懸濁
状態で浮遊している。この様な液に石灰を加え、
炭酸ガスを吹き込み中和させることにより、発生
機の炭酸石灰沈澱物による不純物の吸着・吸蔵作
用による物理的清浄作用と、不純物の沈澱、およ
び破壊塊作用による化学的清浄作用の両者が効果
的に清浄化を行なう炭酸飽充法を採用し、次の脱
カルシウム、脱色素及び脱苦味物質操作をより効
果的に行なうための前処理方法として採用したの
が第4の条件である。 常温の脱水液を先ず加熱機により55℃にまで加
熱し、PH10.7〜11.0となるまであらかじめ用意し
た20″Be’の石灰乳を添加し、3〜4分放置、非
糖分の架状沈澱を生成させる所謂プレライミング
操作を行つた後、第1炭酸飽充槽28に入れ、石
灰乳添加操作と炭酸ガス飽充操作とを同時に行な
い脱水液のアルカリ度を250〜400mgCaO/(PH
約10.5〜10.7)に保ちながら飽充操作を継続し所
要石灰乳量を添加し終えた時のアルカリ度を400
mgCaO/(PH約10.7)とし、第1濾過を行な
う。第1炭酸飽充の所要石灰乳量は20°Be’石
灰乳で原液容量に対し7容量%前後とする。又飽
充用炭酸ガスの利用率は60〜65%であり、炭酸飽
充時間は約10分である。 第1炭酸飽充槽28で炭酸飽充された泥状液は
第1濾過機により濾滓と、濾液とに分けられ、濾
滓は200%の水により洗浄し、濾滓に付着してい
る糖等を回収したるのち廃棄する。炭酸ガスを吹
き込む濾液は第2炭酸飽充槽34に入れ炭酸ガス
で中和し、しかる後加熱機35にて80℃まで温度
上昇させ、第2圧力濾過機37にて濾過し、この
操作を終了する。 第2炭酸ガス飽充により、石灰を完全に中和し
て炭酸石灰として沈澱させその上に炭酸アルカリ
をも作つて、脱水液中に溶解している石灰塩との
間に複分解を起させ、出来るだけ多量の石灰を除
去することにあり、従来の柑橘類果糖蜜製造では
脱水液中のカルシウム含有量は800〜1200PPmで
あるがこの様な複式炭酸飽充法の実施により第1
炭酸飽充の終了時のカルシウム量は800〜
900PPm第2炭酸飽充では100〜180PPmと大幅に
減少することが認められた。一般にオレンジ果汁
中に存在するカルシウム量は115PPm前後であ
り、炭酸飽充のみの処理でほぼ果汁として通用す
るカルシウム含有量までにすることが出来る。 然しながら炭酸飽充法でのカルシウム量は操作
により不安定となりがちなので、仕上脱カルシウ
ムとしてイオン交換樹脂による脱カルシウム処理
を併用するのが条件の第5である。 脱カルシウムに使用するイオン交換樹脂はスチ
レン系強酸性スルフオン酸型の陽イオン交換樹脂
の標準型架橋度のものを使用、イオン交換樹脂筒
38に充填し、80℃の炭酸飽充処理後の濾液を連
続的且つ定量的に供給し流動法により脱カルシウ
ムを行なう。この操作は逆洗、再生、押出し、水
洗、脱カルシウムの五工程を繰返して連続運転が
なされる。樹脂の再生は10%塩酸水溶液を使用す
る。この操作により処理液中のカルシウム量は
50PPm以下となり、後工程の殺菌・濃縮等の加
熱操作での加熱面へのスケール析出が無くなり操
作の負担を軽減すると共に、カルシウム量が多い
程脱色が悪くなるので、イオン交換樹脂による脱
色(後述)の脱色素の向上に役立つことが認めら
れている。 イオン交換樹脂を使用する場合処理液中の不溶
性固形物の存在は樹脂を汚染し、筒内に残留し、
交換能力も低下させるので極力清澄にせねばなら
ぬ。従つて炭酸飽充後の濾過は十分慎重に行われ
るべきであるが工業的加工操作ではチエツク濾過
機(セラミツク濾過機など精密濾過機)を採用す
ることも考慮する必要がある。 次いで活性炭処理並びにイオン交換樹脂処理に
よる脱色を行なうのが第6の条件である。 PH8.6前後温度80℃の脱カルシウム液にクエン
酸を添加PHを6.5に調整したる後、活性炭混合槽
42に入れ処理液に対し0.05重量%の活性炭を添
加し80℃に保ちながら30〜40分撹拌を行ない、色
素を吸着させる。しかる後濾過機により濾過を行
ない濾過を更にチエツク濾過機により精密濾過し
次のイオン交換樹脂脱色を行なう。 脱色用イオン交換樹脂にはスチレン系4級アン
モニウム型強塩基性陰イオン交換樹脂の低架橋度
のものが使用される。イオン交換樹脂筒49に樹
脂を適量充填し流動法により連続的且つ定量的に
処理液を通過せしめ脱色を行なう。この操作は逆
洗、再生、押出し、水洗、脱色の五工程を繰返し
て運転される。再生剤は4%苛性ソーダ水溶液を
使用する。 この一連の脱色操作の結果殆ど脱色され透明な
液となるが数値的には炭酸飽充により脱水液の50
%の色素が除去され活性炭脱色により残りの色素
の約70%が、そしてイオン交換樹脂脱色により残
り色素の約80%が取り除かれるので結果的には97
%前後の色素が取り除かれ僅か3%のものが残留
する。ここまで脱色したものは長期間保存しても
褐変現象は全く見られない。(活性炭処理までの
ものは色調の変化が認められる)。 柑橘類果実には品種、熟度等により組成や含有
量を異にする苦味物質としてのフラボノイド並び
にリモノイドが存在し、加工中に果汁に溶出し苦
味を呈し味覚を損ねる事が屡々起る。 これ等苦味成分の大半は外果皮(フラベド部、
アルベド部)じようのう膜に存在し果肉中には比
較的少ないので外果皮、じようのう膜への影響を
最小限に押えた搾汁並びに分離操作による果汁の
回収次いで炭酸飽充法による沈澱形成の際の吸
着、吸蔵作用での色素同様若干の苦味物質の除去
能力により減少する。 温州みかんでは本発明の条件1より6までの操
作による処理で回収された清澄液は官能的には苦
味は認められたいので、以後の操作は不必要とも
考えられるが、温州みかん以外の柑橘類では、苦
味物質の溶質は阻け得ないので、イオン交換樹脂
による脱苦味物質処理を行なうことを条件の第7
とする。 脱苦味処理のためのイオン交換樹脂にはスチレ
ン、ジビニルベンゼン共重合体のハイポーラスポ
リマーを使用し、これをイオン交換樹脂筒52に
適量充填し脱苦味のための清澄回収果汁を連続的
且つ定量的に供給、流動式により苦味物質を吸着
させる。この操作は逆洗、再生、押出し、水洗、
脱苦味の5工程を繰返し連続的に行なう、再生剤
としては10%炭酸ナトリウム水溶液を使用する。
温州みかん回収清澄果汁では、前述の如く官能的
に苦味を認められないのでこの処理の必要性を考
えては居ないが、夏みかんの場合ナリンギンの除
去率が約40%八朔のリモノイド除去ではリモニン
が92%ノミリンが45%除去されることが確認され
ている。 回収果汁は原果汁に還元されて使用されるの
で、仮に50%の除去率としても、原果汁に回収果
汁を30%添加した果汁では85%の除去率に相当す
るので、ソフトな味となる。 以上一連の操作により搾汁粕加工粕より回収さ
れ、精製された清澄回収果汁は単独で使用される
ことは原則として無く、原果汁にフイードバツク
(還元)され、通常の果汁として従来通りの夫々
の製品に加工される。従つて回収果汁の還元比率
により果汁の出来高が変り、多く添加すればする
程果汁の歩留は向上する。 今原料果実1000Kgを加工し、果汁500Kg(歩留
50%)、搾汁粕・加工粕を合算したもの500Kgを得
たと仮定し、粕より前述の処理法により回収回収
果汁を採り、後記の第1表の如き配合比で還元添
加した場合の最終果汁の収量、歩留は同表の如く
である。 第1表のNo.4の場合は果実中の果汁の殆どす
べてを抽出し得たことになり、品質が規格並びに
風味及び外観を満足させ得るものであれば、完全
な加工方法従来の方法では想像も出来ない加工方
