JPS61228835A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus

Info

Publication number
JPS61228835A
JPS61228835A JP6993685A JP6993685A JPS61228835A JP S61228835 A JPS61228835 A JP S61228835A JP 6993685 A JP6993685 A JP 6993685A JP 6993685 A JP6993685 A JP 6993685A JP S61228835 A JPS61228835 A JP S61228835A
Authority
JP
Japan
Prior art keywords
waves
ultrasonic
living body
transmitted
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6993685A
Other languages
Japanese (ja)
Other versions
JPH0259732B2 (en
Inventor
貴司 伊藤
広瀬 昌紀
河西 千広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP6993685A priority Critical patent/JPS61228835A/en
Publication of JPS61228835A publication Critical patent/JPS61228835A/en
Publication of JPH0259732B2 publication Critical patent/JPH0259732B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超音波診断装置、特に生体内に超音波を送信し
その透過波又は反射波を受信して生体内の特質分布を測
定し表示することのできる改良された超音波診断装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic diagnostic device, particularly an ultrasonic diagnostic device that transmits ultrasonic waves into a living body, receives the transmitted waves or reflected waves, and measures and displays characteristic distributions within the living body. The present invention relates to an improved ultrasonic diagnostic device that can perform

[従来技術] 生体内に超音波を送信し、そのエコー信号を測定して生
体内の断層像を表示する超音波診断装置においては、パ
ルスエコー法が多く用いられており、これらの装置では
、一般に配列型振動子を用いて深度方向の各点に鋭い超
音波ビームを送信するためダイナミックフォーカスが行
われている。
[Prior Art] The pulse echo method is often used in ultrasound diagnostic devices that transmit ultrasound waves into a living body and measure the echo signals to display tomographic images of the inside of the living body. Generally, dynamic focusing is performed using an array type transducer to transmit a sharp ultrasonic beam to each point in the depth direction.

すなわち、深度方向を複数の領域に分割して各領域に焦
点が合うように超音波を送受信して各領域ごとの超音波
反射波を測定することにより広範囲にわたり生体内の断
層像が得られ、また一定範囲における分割領域の数を増
やせば生体内のより精密な断層像を画像表示することが
できる。
That is, by dividing the depth direction into multiple regions, transmitting and receiving ultrasound so as to focus on each region, and measuring the ultrasound reflected waves for each region, a tomographic image of the inside of the body can be obtained over a wide range. Furthermore, by increasing the number of divided regions within a certain range, a more precise tomographic image of the inside of the body can be displayed.

しかしながら、前記分割領域を増やしていけば超音波ビ
ームを更に鋭くしなければなら”ず、また増やした数だ
け超音波の送受信回数が増えることから一断面の断層像
の画像形成に時間がかかるという欠点が生じていた。こ
のことから、レーダやソナーの応用分野で周知である合
成開口法の技術を超音波診断装置へ応用することが提案
されている。
However, if the number of divided regions is increased, the ultrasonic beam must be made even sharper, and the number of times the ultrasonic waves are transmitted and received increases by the number of divided regions, so it takes time to form a tomographic image of one cross section. Therefore, it has been proposed to apply the synthetic aperture technique, which is well known in the fields of radar and sonar applications, to ultrasonic diagnostic equipment.

この合成開口法とは、送受信を繰返しながら送受信位置
を移動させ生体内に超音波送受信を行い、受信信号を位
相を含めて記憶させた後に生体内の各点に焦点が合うよ
うに受信波形を合成して各点の画像信号を得る方法であ
り、第1図にその波形合成の説明が示されている。
This synthetic aperture method involves transmitting and receiving ultrasonic waves inside a living body by repeatedly transmitting and receiving while moving the transmitting/receiving position, storing the received signal including the phase, and then converting the received waveform so that each point in the living body is focused. This is a method of synthesizing to obtain an image signal at each point, and an explanation of the waveform synthesis is shown in FIG.

