JPS6122881B2 - - Google Patents

Info

Publication number
JPS6122881B2
JPS6122881B2 JP16174978A JP16174978A JPS6122881B2 JP S6122881 B2 JPS6122881 B2 JP S6122881B2 JP 16174978 A JP16174978 A JP 16174978A JP 16174978 A JP16174978 A JP 16174978A JP S6122881 B2 JPS6122881 B2 JP S6122881B2
Authority
JP
Japan
Prior art keywords
thin film
light
semiconductor thin
film
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16174978A
Other languages
Japanese (ja)
Other versions
JPS5587003A (en
Inventor
Toshihiko Ayusawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP16174978A priority Critical patent/JPS5587003A/en
Publication of JPS5587003A publication Critical patent/JPS5587003A/en
Publication of JPS6122881B2 publication Critical patent/JPS6122881B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 シリコンエビタキシヤル膜に代表される半導体
薄膜の膜厚測定には、赤外線干渉法による測定法
が最も広く用いられている。しかしながら、この
方法で膜厚の小さな膜を測定する際には光路差よ
りも短い波長の赤外光を用いる必要があり、又、
薄膜層と基板との屈折率の差、即ち反射率は波長
が短かくなる程小さく、従来、行われている方法
では、シリコンの場合約1.5μmの膜厚が測定の
下限となつている。
DETAILED DESCRIPTION OF THE INVENTION Infrared interferometry is the most widely used method for measuring the thickness of semiconductor thin films, such as silicon epitaxial films. However, when measuring a thin film using this method, it is necessary to use infrared light with a wavelength shorter than the optical path difference.
The difference in refractive index between the thin film layer and the substrate, that is, the reflectance, becomes smaller as the wavelength becomes shorter, and in the conventional method, the lower limit of measurement is about 1.5 μm film thickness in the case of silicon.

本発明は、上記の測定下限よりも薄い膜の測定
法を与えるものであり、以下に図面を参照しつつ
詳細な説明を行う。
The present invention provides a method for measuring films thinner than the above measurement lower limit, and will be described in detail below with reference to the drawings.

第1図は従来、行われている測定法の模式図で
ある。第1図でSANP及びSABCPは光路を示
す。光源Sから発した光は、薄膜表面1で、AN
に向う反射光及び、ABに向う透過光に分かれ
る。透過光は薄膜2及び基板3の界面Bで反射さ
れ、薄膜表面上のC点から薄膜外部へ射出する。
この際SANとSABCとの間に光路差を生じ、Pに
おいて、横軸にとつた入射光の波長に対し山と谷
の照度変化のある干渉波形を作り、この波形より
膜厚が計算される。この干渉波形は膜厚をd,屈
折率n,λは波長、屈折角θ′とすると 2nd cosθ′=mλ(mは整数) の時に明のコントラストを与える。
FIG. 1 is a schematic diagram of a conventional measurement method. In Figure 1, SANP and SABCP indicate optical paths. The light emitted from the light source S is on the thin film surface 1, and AN
It is divided into reflected light towards AB and transmitted light towards AB. The transmitted light is reflected at the interface B between the thin film 2 and the substrate 3, and exits from the point C on the surface of the thin film to the outside of the thin film.
At this time, an optical path difference is created between the SAN and the SABC, and an interference waveform with peak and valley illuminance changes is created at P with respect to the wavelength of the incident light taken on the horizontal axis, and the film thickness is calculated from this waveform. . This interference waveform gives a bright contrast when 2nd cos θ'=mλ 0 (m is an integer), where the film thickness is d, the refractive index is n, λ 0 is the wavelength, and the refraction angle θ'.

従つて、光路差は、干渉波形の明のコントラス
トを与える波長の整数倍なければならず、この波
長は薄膜,基板界面で充分な反射を起す波長でな
ければならない。
Therefore, the optical path difference must be an integral multiple of the wavelength that provides a bright contrast of the interference waveform, and this wavelength must be a wavelength that causes sufficient reflection at the interface between the thin film and the substrate.