法と言い得るものである。この様にして造られた
果汁の成分は後記の第2表に示す通りである。 日本農林規格では温州みかんの搾汁又はピユー
レーでは糖度:9.0以上、酸;0.7g以上、アミノ
態窒素20mg以上、ビタミンC;20mg以上となつて
おり、酸がNo.3、No.4に於いて若干不足してい
る以外は規格を満足させるものである。 回収果汁を還元して得た果汁の成分は上記の通
りであるが、色調、外観についても添加しない果
汁との差異は殆ど認められず後記の第3表に示す
色調を呈する。 外観的にも不溶性固形物の沈降分離速度に殆ど
差異が認められない。又摂氏95度にて殺菌し、壜
に充填密封後常温まで水冷した製品の常温貯蔵試
験に於いて6ケ月後の外観、色調について調査し
たが差異が認められなかつた。但し炭酸飽充、活
性炭脱色のみの製品は6ケ月後に褐変による色調
の変化が認められたので、安定した製品を造るた
めには、イオン交換樹脂による脱色操作は必須条
件であることが確認された。 この様に回収果汁単独で商品化するのではな
く、搾汁機により得た果汁(一次果汁)に適当量
環元し均一化したのち原果汁として使用するのが
条件の第8であり、これを原料として、凝縮果
汁、天然果汁、果汁飲料、果汁入清涼飲料等の製
品が造られて行く。 以上条件1〜8までの操作により本発明は構成
され今まで捨てられていた果汁を回収し精製する
ことにより果汁の収量を著しく増大させることが
出来る様になつた。 本発明の利点として次のことが挙げられる。 (1) 果汁歩留が著しく向上する。 従来の搾汁方式では果汁歩留は45〜52%程度
であり機械的に歩留を向上すべく無理をして搾
汁すると余分な抽出物が溶出混入し果汁の風味
を低下させるのでこの数値は古くから業界の常
識であり現代も尚常識となつている。 この常識を打ち破つたのが本発明であり、果
実のもつ果汁の殆どすべて、即ち果汁収率65%
前後の確保も可能である。 (2) 付加価値の変更により大幅な収入増加 従来乾燥果皮の中に或は柑橘類果糖蜜として
商品化されて来た未回収果汁は採算を度外視し
て生産されており、例えば乾燥果皮がKg当り30
円以下柑橘類果糖密はB×72゜のものでKg当り
15円以下と安い価額で取引されている。これに
反し果汁となるとB×50゜の濃縮果汁で450円
以上と言われており、大幅な差がある。 これ等の関係を温州みかん10000トン処理の
場合で極めて単純な比較をすると後記の第4表
の如くであり約127%の収入を示している。こ
の様な数値は他の方法では全く期待出来ず従つ
て画期的な加工方法と言える。 (3) 糖酸比の調整が可能となる。 最も好まれる糖酸比は13.5と言われているが
工場に搬入されて来る原料果実にはかなり低い
数値のものも多い。このため、果汁をイオン交
換樹脂により脱酸処理を行ない糖酸比を調整す
る方法が現代一部の工場で実施されているが、
回収果汁の還元によれば任意にこの値をコント
ロールすることが可能となる。 (4) 脱パルプ操作の軽減 回収果汁は透明果汁として造られる。従つて
この中にはパルプは存在しないのでこれを還元
する母体の果汁のパルプ含有量は規格より多く
なければならないと言うことは脱パルプを軽く
することであり、結果として(1)歩留が若干でも
向上する。(2)同一機種の脱パルプ機の処理能力
が増加する。従つて能率が向上する等の好結果
を招くことになる。 (5) その他の利点 回収果汁を果汁に還元せず回収果汁単独で使
用されるものとして次の様な用途が挙げられ
る。 (イ) 回収果汁の半精製品、(炭酸飽充・脱カル
シウム処理後のもの)は醗酵原料として、従
来の果糖密より不純物の混入が少なく使い易
い。 (ロ) 完全脱色された回収果汁はシラツプとして
の用途が考えられる。例えば果汁入清涼飲
料・果肉飲料・果汁飲料等調合され製品とな
るもののシラツプとして使用すればシラツプ
以外の有効成分も補われるので有利である。
又シラツプ罐詰のシラツプとしても利用する
ことができる。
The present invention relates to a method for collecting fruit juice remaining in the juice lees of citrus fruits such as Satsuma mandarin oranges, and a device for collecting the same fruit juice. Approximately 40% by weight (approximately 20% by weight of raw fruit) of juice remains in the squeezed and processed lees of Satsuma mandarin oranges without being extracted. In general, substances with properties such as fibrous, plastic, and highly hydrophilic substances contain more than 75% of the solid content even after mechanical processing such as squeezing, dehydration, and filtration. It usually contains water, and the juice lees and processed lees of Unshu mandarin oranges also contain more than 80% water. It has been confirmed that about half of that amount is fruit juice itself. The juice lees and processed lees can either be dried as they are and used as feed at a huge cost for drying, or they can be dehydrated after being treated with lime, and the dehydrated lees can be used as dry feed, and the dehydrated liquid can be concentrated to produce citrus fructose. Some methods have been adopted and implemented, but the product prices are low and profitability has not been ensured. but,
Dumping this as factory waste is not allowed because it causes pollution problems, and the reality is that it has no choice but to dispose of it, which is putting significant pressure on the management of fruit juice factories. The present invention recovers fruit juice that is abandoned without being used as fruit juice,
The purpose is to use it as fruit juice.