図において、T1.T2.T3・・・T、を振動子とし
、この振動子から順次超音波パルスを送信すると、同じ
振動子で受信された受信波形はUl (t )、U2 
(t )、U3 (t )−Un (t )で表される
波形となって得られる。この時に振動子T1.T2.T
3.−ToからQl、Q2゜Q3・・・Qntriれた
点Fに焦点を合わせ、この点の測定をする場合は各振動
子と点1間を超音波が往復するのに要する時間τiだけ
移動させて加算した波形S (t )を求める。すなわ
ち、ただしτj −2Ri/C(C:音速)で表わされ
、これは図中の双曲線f上の振幅を加算することに相当
し大きな振幅を得ることができる。また他の点Pについ
てはT1.T2.T3・・・王、と点Pとの位置関係に
対応するuzt)上のデータは双曲線p上の振幅となり
、これらを加算すればこれらの振幅は互いに打ち消しあ
って小さくなる。
In the figure, T1. T2. T3...T is a transducer, and when ultrasonic pulses are sequentially transmitted from this transducer, the received waveforms received by the same transducer are Ul (t), U2
(t), U3 (t)-Un (t). At this time, the vibrator T1. T2. T
3. - Focus on point F which is Ql, Q2゜Q3...Qntri from To, and when measuring this point, move it by the time τi required for the ultrasonic wave to go back and forth between each transducer and point 1. The summed waveform S (t) is obtained. That is, it is expressed as τj -2Ri/C (C: speed of sound), which corresponds to adding the amplitudes on the hyperbola f in the figure, and a large amplitude can be obtained. Regarding other points P, T1. T2. The data on T3... (uzt) corresponding to the positional relationship between the point P and the point P becomes the amplitude on the hyperbola p, and when these are added, these amplitudes cancel each other out and become smaller.

従って、点Fに焦点を合わせればLJi(t)のそれぞ
れの受信波は同一位相で加算され振幅は大きくなるので
、この焦点の位置を順次変えて構成すれば高解像度の断
層像が得られることが理解される。
Therefore, if the focus is focused on point F, the received waves of LJi(t) will be added in the same phase and the amplitude will become large, so if the position of this focus is sequentially changed, a high-resolution tomographic image can be obtained. is understood.

しかしながら、前述した焦点以外の点Fの位置によって
は受信信号が同位相で加算される場合があり、これは焦
点Fの各波形加算の際に仮想的な音波の干渉が生じ、あ
たかも超音波ビームが放射されているように見える現象
、一般にサイドローブといわれる現象が生じるという欠
点があり、断層画像の画質を劣化させるという問題があ
った。
However, depending on the position of the point F other than the focal point mentioned above, the received signals may be added in the same phase, which means that virtual sound wave interference occurs when each waveform of the focal point F is added, and it looks like an ultrasonic beam. This method has the disadvantage of causing a phenomenon that appears to be radiated by radiation, a phenomenon generally referred to as a sidelobe, which poses a problem of deteriorating the image quality of tomographic images.

[発明の目的] 本発明は前記従来の課題に鑑みなされたものであり、そ
の目的は、合成開口法による超音波診断装置におけるサ
イドローブを除去して生体内の特質分布を良好に画像表
示することのできる超音波診断装置を提供することにあ
る。
[Object of the Invention] The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to remove side lobes in an ultrasonic diagnostic apparatus using a synthetic aperture method and to display a good image of characteristic distribution in a living body. The purpose of the present invention is to provide an ultrasonic diagnostic device that can perform

[発明の構成] 前記目的を達成するために、本発明は、超音波を生体内
に送信して生体内からの複数の透過波又は反射波を受信
する送受信器と、該複数の受信信号をそれぞれ非線形増
幅する対数増幅器と、該非線形増幅された複数の受信信
号を別個に記憶するメモリと、該記憶された複数の受信
信号から生体内の所望の焦点位置の信号をそれぞれ位相
調整して合成演算する演算器とを含む超音波診断装置に
おいて、複数の超音波受信信号をそれぞれ非線形に増幅
して記憶した後に合成することにより生体内の特質分布
を測定し表示することを特徴とする。
[Configuration of the Invention] In order to achieve the above object, the present invention provides a transceiver that transmits ultrasonic waves into a living body and receives a plurality of transmitted waves or reflected waves from within the living body, and a transceiver that transmits the plurality of received signals. A logarithmic amplifier that performs nonlinear amplification, a memory that separately stores the plurality of nonlinearly amplified received signals, and a signal at a desired focal position in the living body from the stored plurality of received signals by adjusting the phase and synthesizing the signals. The ultrasonic diagnostic apparatus includes a computing unit that performs calculations, and is characterized in that a plurality of ultrasonic reception signals are each nonlinearly amplified and stored, and then synthesized to measure and display a characteristic distribution within a living body.

