JPS6122904B2 - - Google Patents

Info

Publication number
JPS6122904B2
JPS6122904B2 JP54130605A JP13060579A JPS6122904B2 JP S6122904 B2 JPS6122904 B2 JP S6122904B2 JP 54130605 A JP54130605 A JP 54130605A JP 13060579 A JP13060579 A JP 13060579A JP S6122904 B2 JPS6122904 B2 JP S6122904B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
signal
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54130605A
Other languages
Japanese (ja)
Other versions
JPS5654348A (en
Inventor
Kimitake Sone
Kenji Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP13060579A priority Critical patent/JPS5654348A/en
Publication of JPS5654348A publication Critical patent/JPS5654348A/en
Publication of JPS6122904B2 publication Critical patent/JPS6122904B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、排気の酸素濃度から間接的に空燃比
を検出するヒータ付膜構造センサを使用した空燃
比制御装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an air-fuel ratio control device using a membrane structure sensor with a heater that indirectly detects the air-fuel ratio from the oxygen concentration of exhaust gas.

機関の排気通路に三元触媒を配設して排気中の
有害物質を除去するようにしたものでは、三元触
媒の転換効率が理論空燃比の混合気の排気に対し
て最良となることから、混合気が常に理論空燃比
近傍となるように制御するのが好ましい。
In the case where a three-way catalyst is installed in the exhaust passage of the engine to remove harmful substances from the exhaust gas, the conversion efficiency of the three-way catalyst is the best for the exhaust gas at the stoichiometric air-fuel ratio. It is preferable to control the air-fuel mixture so that it is always near the stoichiometric air-fuel ratio.

また、混合気の理論空燃比制御は機関出力、す
なわち燃費の面からも有利となる。
Furthermore, the stoichiometric air-fuel ratio control of the air-fuel mixture is also advantageous in terms of engine output, that is, fuel efficiency.

そこで、触媒上流の排気通路に酸素濃度を検出
するセンサを配設し、この検出信号から排気の燃
焼以前の空燃比を間接的に検知して、この検知信
号に応じて燃料供給量をコントロールすることに
より、混合気が常に理論空燃比となるようにフイ
ードバツク制御するようにしたエンジンが従来か
ら知られている。
Therefore, a sensor that detects oxygen concentration is installed in the exhaust passage upstream of the catalyst, and from this detection signal, the air-fuel ratio of the exhaust gas before combustion is indirectly detected, and the fuel supply amount is controlled according to this detection signal. Engines have heretofore been known in which feedback control is performed so that the air-fuel mixture always maintains the stoichiometric air-fuel ratio.

このエンジンに用いるセンサとして種々のセン
サが提案されているが、その一つに例えば第1図
に示すようなヒータ付膜構造酸素センサがある。
(特開昭53−39789号) すなわち、上部アルミナ基板1と下部アルミナ
基板2との間に白金線ヒータ3が埋め込まれて、
ヒータを内装したセンサ素子部の基板4が形成さ
れている。
Various sensors have been proposed for use in this engine, one of which is, for example, a membrane structure oxygen sensor with a heater as shown in FIG.
(Unexamined Japanese Patent Publication No. 53-39789) That is, the platinum wire heater 3 is embedded between the upper alumina substrate 1 and the lower alumina substrate 2,
A substrate 4 of a sensor element section with a heater installed therein is formed.

この基板4の上には、センサ素子部本体5を構
成する内側白金電極6、固体電解質7、検出ガス
側白金電極8とが厚膜状(厚さ約20ミクロン)に
順次重ね合わされて形成されている。
On this substrate 4, an inner platinum electrode 6, a solid electrolyte 7, and a detection gas side platinum electrode 8, which constitute the sensor element main body 5, are sequentially stacked in a thick film shape (approximately 20 microns thick). ing.

これらの基板4と素子部本体5とはセンサ素子
部を構成し、その周囲は保護層9によつて被覆さ
れている。
The substrate 4 and the element main body 5 constitute a sensor element, the periphery of which is covered with a protective layer 9.