本発明は、薄膜表面及び、薄膜基板界面での反
射を多数回繰返せしめて、光路差を大きくし、厚
さの小さな薄膜の厚さを測定する方法を提供する
ものである。第2図は本発明の一例を示すもので
あり、SANP及びSAB1C1B2C2B3C3Pはそれぞれ
光路を示す。光源Sより発した光は第1図と同様
にAで反射光及び屈析光に分かれ、屈折光は薄
膜・基板界面B1で反射される。一方薄膜表面1
には部分的にAlの如き反射率の高い物質膜4が
形成されている。B1で反射した光は薄膜表面に
ある反射界面C1で更に反射され、B2に向い、こ
こで反射される。屈折光は同様にC2B3で反射さ
れ、C3より外部に射出される。この際N及びC3
における光路差(△φ)は図2の場合 △φ=6nd cosθ′ となる。
The present invention provides a method for measuring the thickness of a small thin film by repeating reflections on the thin film surface and the thin film substrate interface many times to increase the optical path difference. FIG. 2 shows an example of the present invention, and SANP and SAB 1 C 1 B 2 C 2 B 3 C 3 P each indicate an optical path. The light emitted from the light source S is divided into reflected light and refracted light at A as in FIG. 1, and the refracted light is reflected at the thin film/substrate interface B1 . On the other hand, thin film surface 1
A film 4 of a highly reflective material such as Al is partially formed on the surface. The light reflected by B 1 is further reflected by the reflective interface C 1 on the thin film surface, and is directed to B 2 where it is reflected. The refracted light is similarly reflected by C 2 B 3 and emitted from C 3 to the outside. In this case, N and C 3
The optical path difference (△φ) in the case of FIG. 2 is △φ=6nd cosθ'.

この場合明コントラストを与える条件は 6ndcosθ′=mλ(mは整数) となり同次数の干渉で比較すれば、従来法の3倍
の波長の光が使え、同波長で比較すれば1/3の厚
さまで測定できる。
In this case, the condition for providing bright contrast is 6nd cos θ' = mλ (m is an integer), and if we compare the interference of the same order, we can use light with a wavelength three times that of the conventional method, and if we compare the same wavelength, we can use light that is 1/3 the thickness. It can be measured up to

第3図及び第4図は、上記測定法を行うに当つ
て用いる参照試料である。第2図による干渉波形
には、薄膜内の一回反射およびAl表面反射成分
が入つているので、第1図の試料と同様の第3図
の試料を用いて1回反射による干渉波形、Alの
反射膜が一様に塗着された第4図の試料を用いて
Al4による反射波を測定し、第2図により測定
された干渉波形から差引くことにより本測定は容
易になる。
FIGS. 3 and 4 are reference samples used in performing the above measurement method. The interference waveform shown in Fig. 2 includes a single reflection within the thin film and a reflection component on the Al surface, so using the sample shown in Fig. 3, which is similar to the sample shown in Fig. Using the sample shown in Figure 4, which has a uniformly coated reflective film,
This measurement is facilitated by measuring the reflected wave from Al4 and subtracting it from the interference waveform measured as shown in FIG.

なお、前述の説明では、薄膜内の反射回数を3
回としているが、この反射回数は3回に限らず、
検知器の検知可能な範囲で何回でも行なわせるこ
とができる。
In addition, in the above explanation, the number of reflections in the thin film is 3.
However, the number of reflections is not limited to three times,
This can be done as many times as you like within the detection range of the detector.