[実施例] 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiments] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

本発明において特徴的なことは、超音波受信信号を非線
形に増幅する対数増幅器を設けたので合成開口法を適用
した超音波診断装置において発生するサイドローブを除
去できることであり、まず第2図に基づいてこのサイド
ローブ除去の説明をする。
The characteristic feature of the present invention is that it is equipped with a logarithmic amplifier that nonlinearly amplifies the received ultrasound signal, so it is possible to remove sidelobes that occur in ultrasound diagnostic equipment that uses the synthetic aperture method. This sidelobe removal will be explained based on the following.

生体内のある点Fと点Pは振動子から十分遠方にあり、
T1.T2.T3・Tnから点F、Pに結ぶ線は平行と
みなせることから図のように点P方向は点F方向からθ
角の方向にある場合を考える。前記点Fに焦点を合わせ
た場合の点Pからのサイドローブ信号が第2同左に示す
波形であったとすると各振動子で受信した受信波は時間
τずつずれたものである。時間τは d τ= −sinθ (d:振動子間距離、C:音速) で表わされ、これを変形した式Cτ−2dsinθにお
いて、Cτが波長λの整数倍になる場合(Cτ−閣λ)
に受信波は干渉する。この時の点Pの方向角θ−は 一λ θ−−are sin ’(−)      (1:整
数)d で表わされる。
Points F and P in the living body are sufficiently far from the oscillator,
T1. T2. Since the lines connecting T3/Tn to points F and P can be considered parallel, the direction of point P is θ from the direction of point F as shown in the figure.
Consider the case in the corner direction. If the sidelobe signal from point P when focused on point F has the waveform shown in the second figure on the left, the received waves received by each vibrator are shifted by time τ. The time τ is expressed as d τ = -sin θ (d: distance between transducers, C: speed of sound), and in the formula C τ - 2 d sin θ that is modified from this, when C τ is an integral multiple of the wavelength λ (C τ - λ )
The received waves interfere. The direction angle θ- of the point P at this time is expressed as -λ θ--are sin'(-) (1: integer) d.

すなわち、点Pがθ−力方向ある場合は点Pからの反射
波が同位相で加算され(第2図C)大きな振幅となって
サイドロープが現われ、■−1の場合が最も強くなる。
That is, when point P is in the θ-force direction, the reflected waves from point P are added in the same phase (FIG. 2C), resulting in a large amplitude and a side rope appears, and is strongest in the case of ■-1.

次に、−一1の場合(θ1方向)のサイド0−プについ
て考える。
Next, consider the side 0-p in the case of -1 (in the θ1 direction).

各振動子の指向性r(θ)とすれば従来装置にお゛いて
は、各受信波形が線形に加算されるのでθ1方向のサイ
ドロープは、振幅をa1振動子の数をnとすると nar (θ1)           ・・・(1)
で表わされ、この指向性r(θ)は焦点F方向ではθ=
0であり通常r(0)=1に規格化されるから、点Fで
のメインローブは、 nar(0) −na           ・・・(
2)となる。
If the directivity of each transducer is r(θ), in the conventional device, each received waveform is added linearly, so the side rope in the θ1 direction is nar, where the amplitude is a1 and the number of transducers is n. (θ1) ... (1)
This directivity r(θ) is expressed as θ=
0 and is usually normalized to r(0)=1, so the main lobe at point F is nar(0) −na...(
2).

そして、前記線形増幅された受信波信号は一般に対数増
幅器を用いて再び増幅して画像表示されるが、この際、
増幅器入力信号■・が雑音レベル■ δより小さい場合には出力は0として処理され、大きい
場合に限り入力信号は対数増幅される。該増幅器出力■
。を式で表わせば、 βlog(v、/δ)・・・δくv・ v  −0−・・δ<lv、I 一βlog(IV・ 1/δ)・・・δ≧v。
The linearly amplified received wave signal is generally amplified again using a logarithmic amplifier and displayed as an image.
If the amplifier input signal ■ is smaller than the noise level ■δ, the output is treated as 0, and only if it is larger, the input signal is logarithmically amplified. The amplifier output ■
. Expressed as a formula, βlog(v,/δ)...δ×v・v−0−・δ<lv, I−βlog(IV・1/δ)…δ≧v.