また、白金電極6,8にはそれぞれリード線1
0,11が接続しており、白金線ヒータ3にも通
電するための2本のリード線が接続している。
In addition, lead wires 1 are connected to the platinum electrodes 6 and 8, respectively.
0 and 11 are connected, and two lead wires for supplying electricity to the platinum wire heater 3 are also connected.

これらリード線のうちリード線11とヒータ3
の一方のリード線とは内部で接続されて、アース
側共通線としてリード線14によつて取り出され
ている。
Among these lead wires, lead wire 11 and heater 3
is internally connected to one lead wire, and taken out by a lead wire 14 as a common ground wire.

ヒータ3の他方のリード線はリード線12とし
て取り出され、したがつてリード線10,14が
センサ端子として、センサの信号を取り出す端子
系を、リード線12,14がヒータ端子として、
ヒータに通電する端子系を夫々構成する。
The other lead wire of the heater 3 is taken out as a lead wire 12, and therefore the lead wires 10 and 14 are used as sensor terminals, and the terminal system for taking out the sensor signal is taken out, and the lead wires 12 and 14 are used as heater terminals.
Terminal systems for supplying electricity to the heaters are configured respectively.

以上のような構成をもつ酸素センサは、内側白
金電極6付近に存在する酸素の濃度と、検出ガス
側白金電極8付近に存在する酸素の濃度との比率
に応じて、出力端子すなわちリード線10,14
間に起電力を発生する。
In the oxygen sensor having the above configuration, the output terminal, that is, the lead wire 10 ,14
An electromotive force is generated between the two.

ところで、周囲の保護層9は、気体分子が支障
なく通過しうる程度の孔を無数に有しており、こ
のためこのセンサを被検出ガス中にさらすと、検
出ガス側白金電極8付近には被検出ガスが導入さ
れる。
By the way, the surrounding protective layer 9 has countless holes that allow gas molecules to pass through without any problem. Therefore, when this sensor is exposed to a gas to be detected, there are no holes near the platinum electrode 8 on the detection gas side. A gas to be detected is introduced.

したがつて、内側白金電極6付近の酸素濃度を
基準値として常に一定に保つようにすれば、被検
出ガス中の酸素濃度に応じた起電力が得られ、そ
の酸素濃度を検出できる。
Therefore, if the oxygen concentration near the inner platinum electrode 6 is always kept constant as a reference value, an electromotive force corresponding to the oxygen concentration in the gas to be detected can be obtained, and the oxygen concentration can be detected.

これを達成するため、リード線10,14を介
して、内側白金電極6から固体電解質7を経て検
出ガス側白金電極8へ向かつて一定の電流を流し
込み、白金電極8にトラツプされた陰イオンであ
る酸素イオンを固体電解質7を経て内側白金電極
6へ一定の率で送り込んで、固体電解質7の活性
の度合(固体電解質7の温度で決まる)に応じて
白金電極6付近から自然とセンサ外部などへ拡散
して逃げ出す酸素量を相殺して補い、この内側白
金電極6付近の酸素濃度を常に一定の基準値に保
つようにしている。
To achieve this, a constant current is passed from the inner platinum electrode 6 through the solid electrolyte 7 to the detection gas side platinum electrode 8 via the lead wires 10 and 14, and the anions trapped in the platinum electrode 8 are A certain oxygen ion is sent to the inner platinum electrode 6 through the solid electrolyte 7 at a constant rate, and depending on the degree of activity of the solid electrolyte 7 (determined by the temperature of the solid electrolyte 7), it naturally flows from the vicinity of the platinum electrode 6 to the outside of the sensor, etc. The oxygen concentration near the inner platinum electrode 6 is always maintained at a constant reference value by offsetting and compensating for the amount of oxygen that diffuses and escapes.

なお、このセンサを良好に作動させるために
は、センサ素子部本体5を比較的高い所定の温度
に保持する必要があり、このため通常はヒータ3
によつてこの素子部本体5を加熱するようにして
いる。
Note that in order to operate this sensor well, it is necessary to maintain the sensor element main body 5 at a relatively high predetermined temperature, and for this reason, the heater 3 is usually
The element main body 5 is heated by this.