The method for recovering fruit juice remaining in citrus juice lees according to the first aspect of the present invention is to collect raw material lees consisting of juice lees and processed lees obtained by squeezing citrus fruit while they are still fresh and not deteriorated. The fruit is crushed into small pieces for processing, and the minimum necessary amount of lime is added to it to cause a sufficient lime reaction, and the acidity is maintained at pH 6.2 to 6.6.The juice is then squeezed under pressure and collected. In order to physically remove the insoluble solids inside by a two-step separation operation that combines centrifugation, floating separation, and sieving, and to effectively perform decalcification, decolorization, and bitterness removal treatments. As a pretreatment, carbonation treatment is performed, followed by deliming treatment using an ion exchange resin and decolorization treatment using a combination of activated carbon and ion exchange resin to obtain recovered fruit juice.If the recovered fruit juice has a bitter taste, ion The bitterness is removed using exchange resin. Furthermore, if the apparatus for recovering fruit juice remaining in citrus juice lees according to the second invention is explained with reference to the drawings, the juice lees and processed lees obtained by squeezing citrus fruit are broken down into small pieces. A crusher 5 that crushes the pieces, a lime reactor 6 that mixes the small pieces obtained by the crusher 5 with an appropriate amount of lime and performs a lime reaction, and a raw material lees obtained by the lime reactor 6 that has physical properties that are easy to dehydrate. A pulp press 9 for compressing and extracting juice, a centrifugal separator 16 that separates the juice from the pulp press 9 into liquid and solid;
A vibrating sieve 17 that floats and separates the gas in the supernatant liquid obtained by the centrifuge 16 and separates it into liquid and solid, and a hot water circulation heating type plate heating machine 23 that heats the fruit juice coming out of the vibrating sieve 17. , a pre-liming tank 27 in which the heated fruit juice discharged from the plate-type heating machine 23 and milk of lime are stirred, mixed, and reacted; a stage in which the fruit juice discharged from the pre-liming tank 27, milk of lime, and carbon dioxide are reacted; 1 carbonation filling tank 28, a first pressure filter 30 that separates the fruit juice from the first carbonation tank 28 into a filtrate and a filtrate, and a mixing reaction between the fruit juice filtrate from the first pressure filter 30 and carbon dioxide gas. a second carbonation tank 34 that further brings the fruit juice output from the second carbonation tank 33 into contact with carbon dioxide gas and heats it by blowing steam; A second pressure filter 37 separates the fruit juice from the second pressure filter 34 into a filtrate and a filter cake, and mixes and disperses the fruit juice filtrate received directly from the second pressure filter 37 or via the deliming ion exchange resin cylinder 38 and the activated carbon slurry. a mixing tank 42 for receiving and decolorizing the mixture of activated carbon slurry and fruit juice discharged from the mixing tank 42, an activated carbon filter 45 for filtering and separating activated carbon in the fruit juice drawn from the decolorizing tank 43, and an activated carbon filtration device. A high-pressure homogenizer 5 that atomizes and homogenizes the pulp in the fruit juice that has passed through the container 45
6. The fruit juice passed through the high-pressure homogenizer 56;
A quantitative proportional injection pump 59 that sends the fruit juice that has passed through the activated carbon filter 45 without passing through the high-pressure homogenizer 56 at a predetermined ratio, and a plate that sterilizes the mixed juice of two types of fruit juices discharged from the quantitative proportional injection pump 59. It consists of a device including a type sterilizer 64. Embodiments of the present invention will be described in detail based on the drawings. First, the first step of the present invention, an apparatus for extracting and separating recovered fruit juice, will be explained. Reference numeral 1 denotes a conveyor screw conveyor, which continuously transports squeezed lees and processed lees, which are used as raw material lees for recovered fruit juice, from a fruit juice factory, and the raw lees are deposited in a feed bin (supply container) 2. Care should be taken to minimize the capacity of the feed pin 2 so as not to interfere with the processing process, and to minimize the storage time to prevent deterioration of the raw material. The raw material residue in the feed bin 2 is transferred quantitatively to the feed screw conveyor 3 by a multi-screw conveyor installed at the bottom of the bin.
During this time, a prescribed amount of lime commensurate with the raw material lees is uniformly and continuously sprinkled on the raw material lees from the lime quantitative feeder 4, and the lime is added to the raw material lees. The lime is supplied to the crusher 5, where it is crushed into small pieces with a certain particle size or less, and the lime is mixed uniformly, and then transferred to the first reaction conveyor 6a.
and a lime reactor 6 comprising a second reaction conveyor 6b. In the lime reactor 6, sufficient mixing and
Sufficient reaction time has been given, the reaction has been completed, and the raw material lees, which has physical properties that allow easy dehydration, is transferred to the feed conveyor 7, and then fed into the pulp press 9 through the chute 8, where juice extraction is started. . In the pulp press 9, the raw material lees is squeezed and juiced between a screw and a floating cone, and the juice passes through a screen and is collected in a receiving tray, and further flows into a receiving tank 11 via a dehydrated liquid extraction pipe 10.
On the other hand, the dehydrated cake in the pulp press 9 passes through the gap formed by the floating cone, falls to the bottom, is scraped out by a scraper plate, and is thrown into the press cake take-out conveyor 12, where it is moved by a screw conveyor. The fruit is sent to an incline conveyor 13, then transferred to an output screw conveyor 14, and continuously transported to a peel drying factory. The dehydrated liquid that has flowed into the aforementioned receiving tank 11 is pumped into the pump 1.
5 is quantitatively supplied to the horizontal continuous centrifuge 16, and solid-liquid separation and sedimentation is performed by centrifugal force of 3200 times the gravity. The pulp (pulp) is separately discharged to the solid discharge port by a screw provided inside, and the supernatant liquid is sent to the vibrating sieve 17.
The separated solids are received by the separated dregs collection conveyor 18, sent to the press cake take-out conveyor 12, and carried out together with the press cake. Vibrating sieve 1
The dehydrated liquid supplied to step 7 is sieved through a sieve of 80 to 100 mesh, and the amount of insoluble solids centrifuged is 1.0 to 2.0Vo.
Recovered crude fruit juice of approximately 1/Vol% is obtained and received in the crude recovered fruit juice receiving tank 19. In addition, the separated residue enters the separated residue collection conveyor 18 and moves in the same way as the centrifuged residue,
The fruit is transported to a drying factory and processed. In this way, the juice that adheres to and is trapped in the squeezed lees and processed lees is extracted, separated, and recovered as crude fruit juice. The above is the extraction and separation apparatus for recovered fruit juice. Next, in the second step of the present invention, the recovered fruit juice purification device, the crude recovered juice sent from the crude recovered juice receiving tank 19 by the pump 20 enters the balance tank 21 and is fed to the plate type heater 23 by the feed pump 22.
The water is continuously and quantitatively fed into the tank, and heated to 55℃ using a hot water circulation heating method. Lime milk adjustment tank 24
The lime milk adjusted to a concentration of 20°Be' is continuously drawn out in a prescribed amount corresponding to the amount of crudely recovered juice using the lime milk feed pump 25, and is sent to the pre-liming tank 27 together with the heated crudely recovered juice. After sufficiently stirring and mixing for about 3 minutes and reacting, the mixture overflows and is stored in the first carbonation tank 28. Three or more first carbonation tanks 28 are installed, and stocking, carbonation filling, and withdrawal are performed sequentially in a cycle of about 10 minutes, so the three tanks are operated continuously because the three operations are regularly repeated. There will be no stagnation.
For carbonation, lime milk is quantitatively added from the lime milk feed pump 26, and carbon dioxide gas is quantitatively fed from the carbon dioxide gas supply equipment to carry out a reaction in the tank. The precipitate generated by carbonation is pulled out from the first carbonation tank 28 together with the recovered fruit juice after the reaction is carried out by a pressure pump 29, filtered by a first pressure filter 30, separated into a filtrate and a filtrate, and then filtered. The slag is discarded, and only the filtrate is collected in the receiving tank 31, and sent to the second carbonation tank 33 along with carbon dioxide gas corresponding to the amount of liquid for the second carbonation operation by a feed pump, and is uniformly mixed by a special mixing machine. The mixture is brought into contact and reacted, and then the second carbonation tank 3
In step 4, the reaction is completed by mechanically contacting with unreacted carbon dioxide gas, and further heated by direct steam injection using a heater 35, and then received in a receiving tank 36 whose temperature is controlled at 80°C. . Next, a filtration operation is carried out in the second pressure filter 37 pre-coated with 0.8 kg of diatomaceous earth per 1 m 2 of filtration area, the filtrate and the filtrate are separated, the filtrate is discarded, and the filtrate is divided into After calcium is removed either directly or by passing through a decalcifying ion exchange resin cylinder 38, a receiving tank 39 with a pump is removed.