(β:定数) となる。(β: constant) becomes.

従って、前述したサイドロープ(1)式とメインローブ
(2)式を対数増幅すれば、(3)式のδ<v−の時の
式V−δ1oo(vH/δ)に代入−審 した式として表わすことができ、この差を求めると、 δlog  (na/δ)−δlog  (nar(θ
1)/δ)−δ+oa  (1/ r(θ ))  ・
・・(4)となり、この(4)式はメインローブレベル
とす′ イドロープレベルの差を表わすものである。
Therefore, if we logarithmically amplify the side lobe (1) equation and the main lobe (2) equation described above, we can substitute the equation (3) for δ<v- in the equation V-δ1oo(vH/δ). This difference can be expressed as δlog (na/δ)−δlog (nar(θ
1)/δ)-δ+oa (1/r(θ)) ・
...(4), and this equation (4) represents the difference between the main lobe level and the id lobe level.

これに対し、本発明に係る装置においては、各振動子出
力をそれぞれ別に対数増幅して加算することになる。す
なわち、加算される前のサイドローブ信号はar(θ1
)であり、メインロープ信号はa  (ir(0) −
1)であるからこれを(3)式により対数増幅すれば、
それぞれ βlog (ar (θ1)/δ)、βtoo(a/δ
)となる。そして、これらの信号を加算すればサイドロ
ープレベルはnalog(ar(θ1/δ)、メインロ
ーブレベルはn1O(J(a/δ)であるからこれらの
差は、 n βIog(a/δ) =nβlog(ar(θ1)/δ) −βtoo (1/ r(θ1))0   ・・・(5
)となる。
In contrast, in the apparatus according to the present invention, each vibrator output is logarithmically amplified separately and added. In other words, the sidelobe signal before being added is ar(θ1
), and the main rope signal is a (ir(0) −
1), so if we logarithmically amplify this using equation (3), we get
βlog (ar (θ1)/δ) and βtoo(a/δ
). Then, if these signals are added, the side lobe level is nalog(ar(θ1/δ)) and the main lobe level is n1O(J(a/δ)), so the difference between them is n βIog(a/δ) = nβlog(ar(θ1)/δ) −βtoo (1/r(θ1))0...(5
).

従って、(4)式と(5)式を比較すると、βloa 
 (1/ r(θ1)) )βtoo  (1/V (θ1)) (+”+ O< r(θ)<1) であり、従来装置と本発明ではメインローブレベルとサ
イドロープレベルの差は大きな遠いが生じる。
Therefore, when comparing equations (4) and (5), βloa
(1/r(θ1)) ) βtoo (1/V (θ1)) (+”+ O<r(θ)<1), and the difference between the main lobe level and the side lobe level between the conventional device and the present invention is A big distance arises.

すなわち、本発明によればメインローブレベルとサイド
ロープレベルの差を大きくすることができ、このことに
よりサイドローブ信号の除去が有効に行えることが理解
される。
That is, it is understood that according to the present invention, it is possible to increase the difference between the main lobe level and the side lobe level, and thereby the side lobe signal can be effectively removed.

第3図には本発明に係る好適な実施例が示されている。FIG. 3 shows a preferred embodiment of the invention.

超音波送受信器10には配列振動子12と、この配列振
動子の振動制御を行うマルチプレクサ14と、発振器1
6が設けられており、制御器18の制御に基づいて発振
器16から得られた電気信号はドライバ20を介してマ
ルチプレクサ14に供給され、該電気信号は順次超音波
に変換されて生体内に送信される。また生体内からの反
射波は前記各振動子によって受信され、各振動子の受信
波毎に対数増幅器22によって対数増幅される。
The ultrasonic transmitter/receiver 10 includes an array transducer 12, a multiplexer 14 for controlling vibration of the array transducer, and an oscillator 1.
6 is provided, and the electrical signals obtained from the oscillator 16 under the control of the controller 18 are supplied to the multiplexer 14 via the driver 20, and the electrical signals are sequentially converted into ultrasound waves and transmitted into the living body. be done. Further, reflected waves from inside the living body are received by each of the vibrators, and each wave received by each vibrator is logarithmically amplified by a logarithmic amplifier 22.