このセンサの内側白金及び検出ガス側白金電極
6,8間に一定の電流を流し込むとともに、ヒー
タ3のヒータ電流を供給する装置として、従来は
第2図に示すようなものが使用されている。
As a device for supplying a constant current between the inner platinum electrode and the detection gas side platinum electrodes 6 and 8 of this sensor, as well as a heater current for the heater 3, a device as shown in FIG. 2 has conventionally been used.

すなわち、センサ素子部15へは、電界効果型
トランジスタ16と抵抗17とで構成されている
よく知られた定電流回路を介して、電源18から
一定の流し込み電流が供給され、またセンサのヒ
ータ19へは電源18から直接ヒータ電流が供給
される。
That is, a constant current is supplied to the sensor element section 15 from a power source 18 through a well-known constant current circuit composed of a field effect transistor 16 and a resistor 17, and a constant current is supplied to the sensor element section 15 from a power source 18. Heater current is supplied directly from the power supply 18 to the heater current.

ところで、空燃比をフイード・バツク制御する
と、その影響で空燃比が目標値の上下を周期的に
変動するため、これに合わせてセンサ素子部15
の両端に生ずるセンサ出力信号も約数ヘルツ程度
のゆつくりとした周期でそのレベルが変動する。
By the way, when the air-fuel ratio is subjected to feed-back control, the air-fuel ratio periodically fluctuates above and below the target value under the influence of the feed-back control.
The sensor output signals generated at both ends of the sensor also fluctuate in level with a slow period of about several hertz.

そしてこのセンサ出力信号は、予め所定に定め
た基準レベルBと比較器20において比較され、
例えばパルス信号に変換された後、空燃比検出パ
ルス信号として、空燃比制御のためのコントロー
ルユニツトなどへ送られる。
This sensor output signal is then compared with a predetermined reference level B in a comparator 20,
For example, after being converted into a pulse signal, it is sent as an air-fuel ratio detection pulse signal to a control unit for controlling the air-fuel ratio.

一般に、センサ素子部15の内部抵抗はその温
度に従つて変化するので、電圧値の変動成分を除
いたセンサ出力信号のいわゆるDCレベルもセン
サ温度に応じて変化する。
Generally, the internal resistance of the sensor element section 15 changes according to its temperature, so the so-called DC level of the sensor output signal excluding the fluctuation component of the voltage value also changes according to the sensor temperature.

例えば冷間始動の場合、排温が徐々に上昇する
一方、ヒータ19による加熱も徐々であるため、
第3図に示すように、エンジン起動C1からセン
サ出力信号A1のDCレベルは徐々に降下してゆ
く。
For example, in the case of a cold start, while the exhaust temperature gradually rises, the heating by the heater 19 is also gradual;
As shown in FIG. 3, the DC level of the sensor output signal A1 gradually decreases from engine startup C1.

そして、例えば瞬間的に燃料供給をカツトし、
空燃比を希薄化した場合等に、センサ出力信号A
1が基準レベルB1を横切つて低下し、少くとも
比較器20からなんらかの空燃比検出パルス信号
が出力されるところにまでセンサ出力信号が降下
した時点D1で、初めて空燃比制御が開始可能と
なる。
For example, by momentarily cutting off the fuel supply,
When the air-fuel ratio is made leaner, the sensor output signal A
1 crosses the reference level B1 and the sensor output signal drops to a point where at least some kind of air-fuel ratio detection pulse signal is output from the comparator 20, at which point the air-fuel ratio control can be started for the first time. .

通常は、起動C1から制御開始可能時点D1ま
では比較的長い約2分ほどの時間を必要とし、こ
の間少し濃いめの空燃比となるオープン制御を行
うが、これは排気対策や燃費の面で不利となる。
Normally, it takes a relatively long time of about 2 minutes from start-up C1 to control start point D1, and during this time open control is performed with a slightly richer air-fuel ratio, but this is disadvantageous in terms of exhaust emissions and fuel efficiency. becomes.

本発明はこのような従来の問題点に着目してな
されたもので、起動から制御開始可能時点までの
時間を短縮化した装置を得ることを目的とする。
The present invention has been made in view of these conventional problems, and an object of the present invention is to provide a device that shortens the time from activation to the point at which control can be started.

以下図面によつて説明する。第4図は本発明の
実施例要部を示す回路図である。
This will be explained below with reference to the drawings. FIG. 4 is a circuit diagram showing essential parts of an embodiment of the present invention.

図において、31,32,33はスイツチ、3
4,35は比較器、36はダイオード、37はコ
ンデンサ、38は抵抗、39は増幅器である。
In the figure, 31, 32, 33 are switches;
4 and 35 are comparators, 36 is a diode, 37 is a capacitor, 38 is a resistor, and 39 is an amplifier.

その他の部分は第2図のものと同様の構成であ
り、同じ符号を付してある。
The other parts have the same configuration as those in FIG. 2, and are given the same reference numerals.

比較器34は、センサがある程度働くセンサ温
度(例えば200℃)を検出してスイツチ31を閉
じる。
The comparator 34 detects a sensor temperature (for example, 200° C.) at which the sensor works to a certain extent and closes the switch 31.

具体的には、センサ温度に応じてセンサ内部の
ヒータ19の内部抵抗も同時に変化してゆくこと
を利用して、電源18とヒータ19との間に抵抗
38を挿入し、内部抵抗に従つてヒータ19の両
端電圧が変動するようにし、この電圧と所定の基
準電圧Eとを比較することによりセンサ温度を検
出する。
Specifically, taking advantage of the fact that the internal resistance of the heater 19 inside the sensor changes simultaneously according to the sensor temperature, a resistor 38 is inserted between the power supply 18 and the heater 19, and the internal resistance changes according to the internal resistance. The voltage across the heater 19 is made to vary, and the sensor temperature is detected by comparing this voltage with a predetermined reference voltage E.

比較器35は、センサが充分に作動しセンサ出
力信号をそのまま比較器20へ送つても、空燃比
検出パルス信号が得られて空燃比のフイードバツ
ク制御が可能となる状態を検出して、スイツチ3
2を開く一方、スイツチ33を閉じる。
The comparator 35 detects a state in which an air-fuel ratio detection pulse signal is obtained and feedback control of the air-fuel ratio is possible even if the sensor operates sufficiently and sends the sensor output signal as it is to the comparator 20, and switches the switch 3.
2 is opened, while switch 33 is closed.

具体的には、増幅器39、ダイオード36を経
た後、コンデンサ37を介して得られたセンサ出
力信号のDCレベルがフイードバツク制御開始可
能の目安を与える所定の基準電圧Fを下回つたと
きに、スイツチ32,33の接点を切り換える。
Specifically, when the DC level of the sensor output signal obtained via the amplifier 39, the diode 36, and the capacitor 37 falls below a predetermined reference voltage F that provides a guideline for starting feedback control, the switch is activated. Switch the contacts 32 and 33.

次に第5図を参照しながら全体的な作用を説明
する。
Next, the overall operation will be explained with reference to FIG.

冷間始動に際して、エンジンを起動すると、セ
ンサ温度が徐々に上昇してゆくので、この起動時
点C2からセンサ出力信号A2は徐々に降下を始
める。
When the engine is started during a cold start, the sensor temperature gradually rises, so the sensor output signal A2 starts to gradually drop from the starting point C2.

そして、ある程度センサが働くところまでセン
サ温度が上昇した時点G2で、比較器34がスイ
ツチ31を閉じる。
Then, at time G2 when the sensor temperature rises to a point where the sensor is working to some extent, the comparator 34 closes the switch 31.

当然ながらこの時点G2では、センサが充分に
作動をしていないので比較器35がスイツチ32
を閉じ、またスイツチ33を開いている。
Naturally, at this point in time G2, the sensor is not operating sufficiently, so the comparator 35 switches to the switch 32.
is closed and switch 33 is opened.

したがつて、予め空燃比検出パルス信号に似せ
たパルス状(あるいはのこぎり波状、または正弦
波状)の空燃比設定信号Hが、スイツチ31,3
2を経て空燃比コントロールユニツト(図示せ
ず)へ送られる。
Therefore, an air-fuel ratio setting signal H having a pulse shape (or a sawtooth wave shape or a sine wave shape) resembling the air-fuel ratio detection pulse signal is applied to the switches 31 and 3 in advance.
2 to an air-fuel ratio control unit (not shown).

ところで、起動時点C2からこの時点G2まで
は、良好に始動できるよう、少し濃い空燃比とな
るようなオープン制御を行なうようにしてあり、
またこの時点G2からは空燃比設定信号Hに応じ
て空燃比制御を行うようにしてある。
By the way, from starting point C2 to this point G2, open control is performed to provide a slightly richer air-fuel ratio in order to ensure a good start.
Further, from this point in time G2, the air-fuel ratio is controlled in accordance with the air-fuel ratio setting signal H.

この結果、上記の信号Hに対応した周期で空燃
比が上下に変動し、これに合わせて周期的にセン
サ出力信号A2が変動し始める。
As a result, the air-fuel ratio fluctuates up and down at a period corresponding to the signal H, and the sensor output signal A2 starts to fluctuate periodically in accordance with this.

この変動によりセンサ出力信号A2が比較器2
0への基準レベルB2を下回る時点D2が従来
(第3図参照)に比べて早まる。この時点D2で
は比較器20から何らかの空燃比検出パルス信号
が出力されることが可能であり、これを考慮して
ほぼこの時点D2に比較器35がスイツチ32,
33の接点を切り換えるよう基準電圧Fの値を予
め設定してある。
This fluctuation causes the sensor output signal A2 to change to the comparator 2.
The time point D2 at which the value falls below the reference level B2 to 0 is earlier than in the conventional case (see FIG. 3). At this time D2, it is possible for the comparator 20 to output some kind of air-fuel ratio detection pulse signal, and in consideration of this, the comparator 35 switches the switch 32,
The value of the reference voltage F is set in advance to switch the 33 contacts.

したがつて時点D2とほぼ同時に、スイツチ3
2が開く一方、スイツチ33が閉じて、空燃比設
定信号Hが遮断される一方、比較器20へセンサ
出力信号A2が送られ、コントロールユニツトへ
は空燃比検出パルス信号が出力される。
Therefore, almost at the same time as point D2, switch 3
2 is opened, while the switch 33 is closed and the air-fuel ratio setting signal H is cut off, while the sensor output signal A2 is sent to the comparator 20, and the air-fuel ratio detection pulse signal is output to the control unit.

この結果、空燃比のフイードバツク制御が開始
され、結局空燃比設定信号Hに起因したセンサ出
力信号A2の周期的な変動に対応した分だけ、従
来(第3図参照)に比べて空燃比のフイードバツ
ク制御の開始時期を早めることができる。
As a result, feedback control of the air-fuel ratio is started, and as a result, the feedback control of the air-fuel ratio is increased by an amount corresponding to the periodic fluctuation of the sensor output signal A2 caused by the air-fuel ratio setting signal H compared to the conventional method (see Fig. 3). Control can be started earlier.

以上のように本発明によれば、ある程度センサ
が正常に機能する状態まで温度上昇したならば、
予め空燃比の検出信号に似せた周期的に空燃比を
上下に変化させる空燃比設定信号を出力するの
で、この空燃比の変動に対応してセンサ出力が周
期的に上下に脈動し、したがつてセンサ出力が静
的に変化していく従来に比べて、下方への脈動分
だけセンサ出力値が空燃比の比較基準となる比較
器の基準レベルをよぎる時期が早くなり、冷間始
動に際して起動から空燃比のフイードバツク制御
の開始までの時間を従来に比べて短縮でき、した
がつて燃費や排気浄化性能を向上させられる。
As described above, according to the present invention, once the temperature rises to a point where the sensor can function normally,
Since an air-fuel ratio setting signal that periodically changes the air-fuel ratio up and down in a manner similar to the air-fuel ratio detection signal is output in advance, the sensor output periodically pulsates up and down in response to fluctuations in the air-fuel ratio. Compared to the conventional system where the sensor output changes statically, the time when the sensor output value crosses the reference level of the comparator, which is the comparison standard for the air-fuel ratio, will be earlier due to the downward pulsation, and the sensor output value will start up during a cold start. The time from the start to the start of air-fuel ratio feedback control can be shortened compared to the conventional method, and therefore fuel efficiency and exhaust purification performance can be improved.

また、空燃比のフイードバツク制御への移行に
あたつて、燃料供給をカツトするなどの操作を必
要としない。
Further, when shifting to air-fuel ratio feedback control, operations such as cutting off fuel supply are not required.

さらに、換言すれば空燃比のフイードバツク制
御への移行までの少し濃い空燃比となる時期が短
縮されるので、センサ内部の内側白金電極から酸
素が逆に酸素濃度の低い排気へと多量に逃げ出し
て、前記電極付近の酸素濃度が基準値よりも低下
してしまうといつたことも抑制できる。
Furthermore, in other words, the period of time when the air-fuel ratio reaches a slightly richer air-fuel ratio before switching to feedback control is shortened, so that a large amount of oxygen escapes from the inner platinum electrode inside the sensor to the exhaust gas with a low oxygen concentration. Also, it is possible to prevent the oxygen concentration near the electrode from falling below the reference value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素濃度センサを示す斜視図、第2図
は流し込み電流とヒータ電流とをセンサへ供給す
る従来の装置を示す回路図、第3図は従来の空燃
比制御装置の作動を示すタイムチヤート、第4図
は本発明の実施例要部を示す回路図、第5図はそ
の作動を示すタイムチヤートである。 3……白金線ヒータ、5……センサ素子部本
体、15……センサ素子部、16……電界効果型
トランジスタ、17……抵抗、18……電源、1
9……ヒータ、20……比較器、31,32,3
3……スイツチ、34,35……比較器、37…
…コンデンサ、38……抵抗、E,F……基準電
圧、H……空燃比設定パルス信号、A2……空燃
比検出パルス信号、B2……基準レベル。
Fig. 1 is a perspective view showing an oxygen concentration sensor, Fig. 2 is a circuit diagram showing a conventional device that supplies inflow current and heater current to the sensor, and Fig. 3 is a timing diagram showing the operation of a conventional air-fuel ratio control device. FIG. 4 is a circuit diagram showing essential parts of an embodiment of the present invention, and FIG. 5 is a time chart showing its operation. 3...Platinum wire heater, 5...Sensor element section main body, 15...Sensor element section, 16...Field effect transistor, 17...Resistor, 18...Power source, 1
9... Heater, 20... Comparator, 31, 32, 3
3...Switch, 34, 35...Comparator, 37...
...Capacitor, 38...Resistor, E, F...Reference voltage, H...Air-fuel ratio setting pulse signal, A2...Air-fuel ratio detection pulse signal, B2...Reference level.

Claims (1)

【特許請求の範囲】 1 機関の排気中の酸素濃度から間接的に空燃比
を検出するヒータ付膜構造センサと、該センサ出
力信号と所定の基準レベルとを比較して空燃比検
出パルス信号を得る比較器と、始動時にセンサ出
力信号が所定のレベルに降下するまでの間空燃比
をオープン制御する手段とを有し、前記オープン
制御時を除き空燃比検出信号に応じてコントロー
ルユニツトを介して空燃比をフイードバツク制御
する装置において、センサ温度が所定値を越えた
状態を検出する手段と、該状態検出時に上記オー
プン制御の信号に代えて周期的に空燃比を上下さ
せる所定の空燃比設定信号をコントロールユニツ
トへ送出する手段と。空燃比検出信号によるフイ
ードバツク制御が可能な状態を検出する手段と、
該状態検出時に空燃比設定信号に代えて空燃比検
出信号をコントロールユニツトへ送出する手段と
を備えた空燃比制御装置。 2 センサ温度の検出手段は、センサのヒータの
内部抵抗変化を検出する手段である特許請求の範
囲第1項記載の空燃比制御装置。 3 空燃比設定信号は、パルス状、のこぎり波
状、正弦波状のいずれかの波形をもつものである
特許請求の範囲第1項または第2項記載の空燃比
制御装置。
[Scope of Claims] 1. A membrane structure sensor with a heater that indirectly detects the air-fuel ratio from the oxygen concentration in the exhaust gas of an engine, and an air-fuel ratio detection pulse signal by comparing the sensor output signal with a predetermined reference level. and means for controlling the air-fuel ratio in an open manner until the sensor output signal drops to a predetermined level at the time of starting, and means for controlling the air-fuel ratio in an open manner until the sensor output signal drops to a predetermined level at startup, In a device that performs feedback control of an air-fuel ratio, means for detecting a state in which the sensor temperature exceeds a predetermined value, and a predetermined air-fuel ratio setting signal that periodically raises and lowers the air-fuel ratio in place of the open control signal when the state is detected. and a means for sending the information to the control unit. means for detecting a state in which feedback control based on an air-fuel ratio detection signal is possible;
An air-fuel ratio control device comprising means for sending an air-fuel ratio detection signal to a control unit in place of the air-fuel ratio setting signal when detecting the condition. 2. The air-fuel ratio control device according to claim 1, wherein the sensor temperature detection means is means for detecting a change in internal resistance of a heater of the sensor. 3. The air-fuel ratio control device according to claim 1 or 2, wherein the air-fuel ratio setting signal has a waveform of any one of a pulse shape, a sawtooth wave shape, and a sine wave shape.
JP13060579A 1979-10-09 1979-10-09 Controller for air fuel ratio Granted JPS5654348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13060579A JPS5654348A (en) 1979-10-09 1979-10-09 Controller for air fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13060579A JPS5654348A (en) 1979-10-09 1979-10-09 Controller for air fuel ratio

Publications (2)

Publication Number Publication Date
JPS5654348A JPS5654348A (en) 1981-05-14
JPS6122904B2 true JPS6122904B2 (en) 1986-06-03

Family

ID=15038200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13060579A Granted JPS5654348A (en) 1979-10-09 1979-10-09 Controller for air fuel ratio

Country Status (1)

Country Link
JP (1) JPS5654348A (en)

Also Published As

Publication number Publication date
JPS5654348A (en) 1981-05-14

Similar Documents

Publication Publication Date Title
JPS6042368Y2 (en) Air fuel ratio control device
US4543176A (en) Oxygen concentration detector under temperature control
US7776194B2 (en) Gas concentration measuring apparatus designed to compensate for output error
US4112893A (en) Air/fuel ratio control system for internal combustion engine having high input impedance circuit
US5970967A (en) Method and apparatus for diagnosing an abnormality in a wide range air-fuel ratio sensor
JPH04148856A (en) Heater controlling device for oxygen-concentration detecting sensor
JP2005523431A (en) Operation method of broadband lambda sensor
KR101669328B1 (en) Gas sensor control apparatus and gas sensor control method
US4258563A (en) Gas sensor
JPH10299561A (en) Heater control device for oxygen sensor
JP2005504283A (en) Method for operating broadband lambda sensor and control device thereof
JPS6042367Y2 (en) Air fuel ratio control device
JP2000065794A (en) Method for adjusting temperature of measuring sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
US5696313A (en) Lambda sensor with electric heater
JP3500976B2 (en) Abnormality diagnosis device for gas concentration sensor
JP2548131B2 (en) Control method of oxygen concentration sensor
US6153071A (en) Exhaust oxygen sensing
JP3420932B2 (en) Method for detecting element resistance of gas concentration sensor
JPS6122904B2 (en)
JP6943722B2 (en) Gas sensor controller
JPH11264811A (en) Device for controlling heater of air-fuel ratio sensor
JPH06103283B2 (en) Oxygen sensor controller
JPH11270382A (en) Air-fuel ratio control device of internal combustion engine
US6103098A (en) Method of sensing exhaust oxygen