The pretreatment operation for decolorization is completed, and then the process proceeds to the decolorization step. Since it is inconvenient and unreliable to handle activated carbon in powder form, an activated carbon slurry of a certain concentration is made in an activated carbon dispersion tank 40 and an activated carbon quantitative feed pump 41 is used to quantitatively draw out an amount commensurate with the amount of recovered fruit juice to a mixing tank. After being uniformly dispersed in step 42, it is placed in a decoloring tank 43 for decolorization. Since decolorization depends on the degree and time of contact with activated carbon, adsorption is achieved, so three tanks are provided, each of which is a batch type, but the equipment is planned to be continuous. The recovered fruit juice, which has been decolorized, is transferred to a decolorization tank 43 by a pressure pump 44.
The activated carbon is filtered and separated, and the filtrate is received in a cushion tank 46 and sent to a precision filter 48 by a pressure pump 47 to make a completely clear liquid. As a general rule, the recovered fruit juice is used after being reduced to the original fruit juice, and since the original fruit juice itself has its own unique color tone, it is not required to be colorless and transparent. It is sufficient to decolorize the original fruit juice to the extent that it does not harm the color tone, so activated carbon decolorization alone may be enough to complete the decolorization operation, but if stored for a long period of time, browning may occur and the color tone may change slightly. Therefore, a decoloring operation may be performed in the decolorizing ion conversion resin cylinder 49. Further, by using the latter method in conjunction with decolorization, the amount of activated carbon used can be reduced. If bitter substances such as naringin, limonin, or norimin are present in the recovered fruit juice after decolorization, and the bitter substances cause trouble when reduced to fruit juice, a receiver tank should be installed.
50. After passing through the feed pump 51 and adsorbing and removing bitter substances in the debittering ion exchange resin cylinder 52,
After being cooled down to room temperature by the cooler 53, the collected fruit juice is stored in a storage tank 54 for the next reduction process. Through these series of purification operations, the recovered fruit juice has been purified to a state where it does not give off any strange taste or odor even if it is returned to the original fruit juice. The third step of the present invention, the recovered fruit juice reducing device, will be explained. Finally, after the pulp amount has been adjusted, the raw fruit juice is sent to a raw fruit juice head tank 57 where the pulp is pulverized and homogenized by a high-pressure homogenizer 56.
This head tank 57 is designed to maintain a constant water level, and excess raw fruit juice overflows and is fed back to the tank in front of the homogenizer 56.
On the other hand, purified recovered fruit juice is sent to a recovered fruit juice head tank 58 by a feed pump 55, and the water level is maintained at a constant level by a water level control device. The raw fruit juice and recovered fruit juice in the raw fruit juice head tank 57 and the recovered fruit juice head tank 58 are sucked in at a predetermined ratio by a quantitative proportional injection pump 59, discharged, merged, and mixed uniformly in a pipeline mixer 60. The flow is further made uniform in the pulsation buffer mixing tank 61, and the pulsation is canceled, resulting in a normal flow and sent to the balance tank 62. As a result, two types of fruit juice, original fruit juice and recovered fruit juice, were combined at a certain ratio to form one fruit juice. The juice obtained in this way is fed to the feed pump 63.
The fruit juice is sent to a plate-type sterilizer 64 for sterilization, and then concentrated using an existing vacuum concentrator as before to produce concentrated fruit juice, which is then filled into a drum can and stored frozen to become a raw material for secondary processing. In addition, the purified and collected fruit juice may be concentrated without being reduced to raw fruit juice, and then frozen to be used as a raw material for secondary processing. The outline of the equipment for recovering fruit juice from the squeezed residue of Unshu mandarin oranges is as described above, but this system can also be used to collect citrus fruits other than Unshu mandarins, such as summer mandarin oranges, Hassaku mandarin oranges, Iyokan oranges,
It can also be used as is to recover juice from squeezed lees of miscellaneous fruits such as navel and lemon, and processed lees of pineapple. The fruit juice recovery device has been described above, and based on this, a more detailed fruit juice recovery method and effects will be explained. The juice lees generated during the juice extraction operation and the processed lees discharged from the finishing sieve (finisher) and the centrifugal separator for pulp preparation should be of good quality if they are not stored and the operation for recovering the fruit juice is started immediately while they are still fresh. This is the first condition for recovering fruit juice. Fresh raw material lees is first crushed into a size of 10m/m square or less using a crusher (disintegrator) 5, and then 0.2~0.3% by weight of lime is uniformly added to it and crushed for 20~30 minutes. By giving enough lime reaction time, the viscous pectin present in the hot juice lees, processed lees, or lees reacts with the lime and turns into calcium pectate, which allows it to be incorporated without losing its viscosity. The water content including the juice released from the fruit is dissociated, and its properties change to such a state that it can be easily dehydrated even when squeezed by hand. Pulp press 9 for this kind of lees
It is continuously dehydrated and separated into dehydrated liquid and dehydrated slag. This operation is called liming and juicing, and similar operations are performed in the production of citrus fructose molasses, but in the operation for recovering fruit juice, the amount of lime added is the minimum necessary amount. By providing sufficient contact reaction time, complete lime reaction can be achieved with a small amount of lime. The pH at the end of the reaction is in the range of 6.2 to 6.6. The dehydration of pulp press 9 involves forced squeezing,
Care must be taken to squeeze the juice gently to avoid friction. This is the second condition for recovering good quality fruit juice. In the lime reaction operation, if the reaction is completed within the pH range of 6.2 to 6.6, both compressibility and water repellency are good, the pulp press 9's capacity is at its highest, and the dehydrated liquid is not viscous and insoluble. The solid content also shows a minimum value.
On the other hand, if the pH is below 6.0, there is not a sufficient lime reaction state, viscosity remains, compressibility is poor, and water repellency is not sufficient. For this reason, the squeezing efficiency within the pulp press 9 is poor and the force for discharging the dehydrated cake is reduced, resulting in a decrease in processing capacity, an increase in the moisture content of the dehydrated cake, and a decrease in the outflow of the dehydrated liquid. Merely fine solids are difficult to collect in the dehydration cake and flow out into the dehydration liquid, increasing the amount of insoluble solids, resulting in poor quality and operational results. Moreover, when the pH exceeds 7.0, it becomes alkaline and unnecessary components begin to be eluted from the exocarp, cartilage membrane, sand membrane, etc., and it becomes viscous. Furthermore, the compressibility is extremely good, so pulp press 9
The dehydrated cake becomes stuck inside and becomes difficult to be discharged, resulting in a phenomenon of strong pressure, and the outflow of insoluble solids is also facilitated, deteriorating the quality of the dehydrated liquid. For the above reasons, the pH at the end of the lime reaction must be strictly controlled, and cannot be equated with conventional dry fruit peel or citrus fructose syrup production. The liquid squeezed by the pulp press 9 (press liquor) is 44.35% by weight of the raw material lees when the juice lees/processed lees with a moisture content of 80% is used as raw material, and the dehydrated lees is 73% by weight.