そして、対数増幅された受信波信号は直交検波器24に
供給されホログラム変換が行われる。すなわち、゛発振
器16から出力された電気信号は移送器26を介して乗
算器28.30に供給され、送信超音波の中心周波数を
持つ余弦波と正弦波が増幅された受信信号に乗算され、
これを低域通過フィルタ32.34に入力して搬送波を
除去すれば受信信号の振幅と位相の情報をもつ信号(ホ
ログラム)が得られる。
The logarithmically amplified received wave signal is then supplied to the orthogonal detector 24, where hologram conversion is performed. That is, ``The electric signal output from the oscillator 16 is supplied to the multiplier 28.30 via the transfer device 26, and the amplified received signal is multiplied by a cosine wave and a sine wave having the center frequency of the transmitted ultrasonic wave,
If this is input to low-pass filters 32 and 34 and the carrier wave is removed, a signal (hologram) having information on the amplitude and phase of the received signal is obtained.

本実施例において前記対数増幅器は直交検波器24の前
に配置されているが、第4図(C)に示されるように直
交検波器24の後に配置することもできる。もちろんメ
モリ40の前に配置されなければならないことは言うま
でもない。
In this embodiment, the logarithmic amplifier is placed before the quadrature detector 24, but it can also be placed after the quadrature detector 24, as shown in FIG. 4(C). Of course, it goes without saying that it must be placed before the memory 40.

このようにして得られたホログラムは、A/D変換器3
6.38にてA/D変換されメモリ40に供給されて一
旦記憶される。一般にA/D変換°器やデジタルメモリ
は入力信号の変動幅が大きいほど、A/D変換器のビッ
ト数が多くなりメモリ容量も大となる。しかし本発明に
係る装置は、対数増幅器22の使用により前述したホロ
グラムの振幅変動範囲が圧縮されており、信号記録ある
いは処理が容易となる。
The hologram obtained in this way is transferred to the A/D converter 3.
At step 6.38, the signal is A/D converted and supplied to the memory 40, where it is temporarily stored. Generally, in an A/D converter or a digital memory, the larger the fluctuation range of the input signal, the larger the number of bits of the A/D converter and the larger the memory capacity. However, in the apparatus according to the present invention, the amplitude variation range of the hologram described above is compressed by using the logarithmic amplifier 22, and signal recording or processing becomes easy.

次に、メモリ40で記録されたホログラムは乗算器42
.44によって前述した余弦波と正弦波が再度乗算され
、加算器46にて直交検波前の受信波信号に再生される
。該加算器46の出力は演算器48に入力され、各振動
子の受信信号を適当な時間間隔移動させて加算演算すれ
ば生体内の各焦点における情報が得られ、生体内の断層
像は画像メモリ50を介してTVモニタ52に画像形成
される。
Next, the hologram recorded in the memory 40 is transferred to a multiplier 42.
.. 44, the above-mentioned cosine wave and sine wave are multiplied again, and an adder 46 reproduces the received wave signal before orthogonal detection. The output of the adder 46 is input to the arithmetic unit 48, and by moving the received signals of each transducer by an appropriate time interval and performing an addition operation, information at each focal point within the living body can be obtained, and the tomographic image inside the living body is an image. An image is formed on the TV monitor 52 via the memory 50.

また、各振動子に対応するメモリ40の領域の内容を更
新することを繰り返すように制御すると常に最新のホロ
グラムが記憶され、TVモニタ52には、更新された新
しい情報に基づく断層像を適宜画像表示することが可能
となる。
Furthermore, if the content of the area of the memory 40 corresponding to each transducer is controlled to be repeatedly updated, the latest hologram is always stored, and the TV monitor 52 displays a tomographic image based on the updated new information as appropriate. It becomes possible to display.