第5図は、薄膜表面に縞状に反射膜を形成した
試料を示し、基板3の上に形成されたシリコン
(n=3.42)の薄膜2の膜厚1μmのものを測定
するために、60゜の入射角で入射する赤外光によ
り、5回の膜内反射を起こさせるべく、Al反射
膜4を、厚さ3000Å、縞の巾2.31μm、縞の間隔
1.2μmと縞状に形成した例である。この試料を
用いることにより、赤外光の照射面全体からの反
射波および屈折波を利用でき、薄い膜厚の測定が
一層容易である。
FIG. 5 shows a sample in which a striped reflective film is formed on the surface of the thin film. In order to cause infrared light incident at an angle of incidence of ° to cause five reflections within the film, the Al reflective film 4 was coated with a thickness of 3000 Å, a stripe width of 2.31 μm, and a stripe spacing.
This is an example of a striped pattern with a thickness of 1.2 μm. By using this sample, reflected waves and refracted waves from the entire surface irradiated with infrared light can be used, making it easier to measure thin film thicknesses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、干渉法による一般的薄膜の膜厚測定
原理の説明図、第2図は本発明の方法の説明図、
第3図と第4図は本発明方法を実施する場合の参
照試料の断面図、第5図は本発明方法の実施を一
層容易とする縞状に反射膜を形成した試料の断面
図である。 1……薄膜表面、2……薄膜、3……基板、4
……Al反射膜。
Fig. 1 is an explanatory diagram of the principle of measuring the thickness of a general thin film by interferometry, Fig. 2 is an explanatory diagram of the method of the present invention,
Figures 3 and 4 are cross-sectional views of a reference sample when carrying out the method of the present invention, and Figure 5 is a cross-sectional view of a sample on which a reflective film is formed in a striped shape to make it easier to carry out the method of the present invention. . 1... Thin film surface, 2... Thin film, 3... Substrate, 4
...Al reflective film.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に成長された半導体薄膜面の一部に反
射率の高い物質の薄膜を形成し、半導体薄膜内に
入射した赤外光線を半導体薄膜と反射率の高い物
質との界面及び半導体薄膜と基板との界面との間
で多重反射を起さしめ、長波長の入射光と射出光
との干渉を用いることを特徴とする膜厚測定法。
1. A thin film of a material with high reflectance is formed on a part of the surface of a semiconductor thin film grown on a substrate, and infrared rays incident on the semiconductor thin film are directed to the interface between the semiconductor thin film and the material with high reflectance and between the semiconductor thin film and the semiconductor thin film. A film thickness measurement method characterized by causing multiple reflections between the interface with the substrate and using interference between long-wavelength incident light and emitted light.
JP16174978A 1978-12-25 1978-12-25 Film-thickness measuring method Granted JPS5587003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16174978A JPS5587003A (en) 1978-12-25 1978-12-25 Film-thickness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16174978A JPS5587003A (en) 1978-12-25 1978-12-25 Film-thickness measuring method

Publications (2)

Publication Number Publication Date
JPS5587003A JPS5587003A (en) 1980-07-01
JPS6122881B2 true JPS6122881B2 (en) 1986-06-03

Family

ID=15741149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16174978A Granted JPS5587003A (en) 1978-12-25 1978-12-25 Film-thickness measuring method

Country Status (1)

Country Link
JP (1) JPS5587003A (en)

Also Published As

Publication number Publication date
JPS5587003A (en) 1980-07-01

Similar Documents

Publication Publication Date Title
US4873430A (en) Method and apparatus for optically measuring characteristics of a thin film by directing a P-polarized beam through an integrating sphere at the brewster's angle of the film
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
EP0647827B1 (en) Film thickness measurement of structures containing a scattering surface
US5291269A (en) Apparatus and method for performing thin film layer thickness metrology on a thin film layer having shape deformations and local slope variations
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
GB2069130A (en) Thin film thickness monitor
JP2637820B2 (en) Optical film thickness measuring device
JPS6257936B2 (en)
IL105612A (en) Apparatus and method for performing thin film layer thickness metrology by deforming a thin film into a refelctive condenser
Corl et al. Thickness measurement of silicon dioxide layers by ultraviolet-visible interference method
US2726173A (en) Method and apparatus for measuring film thickness
Cunningham et al. Measurement of the correlation between the specular reflectance and surface roughness of Ag films
JPS6453101A (en) Equal tilt angle interference type film thickness gauge
JPS6122881B2 (en)
Milosevic et al. Single-reflection attenuated total reflection of organic monolayers on silicon
Clapham et al. Surface-coated reference flats for testing fully aluminized surfaces by means of the Fizeau interferometer
JP4032511B2 (en) Method for measuring optical constants of thin films
RU2239157C2 (en) Interferometer
JPS6179142A (en) Infrared absorption analysis method
JPH0731049B2 (en) Optical film thickness measuring device
JPH0436702A (en) Optical retroreflection quipment
Ward The accuracies of photometric, polarimetric and ellipsometric methods for the optical constants of thin films
JP2890588B2 (en) Method of measuring film thickness
Wacogne et al. In situ measurement of zinc oxide film thickness and optical losses
JPH0450518Y2 (en)