% moisture content is exploited by 55.65% by weight. Generally, when producing citrus fructose molasses, the water content of the press cake is 71.5 to 72%. Therefore, when the purpose is to recover fruit juice, the yield is slightly lowered and a high quality press liquor is obtained by lightly squeezing the juice. is planned. The dehydrated lees is used as feed as it is or is dried in the same manner as in conventional processing methods. The press liquor then becomes the stock solution for the recovered fruit juice. The properties of pressed liquor, which is the raw material for recovered fruit juice, are (1)
The amount of soluble solids in the liquid is similar to fruit juice, but slightly higher. (2) The amount of insoluble solids is around 9.0Vol/Vol% as a result of a sedimentation test using a centrifugal sedimentation machine. (3) The PH value is the same as the final value after lime treatment, which is around PH6.4. (4)Essential oil content is around 900PPM. (5) The color is yellowish-blackish-brown. As described in the physical properties of press liquor (2), press liquor has approximately 9.0 Vol/Vol% of insoluble solids floating or suspended in it, but these are composed of exocarp, cyst membrane, It cannot be considered fruit juice as it is the result of something other than fruit juice, such as a sandy membrane, leaking out and getting mixed in. Therefore, these must be removed quickly. Furthermore, the reason for removing insoluble solids is that they significantly impede subsequent processing operations such as carbonation, filtration, and ion exchange resin treatment. Two problems are that unnecessary components are eluted from the insoluble solids as fruit juice over time, resulting in a decrease in quality. Therefore, the third condition is to remove as much insoluble solid matter from the dehydrated liquid as possible. To remove insoluble solids, first 65 to 70
% of solid matter is separated and removed, and then using the flotation separation effect of fine air bubbles mixed in during the separation operation,
Filter through a vibrating sieve 17 equipped with a screen of 80 to 100 mesh to reduce the solid content to 2.0 Vol/Vol% or less (total solids recovery rate of 80% or more). Conventionally, in order to remove insoluble solids, even when using either or both of the above two types of machines, the sieving operation is performed first, the pretreatment machine is used, and the centrifugal separator is used as the finishing machine. The separated liquid discharged from a centrifuge that rotates at high speed takes on the form of a spray, and when collected, fine spherical water droplets condense together with the surrounding air, resulting in a liquid containing a large amount of fine air bubbles. . These bubbles attach fine solid matter and form a layer of floating bubbles over time. By removing these bubbles, the solid matter is removed, which is the flotation separation method. Since bubbles that do not disappear quickly do not pass through the mesh of the screen, attached solids are separated and collected together with the bubbles, and solids with a particle size smaller than the mesh of the screen can also be removed. This two-stage solid matter removal operation satisfies the third condition. Although the dehydrated fruit juice obtained in this way is itself, various soluble components contained in Satsuma mandarin oranges during squeezing and other processes, such as sucrose, reducing sugar, organic and inorganic salts, organic acids, pectin, gum substances, pigments, and proteins. In addition, as insoluble substances, fibrous substances and essential oils are suspended in suspension outside of the air bubbles. Add lime to such a liquid,
By blowing in carbon dioxide gas and neutralizing it, both the physical cleaning effect due to the adsorption and occlusion of impurities by the carbonate lime precipitate in the generator, and the chemical cleaning effect due to the precipitation of impurities and the action of broken lumps are effectively achieved. The fourth condition is that the carbonation saturation method for cleaning is employed as a pretreatment method for more effectively performing the subsequent decalcification, depigmentation, and debittering substance operations. First, the dehydrated liquid at room temperature is heated to 55℃ using a heating machine, and 20"Be' milk of lime prepared in advance is added until the pH becomes 10.7 to 11.0. Leave it for 3 to 4 minutes to form a non-sugar precipitate. After carrying out the so-called pre-liming operation to generate carbon dioxide, the alkalinity of the dehydrated liquid is brought to 250 to 400 mg CaO/(PH
Continuing the filling operation while maintaining the alkalinity at about 10.5 to 10.7), the alkalinity should reach 400 when the required amount of lime milk has been added.
mgCaO/(PH approximately 10.7) and perform the first filtration. The amount of lime milk required for the first carbonation is 20°Be' lime milk, which is approximately 7% by volume based on the volume of the stock solution. The utilization rate of carbon dioxide gas for filling is 60 to 65%, and the carbonation filling time is about 10 minutes. The muddy liquid filled with carbonate in the first carbonation tank 28 is separated into a filtrate and a filtrate by a first filter, and the filtrate is washed with 200% water and the filtrate is attached to the filtrate. Dispose of sugar etc. after collecting it. The filtrate into which carbon dioxide gas is blown is placed in the second carbonation tank 34 and neutralized with carbon dioxide gas, then the temperature is raised to 80°C in the heating machine 35, and the filtrate is filtered in the second pressure filter 37. finish. By filling with the second carbon dioxide gas, lime is completely neutralized and precipitated as carbonated lime, and alkali carbonate is also created on top of it, causing double decomposition with lime salt dissolved in the dehydrated liquid, The aim is to remove as much lime as possible, and in conventional citrus fructose molasses production, the calcium content in the dehydrated liquid is 800 to 1200 PPm, but by implementing this dual carbonation method, the first
The amount of calcium at the end of carbonation is 800 ~
A significant decrease of 100 to 180 PPm was observed in the second carbonation filling of 900 PPm. Generally, the amount of calcium present in orange juice is around 115 PPm, and it is possible to reduce the calcium content to almost the level that can be used as fruit juice by simply carbonating the juice. However, the amount of calcium in the carbonate filling method tends to be unstable depending on the operation, so the fifth condition is to use a decalcification treatment using an ion exchange resin as the final decalcification. The ion exchange resin used for decalcification is a styrene-based strongly acidic sulfonic acid type cation exchange resin with a standard crosslinking degree.The ion exchange resin cylinder 38 is filled with the ion exchange resin, and the filtrate is filled with carbonate at 80°C. is continuously and quantitatively supplied to perform decalcification using a flow method. This operation is performed continuously by repeating the five steps of backwashing, regeneration, extrusion, water washing, and decalcification. A 10% hydrochloric acid aqueous solution is used to regenerate the resin. This operation reduces the amount of calcium in the treatment solution.
50PPm or less, eliminating scale precipitation on the heating surface during heating operations such as sterilization and concentration in the post-process, reducing the operational burden. ) has been recognized to be useful in improving depigmentation. When using ion exchange resins, the presence of insoluble solids in the processing liquid contaminates the resin and remains in the cylinder.
It also reduces exchange ability, so it must be made as clear as possible. Therefore, filtration after carbonation should be carried out very carefully, but in industrial processing operations it is also necessary to consider the use of a check filtration machine (precision filtration machine such as a ceramic filtration machine). The sixth condition is to then perform decolorization by activated carbon treatment and ion exchange resin treatment. After adjusting the pH to 6.5 by adding citric acid to the decalcification solution at a temperature of around 8.6 PH8.6, it is placed in an activated carbon mixing tank 42, and 0.05% by weight of activated carbon is added to the treated solution, and the temperature is kept at 80℃ for 30~ Stir for 40 minutes to adsorb the dye. Thereafter, filtration is performed using a filter, followed by precision filtration using a check filter, followed by decolorization using an ion exchange resin. As the ion exchange resin for decolorization, a styrene quaternary ammonium type strongly basic anion exchange resin with a low degree of crosslinking is used. An appropriate amount of resin is filled into the ion exchange resin cylinder 49, and the treatment liquid is passed therethrough continuously and quantitatively by a flow method to effect decolorization. This operation repeats five steps: backwashing, regeneration, extrusion, water washing, and decolorization. A 4% aqueous solution of caustic soda is used as a regenerant. As a result of this series of decolorization operations, most of the color is decolorized and a transparent liquid is obtained, but numerically, due to carbonation, 50% of the dehydrated liquid becomes
% of the pigment is removed, approximately 70% of the remaining pigment is removed by activated carbon decolorization, and approximately 80% of the remaining pigment is removed by ion exchange resin decolorization, resulting in a total of 97% of the remaining pigment.
Approximately 3% of the pigment is removed and only 3% remains. If the product has been decolorized to this extent, no browning phenomenon will be observed even if it is stored for a long period of time. (Changes in color tone are observed for those that have not been treated with activated carbon.) Citrus fruits contain flavonoids and limonoids, which are bitter substances whose composition and content vary depending on the variety, ripeness, etc., and they often elute into fruit juice during processing, giving it a bitter taste that impairs the taste. Most of these bitter components are the exocarp (flaved part,
Albedo part) Exists in the sac membrane and is relatively small in the fruit pulp, so the juice is recovered by squeezing and separation operations that minimize the effect on the exocarp and the sac membrane, followed by carbonation filling. It is reduced by its ability to remove some bitter substances as well as pigments due to adsorption and occlusion during precipitate formation. In the case of unshiu mandarin oranges, the clear liquid recovered by the operations according to conditions 1 to 6 of the present invention should be sensually bitter, so the subsequent operations are considered unnecessary, but in citrus fruits other than unshiu mandarins, Since the solute of the bitter substance cannot be blocked, the seventh condition is that the solute of the bitter substance is removed using an ion exchange resin.
shall be. A high porous polymer of styrene and divinylbenzene copolymer is used as the ion exchange resin for bitterness removal treatment, and an appropriate amount of this is filled into the ion exchange resin cylinder 52 to continuously and quantitatively produce clarified recovered fruit juice for bitterness removal. Bitter substances are adsorbed using a fluidized system. This operation includes backwashing, regeneration, extrusion, water washing,
The five steps of bitterness removal are repeated and continuous, and a 10% aqueous sodium carbonate solution is used as the regenerant.
As mentioned above, we do not consider the necessity of this treatment in the recovered and clarified fruit juice of Satsuma mandarin oranges, as there is no sensory bitterness, but in the case of summer mandarin oranges, the removal rate of naringin is approximately 40%. It has been confirmed that 45% of nomilin is removed by 92%. Since the recovered fruit juice is used after being reduced to the original fruit juice, even if the removal rate is 50%, if the original fruit juice is mixed with 30% of the recovered fruit juice, the removal rate will be equivalent to 85%, resulting in a softer taste. . As a general rule, the clarified recovered fruit juice recovered from the squeezed lees and processed lees through the above series of operations is not used alone, but is fed back (reduced) to the original fruit juice, and can be used as normal fruit juice as usual. Processed into products. Therefore, the yield of fruit juice changes depending on the reduction ratio of the recovered fruit juice, and the more added, the higher the yield of fruit juice. Currently, 1000 kg of raw fruit is processed and 500 kg of fruit juice (yield
50%), 500 kg of squeezed lees and processed lees were obtained, and the recovered fruit juice was collected from the lees using the above-mentioned processing method, and the final result was obtained by reducing and adding the juice at the mixing ratio shown in Table 1 below. The yield and yield of fruit juice are as shown in the same table. In the case of No. 4 in Table 1, it means that almost all of the juice in the fruit has been extracted, and if the quality satisfies the specifications, flavor and appearance, then the complete processing method, conventional method. This is a processing method that is unimaginable. The components of the fruit juice produced in this manner are shown in Table 2 below. According to the Japanese Agricultural Standards, unshu mandarin juice or puree has a sugar content of 9.0 or more, acid of 0.7g or more, amino nitrogen of 20mg or more, and vitamin C of 20mg or more, with acids in No.3 and No.4. It satisfies the standards except for some deficiencies. The components of the fruit juice obtained by reducing the recovered fruit juice are as described above, but there is almost no difference in color tone and appearance from the fruit juice without addition, and it exhibits the color tone shown in Table 3 below. Visually, there is almost no difference in the rate of sedimentation and separation of insoluble solids. In addition, in a room temperature storage test of products that were sterilized at 95 degrees Celsius, filled and sealed in bottles, and then cooled with water to room temperature, the appearance and color tone after 6 months were investigated, but no differences were observed. However, a change in color due to browning was observed after 6 months in the product that was only filled with carbonic acid and decolorized with activated carbon, so it was confirmed that decolorization using an ion exchange resin is an essential condition in order to produce a stable product. . In this way, the eighth condition is to not commercialize the recovered fruit juice alone, but to recycle an appropriate amount of the fruit juice (primary fruit juice) obtained by a juice extractor, homogenize it, and then use it as raw fruit juice. Products such as condensed fruit juices, natural fruit juices, fruit juice drinks, and soft drinks containing fruit juices are made using these as raw materials. The present invention has been constructed by operating under conditions 1 to 8 above, and it has become possible to significantly increase the yield of fruit juice by collecting and purifying fruit juice that has hitherto been discarded. The advantages of the present invention include the following. (1) Fruit juice yield is significantly improved. With conventional juice extraction methods, the juice yield is around 45-52%, and if the juice is squeezed mechanically to improve the yield, excess extracts will be eluted and mixed in, reducing the flavor of the juice, so this value is high. This has been common knowledge in the industry since ancient times, and it continues to be common knowledge today. The present invention has broken through this common sense, and the fruit juice yield is 65%.
It is also possible to secure the front and back. (2) Significant increase in income due to changes in added value Unrecovered fruit juice, which has traditionally been commercialized in dried fruit peels or as citrus fructose molasses, is produced without considering profitability. For example, dried fruit juice per kg 30
Citrus fructose density less than yen is B x 72° per kg
It is traded at a low price of less than 15 yen. On the other hand, when it comes to fruit juice, it is said to cost over 450 yen for B x 50° concentrated fruit juice, so there is a huge difference. A very simple comparison of these relationships in the case of processing 10,000 tons of Satsuma mandarin oranges is shown in Table 4 below, which shows an income of about 127%. Such numerical values cannot be expected using other methods, so it can be said that this is an epoch-making processing method. (3) The sugar-acid ratio can be adjusted. The most preferred sugar-acid ratio is said to be 13.5, but many of the raw fruits brought into the factory have a much lower value. For this reason, some factories are now implementing a method of deacidifying fruit juice using ion exchange resin to adjust the sugar-acid ratio.
By reducing the recovered fruit juice, it becomes possible to control this value arbitrarily. (4) Reducing depulping operations Recovered fruit juice is produced as clear fruit juice. Therefore, since there is no pulp in this, the pulp content of the parent fruit juice that reduces it must be higher than the standard, which means that depulping is lightened, and as a result (1) the yield is reduced. Improve even slightly. (2) The processing capacity of the same model of depulping machine increases. Therefore, good results such as improved efficiency are brought about. (5) Other advantages The following uses can be mentioned where the recovered fruit juice is used alone without being reduced to fruit juice. (b) The semi-purified product of recovered fruit juice (after carbonation and decalcification treatment) is easier to use as a raw material for fermentation, with fewer impurities than conventional fructose-rich juice. (b) The recovered fruit juice, which has been completely decolorized, can be used as syrup. For example, if it is used as a syrup for prepared products such as fruit juice-containing soft drinks, fruit pulp drinks, fruit juice drinks, etc., it is advantageous because active ingredients other than the syrup are supplemented.