なお、本実施例においては、送受信号は同一振動子によ
って行っているが、送信した振動子と別の振動子で超音
波を受信させたり、一対の振動子を機械的に走査させる
ことによっても超音波の送受信を行うことができ、また
受信する超音波は生体内からの反射波に限らず透過波で
あっても同じ効果を得ることができる。
In this example, the transmitted and received signals are transmitted and received using the same transducer, but the ultrasonic waves can also be received by a transducer different from the transducer that transmitted them, or by mechanically scanning a pair of transducers. It is possible to transmit and receive ultrasonic waves, and the same effect can be obtained even if the received ultrasonic waves are not only reflected waves from inside the living body but also transmitted waves.

[発明の効果1 以上説明したように、本発明によれば、各振動子により
受信した生体内の超音波透過波あるいは反射波を非線形
に増幅して記録しているので、合成開口技術にて生体内
の各焦点における像を合成する際に生じるサイドロープ
が除去され、送受波した生体の高精度な断層画像を得る
ことができ、病気の診断に有益な情報を提供することが
可能となる。
[Effect of the invention 1 As explained above, according to the present invention, since the ultrasonic transmitted waves or reflected waves in the living body received by each transducer are nonlinearly amplified and recorded, synthetic aperture technology can be used to The side loops that occur when combining images at each focal point within a living body are removed, making it possible to obtain highly accurate tomographic images of the living body through transmitted and received waves, making it possible to provide useful information for disease diagnosis. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合成開口法の説明図、 第2図はサイドロープの説明図、 第3図は本発明に係る超音波診断装置の好適な実施例を
示す説明図、 第4図は対数増幅器の配置の説明図である。 10 ・・・ 送受信器 12 ・・・ 配列振動子 18 ・・・ 制御器 22 ・・・ 対数増幅器 40 ・・・ メモリ 48 ・・・ 演算器 52 ・・・ TVモニタ。
Fig. 1 is an explanatory diagram of the synthetic aperture method, Fig. 2 is an explanatory diagram of the side rope, Fig. 3 is an explanatory diagram showing a preferred embodiment of the ultrasonic diagnostic apparatus according to the present invention, and Fig. 4 is an explanatory diagram of the logarithmic amplifier. It is an explanatory diagram of arrangement. 10... Transmitter/receiver 12... Array transducer 18... Controller 22... Logarithmic amplifier 40... Memory 48... Arithmetic unit 52... TV monitor.

Claims (2)

【特許請求の範囲】[Claims] (1)超音波パルスビームを生体内に送信し透過波又は
反射波を受信増幅して表示する超音波診断装置において
、超音波を生体内に送信して生体内から複数の透過波又
は反射波を受信する送受信器と、該複数の受信信号をそ
れぞれ非線形増幅する対数増幅器と、該非線形増幅され
た複数の受信信号を別個に記憶するメモリと、該記憶さ
れた複数の受信信号から生体内の所望の焦点位置の信号
をそれぞれ位相調整して合成演算する演算器とを含み、
複数の超音波受信信号をそれぞれ非線形に増幅して記憶
した後に合成することにより生体内特質分布を測定し表
示することを特徴とする超音波診断装置。
(1) In an ultrasound diagnostic device that transmits an ultrasonic pulse beam into a living body, receives and amplifies transmitted waves or reflected waves, and displays them, the ultrasound is transmitted into a living body and multiple transmitted waves or reflected waves are generated from within the living body. a logarithmic amplifier that nonlinearly amplifies each of the plurality of received signals; a memory that separately stores the plurality of nonlinearly amplified received signals; an arithmetic unit that adjusts the phase of each signal at a desired focal position and performs a synthesis operation;
An ultrasonic diagnostic apparatus characterized by measuring and displaying an in-vivo characteristic distribution by nonlinearly amplifying and storing a plurality of ultrasonic reception signals and then composing them.
(2)特許請求の範囲(1)記載の装置において、単一
の送受信器を移動させて超音波の送信を順次繰り返すと
同時に該送信された超音波を移動しながら順次受信し、
該複数の受信信号を記憶した後に合成することを特徴と
する超音波診断装置。
(2) In the device according to claim (1), a single transmitter/receiver is moved to sequentially repeat the transmission of ultrasonic waves, while at the same time sequentially receiving the transmitted ultrasonic waves while moving;
An ultrasonic diagnostic apparatus characterized in that the plurality of received signals are stored and then synthesized.
JP6993685A 1985-04-04 1985-04-04 Ultrasonic diagnostic apparatus Granted JPS61228835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6993685A JPS61228835A (en) 1985-04-04 1985-04-04 Ultrasonic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6993685A JPS61228835A (en) 1985-04-04 1985-04-04 Ultrasonic diagnostic apparatus