It can also be used as syrup for canned syrup.

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る柑橘類の搾汁粕中に残存
する果汁の回収方法のフローシート、第2図は本
発明の第1工程である回収果汁の抽出分離装置の
フローシート、第3図は本発明の第2工程である
回収果汁の精製装置のフローシート、第4図は本
発明の第3工程である回収果汁の還元装置のフロ
ーシートである。 1……搬送スクリユーコンベヤー、2……フイ
ードビン、3……フイードスクリユーコンベヤ
ー、4……石灰定量フイーダー、5……解砕機、
6……石灰反応機、6a……第1反応コンベヤ
ー、6b……第2反応コンベヤー、7……フイー
ドコンベヤー、8……シユート、9……パルププ
レス、10……脱水液取出パイプ、11……受
槽、12……プレスケーキ取出コンベヤー、13
……インクラインコンベヤー、14……搬出スク
リユーコンベヤー、15……ポンプ、16……横
型連続遠心分離機、17……振動ふるい、18…
…分離粕捕集コンベヤー、19……粗回収果汁受
槽、20……ポンプ、21……バランスタンク、
22……フイードポンプ、23……プレート式加
熱機、24……石灰乳調整槽、25……プレライ
ミング用石灰乳フイードポンプ、26……炭酸飽
充用石灰乳フイードポンプ、27……プレライミ
ングタンク、28……第1炭酸飽充槽、29……
圧入ポンプ、30……第1圧力濾過機、31……
受槽、33……第2炭酸飽充器、34……第2炭
酸飽充槽、35……加熱器、36……受槽、37
……第2圧力濾過器、38……脱石灰イオン交換
樹脂筒、39……ポンプ付受槽、40……活性炭
分散槽、41……活性炭定量フイードポンプ、4
2……混合槽、43……脱色槽、44……圧入ポ
ンプ、45……濾過機、46……クツシヨンタン
ク、47……圧送タンク、48……精密濾過機、
49……脱色イオン交換樹脂筒、50……受槽、
51……フイードポンプ、52……脱苦味イオン
交換樹脂筒、53……冷却機、54……回収果汁
ストレージタンク、55……フイードポンプ、5
6……高圧式ホモヂナイザー、57……原果汁ヘ
ツドタンク、58……回収果汁ヘツドタンク、5
9……定量比例注入ポンプ、60……パイプライ
ンミキサー、61……脈動緩衝混合タンク、62
……バランスタンク、63……フイードポンプ、
64……プトート式殺菌機。
Fig. 1 is a flow sheet of a method for recovering fruit juice remaining in citrus juice lees according to the present invention, Fig. 2 is a flow sheet of an apparatus for extracting and separating recovered fruit juice, which is the first step of the present invention, and Fig. 3 4 is a flow sheet of the recovered fruit juice purification device which is the second step of the present invention, and FIG. 4 is a flow sheet of the recovered fruit juice reduction device which is the third step of the present invention. 1... Transport screw conveyor, 2... Feed bin, 3... Feed screw conveyor, 4... Lime quantitative feeder, 5... Crushing machine,
6... Lime reactor, 6a... First reaction conveyor, 6b... Second reaction conveyor, 7... Feed conveyor, 8... Chute, 9... Pulp press, 10... Dehydrated liquid extraction pipe, 11 ... Receiving tank, 12 ... Press cake removal conveyor, 13
... Incline conveyor, 14 ... Export screw conveyor, 15 ... Pump, 16 ... Horizontal continuous centrifuge, 17 ... Vibrating sieve, 18 ...
...Separated lees collection conveyor, 19...Rough collection fruit juice receiving tank, 20...Pump, 21...Balance tank,
22... Feed pump, 23... Plate heating machine, 24... Lime milk adjustment tank, 25... Lime milk feed pump for pre-liming, 26... Lime milk feed pump for carbonation, 27... Pre-liming tank, 28... ...First carbonation tank, 29...
Pressure pump, 30...First pressure filter, 31...
Receiving tank, 33...Second carbonation tank, 34...Second carbonation tank, 35...Heater, 36...Receiving tank, 37
... Second pressure filter, 38 ... Deliming ion exchange resin cylinder, 39 ... Receiving tank with pump, 40 ... Activated carbon dispersion tank, 41 ... Activated carbon metering feed pump, 4
2...Mixing tank, 43...Decolorization tank, 44...Pressure pump, 45...Filtering machine, 46...Cushion tank, 47...Pressure tank, 48...Precision filter,
49...Decolorizing ion exchange resin cylinder, 50...Receiving tank,
51...Feed pump, 52...Bitter removal ion exchange resin cylinder, 53...Cooler, 54...Recovered fruit juice storage tank, 55...Feed pump, 5
6... High-pressure homogenizer, 57... Original fruit juice head tank, 58... Recovered fruit juice head tank, 5
9... Fixed proportional injection pump, 60... Pipeline mixer, 61... Pulsation buffer mixing tank, 62
... Balance tank, 63 ... Feed pump,
64... Putot type sterilizer.

Claims (1)

【特許請求の範囲】 1 柑橘類の搾汁により得られた搾汁粕や加工粕
よりなる原料粕を、新鮮で変質しない間に処理す
べく小片に解砕し、これに石炭を必要最小限量添
加して石灰反応を十分行わせPH6.2〜6.6の酸性度
に保つた後加圧搾汁して果汁を回収し、該回収果
汁中の不溶性固形物を遠心分離、浮遊分離、ふる
い分離の三者を組合せたところの二段階の分離操
作により物理的に除去すると共に、脱石灰、脱
色、脱苦味処理を効果的に行うための前処理とし
て炭酸飽充処理を行い、次いでイオン交換樹脂に
よる脱石灰処理、活性炭及びイオン交換樹脂の組
合せによる脱色処理を行うことにより回収果汁と
し、また該回収果汁が苦味を呈する場合にはイオ
ン交換樹脂により脱苦味処理を行うことを特徴と
する柑橘類の搾汁粕中に残存する果汁の回収方
法。 2 柑橘類の搾汁により得られた搾汁粕や加工粕
を小片に解砕する解砕機5、解砕機5によつて得
られた小片と適量の石灰とを混和し石灰反応を行
なわせる石灰反応機6、石灰反応機6により得ら
れた脱水容易な物性の原料粕を圧搾搾汁し汁液を
得るパルププレス9、パルププレス9より出た汁
液を液体と固体とに分ける遠心分離機16、遠心
分離機16により得られた上澄液中の気体を浮遊
分離させると共に、液体と固体とに分ける振動ふ
るい17、振動ふるい17から出た果汁を加温す
る温湯循環加熱型プレート式加熱機23、プレー
ト式加熱機23から出た加温果汁と、石灰乳とを
撹拌、混合、反応させるプレライミングタンク2
7、プレライミングタンク27から出た果汁と、
石灰乳と、炭酸ガスとを反応させる第1炭酸飽充
槽28、第1炭酸飽充槽28から出た果汁を濾液
と濾滓に分ける第1圧力濾過機30、第1圧力濾
過機30から出た果汁濾液と、炭酸ガスを混合反
応させる第2炭酸飽充器33、第2炭酸飽充器3
3から出た果汁に更に炭酸ガスとの接触を行なわ
せると共に蒸気吹込加熱を行う第2炭酸飽充槽3
4、第2炭酸飽充槽34から出た果汁を濾液と濾
滓に分ける第2圧力濾過機37、第2圧力濾過機
37から直接、または脱石灰イオン交換樹脂筒3
8を介して受取つた果汁濾液と活性炭スラリーと
を混合分散させる混合槽42、混合槽42から出
た活性炭スラリーと果汁との混合物を受取り脱色
させる脱色槽43、脱色槽43から引抜かれた果
汁中の活性炭を濾過分離する活性炭用濾過器4
5、活性炭用濾過器45を通過した果汁中のパル
プを微細化し均質化する高圧式ホモナイザー5
6、高圧式ホモナイザー56を通過した果汁と、
高圧式ホモナイザー56を通過することなく前記
活性炭用濾過器45を通過した果汁とを所定比率
で送る定量比例注入ポンプ59、定量比例注入ポ
ンプ59から出た2種類の果汁の混合果汁を殺菌
するプレート式殺菌装置64を含む柑橘類の搾汁
粕中に残存する果汁の回収装置。
[Scope of Claims] 1. Raw material lees consisting of juice lees and processed lees obtained by squeezing citrus juice is crushed into small pieces for processing while it is fresh and unaltered, and the minimum necessary amount of coal is added to this. After the lime reaction is carried out sufficiently and the acidity is maintained at PH6.2 to 6.6, the juice is recovered by pressurizing the juice, and the insoluble solids in the recovered juice are separated by centrifugation, floating separation, and sieving. In addition to physical removal through a two-step separation operation that combines the Citrus juice lees is recovered by processing and decolorizing using a combination of activated carbon and ion exchange resin, and when the recovered fruit juice has a bitter taste, it is treated with an ion exchange resin to remove bitterness. How to recover the juice remaining inside. 2 A crusher 5 that crushes squeezed lees and processed lees obtained by squeezing citrus juice into small pieces, a lime reaction that mixes the small pieces obtained by the crusher 5 with an appropriate amount of lime and performs a lime reaction machine 6, a pulp press 9 that squeezes the raw material lees obtained by the lime reactor 6, which has physical properties that are easy to dehydrate, to obtain juice; a centrifugal separator 16 that separates the juice from the pulp press 9 into liquid and solid; A vibrating sieve 17 that floats and separates the gas in the supernatant liquid obtained by the separator 16 and separates it into liquid and solid; a hot water circulation heating type plate heating machine 23 that heats the fruit juice coming out of the vibrating sieve 17; Pre-liming tank 2 that stirs, mixes, and reacts the heated fruit juice discharged from the plate-type heating device 23 and lime milk.
7. Fruit juice discharged from the pre-liming tank 27,
A first carbonation tank 28 that reacts milk of lime with carbon dioxide gas, a first pressure filter 30 that separates the fruit juice from the first carbonation tank 28 into a filtrate and a filter cake; A second carbonation saturation device 33 that mixes and reacts the output fruit juice filtrate with carbon dioxide gas; a second carbonation saturation device 3;
A second carbonation filling tank 3 in which the fruit juice discharged from 3 is further brought into contact with carbon dioxide gas and heated by steam injection.
4. A second pressure filter 37 that separates the fruit juice from the second carbonation tank 34 into a filtrate and a filter cake, directly from the second pressure filter 37, or a deliming ion exchange resin cylinder 3
a mixing tank 42 for mixing and dispersing the fruit juice filtrate and activated carbon slurry received through the mixing tank 42; a decoloring tank 43 for receiving and decolorizing the mixture of the activated carbon slurry and fruit juice discharged from the mixing tank 42; Activated carbon filter 4 for filtering and separating activated carbon
5. A high-pressure homogenizer 5 that atomizes and homogenizes the pulp in the fruit juice that has passed through the activated carbon filter 45
6. The fruit juice passed through the high-pressure homogenizer 56;
A quantitative proportional injection pump 59 that sends fruit juice that has passed through the activated carbon filter 45 without passing through the high-pressure homogenizer 56 at a predetermined ratio, and a plate that sterilizes the mixed fruit juice of two types of fruit juice output from the quantitative proportional injection pump 59. A device for recovering fruit juice remaining in citrus juice lees, including a type sterilizer 64.
JP58232142A 1983-12-07 1983-12-07 Recovery of fruit juice remaining in squeezed lees of citrus fruit and device for recovering it Granted JPS60126066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58232142A JPS60126066A (en) 1983-12-07 1983-12-07 Recovery of fruit juice remaining in squeezed lees of citrus fruit and device for recovering it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58232142A JPS60126066A (en) 1983-12-07 1983-12-07 Recovery of fruit juice remaining in squeezed lees of citrus fruit and device for recovering it

Publications (2)

Publication Number Publication Date
JPS60126066A JPS60126066A (en) 1985-07-05
JPS6122942B2 true JPS6122942B2 (en) 1986-06-03

Family

ID=16934647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58232142A Granted JPS60126066A (en) 1983-12-07 1983-12-07 Recovery of fruit juice remaining in squeezed lees of citrus fruit and device for recovering it

Country Status (1)

Country Link
JP (1) JPS60126066A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102657A (en) * 1986-10-20 1988-05-07 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai Purification method for pressed juice obtained from pressed juice residue of fruit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110714A (en) * 1995-10-17 1997-04-28 Wakayama Aguri Bio Kenkyu Center:Kk Production of limonoid glycoside
JP4852218B2 (en) * 2000-06-20 2012-01-11 株式会社明治 Alcohol metabolism promoter composition
WO2005094614A1 (en) * 2004-04-01 2005-10-13 Japan Science And Technology Agency Method of squeezing juice from fruit and apparatus for squeezing juice from fruit
JP2017192343A (en) * 2016-04-20 2017-10-26 マルボシ酢株式会社 Manufacturing method of citrus fruit juice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102657A (en) * 1986-10-20 1988-05-07 Shokuhin Sangyo Maku Riyou Gijutsu Kenkyu Kumiai Purification method for pressed juice obtained from pressed juice residue of fruit

Also Published As

Publication number Publication date
JPS60126066A (en) 1985-07-05

Similar Documents

Publication Publication Date Title
JP3436540B2 (en) Sugar beet juice purification method
US7662234B2 (en) Method for purification of high purity sucrose material
RU2085090C1 (en) Method for preparing juice from vegetables and fruits and installation for its realization
US6916381B2 (en) Process for the production of invert liquid sugar
JPS6122942B2 (en)
CN104987434B (en) A kind of method that water at low temperature extracts inulin in use
US4620980A (en) Process for the continuous clarification of fresh fruit juice
CN112604319A (en) Citrus peel progressive extraction method and device
JPH11500005A (en) Crude sugar purification process
US2626878A (en) Sugar purification
CN107602731B (en) Industrial production method for extracting inulin from jerusalem artichoke
US1166674A (en) Utilization of waste from pineapple.
JPH02991B2 (en)
JPS5943150B2 (en) Citrus juice acid reduction device
US2016584A (en) Method of treating fruit juices
CN109336997B (en) Method for extracting inulin from jerusalem artichoke at low temperature
RU2224026C1 (en) Method for producing fructose-glucose syrup
JP2001157599A5 (en)
US3150981A (en) Process for recovery of residual juice from pulp of fruits and vegetables
CN213965259U (en) Citrus peel progressive extraction device
JPH0367661B2 (en)
US5200095A (en) Ecological procedure for the treatment and complete recovery of sludge from sugared fruit concentrates
JPS5950304B2 (en) Citrus juice purification equipment
WO2022014725A2 (en) Raw sugar and refined sugar production process
CN106277516A (en) A kind of stevioside adsorbs the method for water reuse in producing