Publications (2)

Publication Number Publication Date
JPS61228835A true JPS61228835A (en) 1986-10-13
JPH0259732B2 JPH0259732B2 (en) 1990-12-13

Family

ID=13417045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6993685A Granted JPS61228835A (en) 1985-04-04 1985-04-04 Ultrasonic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JPS61228835A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228288A (en) * 1987-03-17 1988-09-22 富士通株式会社 Automatic public funds processor
JP2010029639A (en) * 2008-06-23 2010-02-12 Canon Inc Ultrasound apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137040A (en) * 1983-01-28 1984-08-06 株式会社東芝 Opening synthesis method ultrasonic diagnostic apparatus
JPS6048736A (en) * 1983-08-29 1985-03-16 株式会社東芝 Ultrasonic diagnostic apparatus
JPS6080444A (en) * 1983-10-07 1985-05-08 富士通株式会社 Ultrasonic diagnostic apparatus
JPS61335A (en) * 1984-06-12 1986-01-06 富士通株式会社 Ultrasonic diagnostic apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59137040A (en) * 1983-01-28 1984-08-06 株式会社東芝 Opening synthesis method ultrasonic diagnostic apparatus
JPS6048736A (en) * 1983-08-29 1985-03-16 株式会社東芝 Ultrasonic diagnostic apparatus
JPS6080444A (en) * 1983-10-07 1985-05-08 富士通株式会社 Ultrasonic diagnostic apparatus
JPS61335A (en) * 1984-06-12 1986-01-06 富士通株式会社 Ultrasonic diagnostic apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228288A (en) * 1987-03-17 1988-09-22 富士通株式会社 Automatic public funds processor
JP2010029639A (en) * 2008-06-23 2010-02-12 Canon Inc Ultrasound apparatus

Also Published As

Publication number Publication date
JPH0259732B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
US5142649A (en) Ultrasonic imaging system with multiple, dynamically focused transmit beams
US5235982A (en) Dynamic transmit focusing of a steered ultrasonic beam
US6506160B1 (en) Frequency division multiplexed wireline communication for ultrasound probe
US5865751A (en) Ultrasonic diagnostic apparatus which performs complex vector phase correction to echo signals obtained in time sequence from each ultrasonic transducer
JP2000157548A (en) Method and system for imaging ultrasonic wave scattered body
JP3510025B2 (en) Ultrasound imaging device
JPH05237117A (en) Coherent vibration energy beam imaging device and method for correcting aberration in transfer medium
US20120310095A1 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
CN102834060A (en) Focus information determination method and device, and environmental sound velocity acquisition method and device
Gehlbach et al. Digital ultrasound imaging techniques using vector sampling and raster line reconstruction
KR100483783B1 (en) Doppler signal processing apparatus and ultrasonic diagnostic apparatus
US8282556B2 (en) Ultrasonic diagnostic apparatus and reception focusing processing method
US8905933B2 (en) Ultrasonic diagnostic apparatus
US20160206282A1 (en) Ultrasound probe, ultrasound diagnostic apparatus having the same and method of generating ultrasound signal
US9218802B2 (en) Ultrasonic probe and ultrasonic diagnostic apparatus
JP4071864B2 (en) Ultrasonic wave transmitter and ultrasonic imaging device
JPS6048736A (en) Ultrasonic diagnostic apparatus
JPS61228835A (en) Ultrasonic diagnostic apparatus
US8303504B2 (en) Ultrasonic diagnostic apparatus
CN106037805A (en) Ultrasonic imaging method and device
JP3492095B2 (en) Ultrasound imaging device
JPH08173431A (en) Ultrasonic diagnostic device
JP2006000287A (en) Ultrasonic transmitting and receiving apparatus
JP4643807B2 (en) Ultrasonic measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees