JPS61228449A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS61228449A
JPS61228449A JP60068721A JP6872185A JPS61228449A JP S61228449 A JPS61228449 A JP S61228449A JP 60068721 A JP60068721 A JP 60068721A JP 6872185 A JP6872185 A JP 6872185A JP S61228449 A JPS61228449 A JP S61228449A
Authority
JP
Japan
Prior art keywords
diffracted
grating
light
order
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60068721A
Other languages
Japanese (ja)
Inventor
Ryukichi Matsumura
松村 隆吉
Midori Yamaguchi
緑 山口
Noboru Nomura
登 野村
Kazuhiro Yamashita
一博 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60068721A priority Critical patent/JPS61228449A/en
Priority to US06/837,766 priority patent/US4828392A/en
Publication of JPS61228449A publication Critical patent/JPS61228449A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To perform high-precision positioning operation by detecting the shape of a positioning grating formed on a wafer and correcting the quantity of an occurring error in positioning by using the grating shape. CONSTITUTION:A reticle 14 is arranged between an illumination optical system 13 and the 1st Fourier transform lens 15 and an image emitted as a secondary light source is converged temporarily by the 1st Fourier transform lens 15 and further passed through the 2nd Fourier transform lens 15 to project an image of the pattern of the reticle 14 on the semiconductor wafer. When the 1st Fourier transform lens 15 and the 2nd Fourier transform lens 17 are equalized in focal length, the image of the pattern on the reticle is projected to life size. When the 1st and the 2nd Fourier transform lenses 15 and 17 are made different in focal length, the image is projected while reduced. The diffracted light of the pattern on the reticle is distributed spatially on the rear focal plane of the 1st Fourier transform lens and a spatial filter 16 is arranged to filter the pattern image formed on the reticle in a spectral plane, thereby projecting the light on the surface of the wafer W.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、微細パターンを持つ装置、特に1ミクロンも
しくはそれ以下のサブミクロンのルールを持つ半導体装
置等の露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an apparatus having a fine pattern, particularly an exposure apparatus for semiconductor devices and the like having a submicron rule of 1 micron or less.

従来の技術 g8図に示した従来例(IEEE、 trans on
 E、DED−26,4,1979,723,Gijs
  Bouwhuis)では、Ll、L2のレンズ系で
示されたマイクロレンズの7一リエ変換面に、レーザビ
ームを入射し、レンズL2を介して、ウェハW上に形成
された格子に対してビームを入射し、格子から回折され
る回折光をレンズ系L2を通して戻し、空間フィルタS
Fで±1次回折光のみを通過させ、さらに、レンズ系り
、t−通して、レチクルR上に入射し、レチクル近傍に
おいて、+1次の回折光が重なシ合うことによって干渉
縞を生成し、レチクルRに設けた格子を通過する光を光
検出器で検出して、ウェハWとレチクルRi位置合わせ
する構成が示されている。第8図の構成では、ウェハW
上に形成された非対称の格子に始しては位置が補正する
ことができないと述べられておシ、位置合わせマークの
製造において、全ての工程やマークで実現不可能であり
、実用化するに至っていない。
Conventional technology g8 The conventional example (IEEE, trans on
E, DED-26, 4, 1979, 723, Gijs
In Bouwhuis), a laser beam is incident on the 7-Lier transformation plane of a microlens indicated by a lens system Ll and L2, and the beam is incident on a grating formed on a wafer W via a lens L2. Then, the diffracted light diffracted from the grating is returned through the lens system L2, and the spatial filter S
Only the ±1st-order diffracted light passes through the F, and then enters the reticle R through the lens system and the +1st-order diffracted light overlaps in the vicinity of the reticle, creating interference fringes. , a configuration is shown in which light passing through a grating provided on the reticle R is detected by a photodetector to align the wafer W and the reticle Ri. In the configuration of FIG. 8, the wafer W
It has been stated that the position cannot be corrected starting from the asymmetrical grid formed on the alignment mark, but it is impossible to achieve this in all processes and marks in the production of alignment marks, and it is difficult to put it into practical use. Not yet reached.

発明が解決しようとする問題点 ウェハ上に形成した位置合わせ用格子の形状を検知する
ことによシ、格子形状よシ発生する位置合わせ誤差量を
補正する機能を有する露光装置を提供することを目的と
している。
Problems to be Solved by the Invention It is an object of the present invention to provide an exposure apparatus that has a function of correcting the amount of alignment error caused by the shape of the grid by detecting the shape of the alignment grid formed on the wafer. The purpose is

問題点を解決するための手段 本発明は、上記問題を解決するため、光源から出た光束
を、第1の格子が形成されたレチクルに入射し、格子に
よって回折した光束を、第1のレンズ系、空間フィルタ
、第2のレンズ系ヲ経て、第2の格子が形成された基板
上に入射する位置合わせ方法を有した露光装置において
、光源から出た光束が第1の格子によって回折された一
1次又は+1次の回折光のみを通過させるための第1の
開孔群と、第」の開孔群を通過した回折光が第2の格子
によって回折される複数の回折光の光強度を各々検出す
るための第1の光検出器群と、同じく第1の格子によっ
て回折された+1次又は−1次の回折光のみを通過させ
るための第2の開孔群と1.@2の開孔群を通過した回
折光が第2の格子によって回折される複数の回折光の光
強度を各々検出するための第2の光検出器群と、同じく
第1の格子によって回折された+1次の回折光を通過さ
せるための第3の開孔群と、第3の開孔群を通過した回
折光が第2の格子によって回折される複数の回折光の光
強度を各々検出するための第3の光検出器群とを具備し
た空間フィルタと、空間フィルタの各開孔群を各回折光
の通過位置に移動するための移動手段とを設けて、格子
形状よυ発生する位置合わせ誤差量を検知し、かつ、第
1の格子とfjg2の格子の相対位置を検知する構成を
提供する。
Means for Solving the Problems In order to solve the above problems, the present invention makes the light beam emitted from the light source incident on a reticle on which a first grating is formed, and the light beam diffracted by the grating is transmitted to the first lens. In an exposure apparatus that has a positioning method in which the light beam passes through a system, a spatial filter, and a second lens system and is incident on a substrate on which a second grating is formed, a light beam emitted from a light source is diffracted by the first grating. A first aperture group for passing only the 11th-order or +1st-order diffracted light, and the light intensity of a plurality of diffracted lights that have passed through the 1st-order aperture group and are diffracted by a second grating. a first photodetector group for respectively detecting 1. and a second aperture group for passing only the +1st order or -1st order diffracted light also diffracted by the first grating; A second photodetector group for detecting the light intensity of each of the plurality of diffracted lights whose diffracted light passing through the aperture group @2 is diffracted by the second grating; and a third aperture group for passing the +1st-order diffracted light, and detecting the light intensity of each of the plurality of diffracted lights in which the diffracted light that has passed through the third aperture group is diffracted by the second grating. A spatial filter equipped with a third photodetector group for the purpose of detecting the lattice shape, and a moving means for moving each aperture group of the spatial filter to the passing position of each diffracted light beam are provided. A configuration is provided that detects the alignment error amount and detects the relative position of the first grating and the fjg2 grating.

作  用 本発明は上記した構成によシ、空間フィルタの各開孔群
を、順次各回折光の通過位置に移動させて、各回折光を
第2の格子に入射し、第2の格子によって回折された回
折光を各光検出器群で検出させる。第1開孔群・第1光
検出器群及び第2開孔群・第2光検出器群では第2の格
子形状を検出し、格子形状よシ発生する位置合わせ誤差
量を推定する。又、第3の開孔群と第3の光検出器群で
は、第1の格子と第2の格子との位置ずれ量を検出し位
置合わせを行なうと共に、前述の格子形状より発生する
誤差量を補正する。
According to the above-described configuration, the present invention moves each aperture group of the spatial filter to the passing position of each diffracted light in order, makes each diffracted light incident on the second grating, and is transmitted by the second grating. The diffracted light is detected by each photodetector group. The first aperture group/first photodetector group and the second aperture group/second photodetector group detect the second lattice shape, and estimate the amount of alignment error generated by the lattice shape. In addition, the third aperture group and the third photodetector group detect the amount of positional deviation between the first grating and the second grating for alignment, and also detect the amount of error caused by the aforementioned grating shape. Correct.

実施例 本発明による光学系の実施例を第2図に示しム光源11
から出た光(この図ではよシ鮮明な干渉性とより深い焦
点深度を得るために、レーザー光を想定した構成になっ
ているが、全体の光学系は白色干渉光学系であシ、水銀
灯などのスペクトル光源でもよい)をビームエクスパン
ダ12により拡大し、この光を平行光又は集束光に変換
するためのコリメータレンズ又はコンデンサレンズで構
成された照明光学系13によって第1のレンズ系16の
入射瞳に対して入射する。
Embodiment An embodiment of the optical system according to the present invention is shown in FIG.
The light emitted from A beam expander 12 expands the light (which may be a spectral light source such as incident on the entrance pupil.

以下の説明では本発明の原理を簡潔に述べるためにレチ
クルは平行光束によって照明され、第1及び第2のレン
ズ系はフーリエ変換レンズとするが、必ずしもフーリエ
変換レンズでなくともよへ照明光学系13と第1のフー
リエ変換レンズ16七の間にレチクル14が配置され、
レチクル14のパターンを2次光源として出た像を第1
のフーリエ変換レンズ16によって、一旦集光し、さら
に電2のフーリエ変換し/ズ17を通してレチクル上の
パターンの像を半導体ウニjSVir上に投影する。第
1の7−リエ変換レンズ16とflX2の7−リエ変換
−レンズ17の焦点距離を等しくするとレチクル上のパ
ターンが等倍に投影される。第1及び第2のフーリエ変
換レンズ15.17の焦在距離を異ならしめることによ
って、縮小投影が可能となる。第1の7−リエ変換レン
ズの後側焦点面にはレチクル上のパターンの回折光(7
−リエスペクトル)が空間的に分布しておシ、空間フィ
ルタ16を配置し、レチクル上に形成されたパターンを
スペクトル面でフィルタリングして、ウェハW面上に入
射する。
In the following description, in order to briefly describe the principle of the present invention, the reticle is illuminated by a parallel light beam, and the first and second lens systems are Fourier transform lenses. However, the illumination optical system 13 does not necessarily have to be Fourier transform lenses. and the first Fourier transform lens 167, the reticle 14 is disposed between the
The image produced by using the pattern of the reticle 14 as a secondary light source is
The light is once condensed by the Fourier transform lens 16, and then subjected to Fourier transform of the electron 2. The image of the pattern on the reticle is projected onto the semiconductor urchin jSVir through the lens 17. When the focal lengths of the first 7-Lier transformation lens 16 and the 7-Lier transformation lens 17 of flX2 are made equal, the pattern on the reticle is projected at the same magnification. By making the focal lengths of the first and second Fourier transform lenses 15, 17 different, reduction projection is possible. The back focal plane of the first 7-Lier conversion lens has the diffracted light (7-Lier) of the pattern on the reticle.
A spatial filter 16 is arranged to filter the pattern formed on the reticle in the spectral plane, and the pattern is incident on the wafer W surface.

第3図は本発明の露光装置に用いられるレチクルである
。第3ぼけレチクル14の平面図であり、第3図すはそ
の断面図である。レチクル14は、回路パターン部42
とその周辺部43から成り、周辺部43のスクライブラ
インに相当する部分に、位置合わせ用の第1の格子41
.41’が形成されている(格子41はX方向用、41
′はy方向用)。
FIG. 3 shows a reticle used in the exposure apparatus of the present invention. FIG. 3 is a plan view of the third blurred reticle 14, and FIG. 3 is a sectional view thereof. The reticle 14 includes a circuit pattern section 42
and its peripheral portion 43, and a first grating 41 for positioning is provided in a portion of the peripheral portion 43 corresponding to the scribe line.
.. 41' is formed (the grating 41 is for the X direction,
' is for the y direction).

レチクル14には入射光44が入射し、第3図すに示す
ように、格子21によって、0次、+1次。
Incident light 44 is incident on the reticle 14, and as shown in FIG.

+2次・・・・・・のように複数の回折光が回折される
0第4図はさらに本発明の露光装置の原理説明図である
。光源11から出た波長λの光はビームエクスパンダ1
2によって拡大され、さらにコリメータレンズ21で所
定の広がシを持つ平行光にされる。第1フーリエ変換レ
ンズ61の前側焦点f1P なる第1の格子41を配置
する。第1の格子41のピッチP1  と回折光の回折
角θ1は、P1s+nθn=nλ(n==o、±1.±
2・・・・・・)の関係がある0このように複数の光束
に回折された光は第17−リエ変換レンズ51に入射し
、さらに、後側焦点面ξに各々の回折光に相当するフI
Jニスベクトル像を結ぶ、−1次の回折光のフーリエス
ペクトルに対応する座標ξ61はξ61;f1Sinθ
1 p1sinθ1=λ で示され、0次の回折光のフーリエスペクトルξ6゜ξ
eo= f1sinθ0=。
A plurality of diffracted lights are diffracted, such as +2nd order. FIG. 4 is a diagram further explaining the principle of the exposure apparatus of the present invention. The light of wavelength λ emitted from the light source 11 is transmitted to the beam expander 1
2, and further converted into parallel light with a predetermined spread by a collimator lens 21. A first grating 41, which is the front focal point f1P of the first Fourier transform lens 61, is arranged. The pitch P1 of the first grating 41 and the diffraction angle θ1 of the diffracted light are P1s+nθn=nλ(n==o, ±1.±
2...) The light diffracted into a plurality of light beams in this way enters the 17th-Lie transformation lens 51, and furthermore, the back focal plane ξ has a light beam corresponding to each diffracted light beam. to do
The coordinate ξ61 corresponding to the Fourier spectrum of the −1st-order diffracted light that forms the Jnis vector image is ξ61; f1Sinθ
1 p1sinθ1=λ, the Fourier spectrum of the 0th order diffracted light ξ6゜ξ
eo=f1sinθ0=.

とは完全に分離された状態でフーリエ変換面にフーリエ
スペクトル像を結ぶ。
The Fourier spectrum image is focused on the Fourier transform plane while being completely separated from the

第2図で示したように、このフーリエ変換面上に空間フ
ィルタ16を配置する。空間フィルタ16では一1次回
折光61のみを通過させる場合、+1次回折光62のみ
を通過させる場合、±1次回折光61.62を同時に通
過させる場合の3通りのフィルターリングの機能を有し
ている。先ず、I方向用格子41によシ回折した一1次
回折光61のみを通過させる場合について、第5図を用
いて説明する。空間フィルタ16に形成された第1の開
孔7oξを通過した一1次回折光61は焦点距離f2な
る第27−リエ変換レンズ62を通過し、さらに、ウェ
ハW上に投影される。ウニISW上には第1の格子41
.41’に対応した位置に第2の格子G −G’が設け
られている( G/は図示せず)。
As shown in FIG. 2, a spatial filter 16 is placed on this Fourier transform surface. The spatial filter 16 has three filtering functions: when only the 1st-order diffracted light 61 passes, when only the +1st-order diffracted light 62 passes, and when the ±1st-order diffracted lights 61 and 62 pass simultaneously. . First, a case where only the first-order diffracted light 61 diffracted by the I-direction grating 41 is allowed to pass through will be described with reference to FIG. The first-order diffracted light 61 that has passed through the first aperture 7oξ formed in the spatial filter 16 passes through the 27th-Lie transformation lens 62 having a focal length f2, and is further projected onto the wafer W. On the sea urchin ISW there is a first grid 41
.. A second grating GG' is provided at a position corresponding to 41' (G/ is not shown).

−1次回折光61は第2の格子Gによって、再度、0次
、±1次、±2次・・・・・・のように複数の回折光が
回折される。この各々の回折光の光強度を第1の光検出
器71ξで検出する。本実施例では、0次、±1次、−
2次、+3次の+4次の各回折光を検出するため6個の
光検出器71ξよりなる。各々の回折光強度は第2の格
子G・の形状によって影響され、回折光強度から、格子
の形状f (りは、で示され、数次の回折光を分析する
ことによりi2の格子G・の形状は推定される。
The −1st-order diffracted light 61 is again diffracted by the second grating G into a plurality of diffracted lights such as 0th order, ±1st order, ±2nd order, and so on. The light intensity of each of these diffracted lights is detected by the first photodetector 71ξ. In this example, 0th order, ±1st order, −
It consists of six photodetectors 71ξ for detecting the second, +3rd and +4th order diffracted lights. The intensity of each diffracted light is influenced by the shape of the second grating G, and from the intensity of the diffracted light, the shape of the grating f The shape of is estimated.

ここで、空間フィルタ16について、空間フィルタ16
の平面構成を示す第6図で説明する。前述のごとく、7
oξは!方向用格子41の一1次回折光61を通過する
ための第1開孔、71ξは第1開孔を通過した回折光が
ウェハW上の第2の格子によって回折された0次、±1
次、−2次。
Here, regarding the spatial filter 16, the spatial filter 16
This will be explained with reference to FIG. 6, which shows the planar configuration of. As mentioned above, 7
oξ is! The first aperture 71ξ for passing the 1st-order diffracted light 61 of the direction grating 41 is the 0th order, ±1, where the diffracted light passing through the first aperture is diffracted by the second grating on the wafer W.
Next, −2nd order.

+3次、+4次の回折光を検出するための6ケの光検出
素子よ構成る光検出器(第6図において口で図示)、7
0v・71りはy方向用格子41′に関連した第1開孔
、及び、6ケの光検出素子よ構成る光検出器(70ξ、
70ηを合わせて第1開孔群071ξ・71ηを合わせ
て第1光検出器群とする)である。7oξ、71ξはほ
ぼ同一軸上にあり、又、70v・71ηもほぼ同一軸上
にある。7oξと70ηの交角はx−y方向格子41゜
772ξ・72ηは+1次回折光62(但し、y方向の
+1次回折光は図示せず)を通過するための第2開孔群
、73ξ・73ηは第2開孔を通過した回折光がウェハ
W上の第2の格子によって回折された0次、±1次、+
2次、−3次、−4次の回折光を検出するための10ケ
の光検出素子より成る第2光検出器群(第6図において
口で図示)。74ξ−1・74ξ−2974グー1は±
1次回折光61.62(但し、y方向の±1次回折光は
図示せず)を通過するための第3開孔群、75ξ・75
17は、第3開孔群を通過した±1次回折光61.62
がウェハW上の第2の格子によって回折された(+1次
、−1次)t(+3次、+1次)。
A photodetector (indicated by the mouth in FIG. 6) consisting of six photodetecting elements for detecting +3rd-order and +4th-order diffracted light; 7
0v.71 is a first aperture associated with the y-direction grating 41' and a photodetector (70ξ,
70η and the first aperture group 071ξ and 71η together form the first photodetector group). 7oξ and 71ξ are approximately on the same axis, and 70v and 71η are also approximately on the same axis. The intersection angle between 7oξ and 70η is the x-y direction grating 41°. 772ξ and 72η are the second aperture group for passing the +1st-order diffracted light 62 (however, the +1st-order diffracted light in the y direction is not shown), and 73ξ and 73η are the The diffracted light that has passed through the second aperture is diffracted by the second grating on the wafer W, 0th order, ±1st order, +
A second photodetector group (indicated by the mouth in FIG. 6) includes 10 photodetector elements for detecting second-order, -third-order, and -fourth-order diffracted light. 74ξ−1・74ξ−2974 goo 1 is ±
Third aperture group 75ξ/75 for passing the first-order diffracted light 61.62 (however, ±1st-order diffracted light in the y direction is not shown)
17 is the ±1st-order diffracted light 61.62 that passed through the third aperture group
is diffracted by the second grating on the wafer W (+1st order, -1st order) t (+3rd order, +1st order).

(+4次、+2次)、(−1次へ、−3次)。(+4th order, +2nd order), (-1st order, -3rd order).

(−2次、−4次)の各回折光を検出するための8ケの
光検出素子よ構成る第3光検出器群。
A third photodetector group composed of eight photodetector elements for detecting each diffracted light (-2nd order, -4th order).

以上のような構成の空間フィルタ16が第1図に示すよ
うな移動手段を具備している。移動手段の主要部は空間
フィルタ16を固定して回動するに保持した移動ステー
ジ79.移動ステージ79を移動するためのボールネジ
8o、パルスモータ81等よシ構成されている(リニア
モータ等を用いて移動ステージ79を移動させてもよい
)0次に空間フィルタ16は前述のごとく、3通りのフ
ィルタリング機能とパターン露光するための機能を有し
ている。その機能について説明する。
The spatial filter 16 configured as described above is equipped with a moving means as shown in FIG. The main part of the moving means is a moving stage 79 that holds the spatial filter 16 fixedly and rotatably. As mentioned above, the zero-order spatial filter 16 is composed of a ball screw 8o, a pulse motor 81, etc. for moving the moving stage 79 (the moving stage 79 may be moved using a linear motor, etc.). It has a street filtering function and a function for pattern exposure. Let's explain its functions.

(1)  −1次回折光61のみを通過させる場合(但
し、図示していないがy方向用−1次回折光も含む)、
第1の格子41.41’により回折した一1次回折光6
1の通過位置に第1開孔群7oξ・70vが位置するよ
うにパルスモータ78により空間フィルタ16を回転さ
せる。第1開孔群7oξ・7077を通過した一1次回
折光61がウェハW上の第2の格子G 、 G/により
、再度、回折した回折光を、第1光検出器群71ξ・7
1ηによシ検出し、前述のごとく、格子形状を推定する
(1) When only the -1st-order diffracted light 61 is allowed to pass (although not shown, the -1st-order diffracted light for the y direction is also included),
First-order diffracted light 6 diffracted by the first grating 41, 41'
The spatial filter 16 is rotated by the pulse motor 78 so that the first aperture groups 7oξ and 70v are located at the first passing position. The 1st-order diffracted light 61 that has passed through the first aperture group 7oξ/7077 is re-diffracted by the second gratings G, G/ on the wafer W, and the diffracted light is transmitted to the first photodetector group 71ξ/7.
1η, and the grid shape is estimated as described above.

(21+1次回折光62のみを通過させる場合(但し、
図示していないが、y方向用+1次回折光も含む)(1
)と同様に、+1次回折光の通過位置に第2開孔群72
ξ・72りが位置するようにパルスモータ78によシ空
間フィルタ16を回転させる。第2の格子G−αにより
再度回折した回折光を第2光検出器群73ξ・73?に
より検出し、格子形状を推定する。
(When only the 21st + 1st order diffracted light 62 is allowed to pass (However,
Although not shown, it also includes the +1st-order diffracted light for the y direction) (1
), a second aperture group 72 is provided at the passage position of the +1st-order diffracted light.
The spatial filter 16 is rotated by the pulse motor 78 so that ξ·72 is located. The diffracted light diffracted again by the second grating G-α is detected by the second photodetector group 73ξ/73? Detect and estimate the grid shape.

(2) ±1次回折光61.62のみを通過させる場合
(但し、図示していないが、y方向用+1次回折光も含
む)(1)と同様に、±1次回折光61゜e2の通過位
置に第3開孔群74ξ−1・74ξ−2・74η−1,
747−2が位置するようにパルスモータ78によシ空
間フィルタ16を回転させる。第2格子によシ再度回折
した回折光を第3光検出器群76ξ・75ηで検出する
ことによシ、レチクル14の第1の格子41・41′と
ウェハW上の第2の格子G−G’との間の位置情報が得
られる。さらに上記(1)と(2)の格子形状の推定結
果よシ、格子形状より発生する位置合わせ誤差量を位置
情報にフィードバックし、補正することによシ、よシ高
精度な位置合わせが可能である。又、補正のために移動
した距離は同じく第3光検出器群75ξ・76ηで光強
度を検出することにより位置情報として検出できるので
、モニターでき墨。よって、ウエノSWの移動量を正確
に把握することが可能である。
(2) When only the ±1st order diffracted light 61.62 is allowed to pass (However, although not shown, the +1st order diffracted light for the y direction is also included) Similarly to (1), the passing position of the ±1st order diffracted light 61°e2 the third aperture group 74ξ-1, 74ξ-2, 74η-1,
The spatial filter 16 is rotated by the pulse motor 78 so that the filter 747-2 is positioned. By detecting the diffracted light diffracted again by the second grating with the third photodetector group 76ξ and 75η, the first gratings 41 and 41' of the reticle 14 and the second grating G on the wafer W are detected. -G' can be obtained. Furthermore, based on the grid shape estimation results in (1) and (2) above, highly accurate alignment is possible by feeding back the alignment error generated by the grid shape to the position information and correcting it. It is. Further, since the distance moved for correction can be detected as position information by detecting the light intensity with the third photodetector group 75ξ and 76η, it can be monitored. Therefore, it is possible to accurately grasp the amount of movement of the Ueno SW.

(4)  レチクル14の回路パターン等を露光させる
場合 レチクル140回路パターン42等を露光させる場合に
は第1フーリエ変換レンズ16の開口内から空間フィル
タ16を取りはずすために、パルスモータ81によシ移
動ステージ79を移動させることによってウェハW上に
回路パターン42を露光する。
(4) When exposing the circuit pattern etc. of the reticle 14 When exposing the circuit pattern 42 etc. of the reticle 140, the pulse motor 81 is used to remove the spatial filter 16 from within the aperture of the first Fourier transform lens 16. By moving the stage 79, the circuit pattern 42 is exposed on the wafer W.

以上の説明において、格子形状を推定するために、(1
)−1次回折光のみを通過させた場合、及び、(2)+
1次光のみを通過させた場合とで格子形状を推定したが
、どちらか一方の回折光だけでも、格子形状を推定する
ことは可能であるが、(1)と翰)を本実施例では、3
通りのフィルタリングを各々別々の開孔によシ実施して
いるが、各開孔を兼用してもよい(例えば、第1開孔7
0ξと第2開孔72ξ)0本実施例では、第1・第2・
第3の各開孔群を同心円状に配置し、空間フィルタ16
を回動及び直線移動させて、3通シのフィルタリング機
能とパターン露光の機能を持たせることにより、空間フ
ィルタ16を小型に形成することができると共に、高速
で各フィルタリング機能をセレクトすることが可能であ
る。
In the above explanation, in order to estimate the lattice shape, (1
) − When only the first-order diffracted light is passed, and (2) +
Although the grating shape was estimated based on the case where only the first-order light passes through, it is possible to estimate the grating shape using only one of the diffracted lights, but (1) and Han) are used in this example. ,3
Although the filtering is performed using separate apertures, each aperture may also be used for the same purpose (for example, the first aperture 7
0ξ and second opening 72ξ) 0 In this embodiment, the first, second,
The third aperture groups are arranged concentrically, and the spatial filter 16
By rotating and moving linearly to provide three filtering functions and a pattern exposure function, the spatial filter 16 can be made compact and each filtering function can be selected at high speed. It is.

本実施例ではパターン露光するために、移動ステージ7
9を直線移動させたが、移動ステージ79をモータ等を
用いて回動させることにより、第1フーリエ変換レンズ
16の開口外へ移動ステージ79を移動させてもよい。
In this embodiment, in order to perform pattern exposure, the moving stage 7
Although the lens 9 is moved linearly, the moving stage 79 may be moved outside the aperture of the first Fourier transform lens 16 by rotating the moving stage 79 using a motor or the like.

−又、fa2の実施例として、各開孔群を同心円状に配
置せず、第7図のごとく配置する。80.81めの第4
開口。16′は空間フィルタで、移動手段上に固定され
ている。移動手段の主要部は空間フィルタ16′を固定
する移動ステージ86.移動ステージ86を移動するた
めのボールネジ87.パルスモータ88等よシ構成され
ている。各開孔群を直列配置することによシ、移動手段
として、直線移動手段のみで構成することができる。
-Also, as an example of fa2, the aperture groups are not arranged concentrically but are arranged as shown in FIG. 7. 80.81st 4th
Opening. 16' is a spatial filter fixed on the moving means. The main part of the moving means is a moving stage 86. which fixes the spatial filter 16'. A ball screw 87 for moving the moving stage 86. It is composed of a pulse motor 88 and the like. By arranging each aperture group in series, the moving means can be constructed using only linear moving means.

発明の効果 本発明によシ、ウェハ上に形成した位置合わせ用格子の
形状を検知し、格子形状より発生する位置合わせ誤差量
を補正して、レチクルとウェハとの位置合わせを行なう
ことができ、よシ高精度な位置合わせを行なうことがで
きる。
Effects of the Invention According to the present invention, it is possible to detect the shape of the alignment grid formed on the wafer, correct the alignment error generated by the grid shape, and perform alignment between the reticle and the wafer. , it is possible to perform highly accurate positioning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による空間フィルタの基本構成図、第2
図は本発明による露光装置の基本構成図、第3図(a)
は本発明によるレチクルの構成図、第3図(b)は位置
合わせ用格子の断面図、第4図は本発明による再回折光
学系の原理図、第6図は本発明によるX方向格子によシ
回折した一1次回折光のみを通過させたときのウェハ近
傍の詳細図、第6図は空間フィルタの平面構成図、第7
図は第2の実施例による空間フィルタの基本構成図、第
8図は従来の位置合せ方法の一例を示す図である。 11・・・・・・光源、14・・・・・・レチクル、1
5・・・・・・第1のフーリエ変換レンズ、16・・・
・・・空間フィルタ、17・・・・・・第2のフーリエ
変換レンズ、W・・・・・・ウェハ、41,41’・・
・・・・第1の格子、G−α・・・・・・第2の格子、
7oξ・7oη・・・・・・第1開孔群、71ξ・71
η・・・・・・第1光検出器群、72ξ・72η・・・
・・・第2開孔群、73ξ・73η・・・・・・第2光
検出器群、74ξ拳74り・・・・・・第3開孔群、7
5ξ・76η・・・・・・第3光検出器群。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 (aン 一1次  tj次 の欠 第 5 図 第7図 第8図 XW□
Fig. 1 is a basic configuration diagram of a spatial filter according to the present invention;
The figure is a basic configuration diagram of an exposure apparatus according to the present invention, and FIG. 3(a)
3(b) is a cross-sectional view of the alignment grating, FIG. 4 is a principle diagram of the re-diffraction optical system according to the present invention, and FIG. 6 is a diagram of the X-direction grating according to the present invention. Figure 6 is a detailed view of the vicinity of the wafer when only the first-order diffracted light is passed through. Figure 6 is a plan configuration diagram of the spatial filter.
This figure is a basic configuration diagram of a spatial filter according to the second embodiment, and FIG. 8 is a diagram showing an example of a conventional alignment method. 11...Light source, 14...Reticle, 1
5...First Fourier transform lens, 16...
... Spatial filter, 17... Second Fourier transform lens, W... Wafer, 41, 41'...
...First lattice, G-α...Second lattice,
7oξ・7oη・・・・・・First aperture group, 71ξ・71
η...First photodetector group, 72ξ・72η...
...Second aperture group, 73ξ・73η...Second photodetector group, 74ξ 74ri...Third aperture group, 7
5ξ・76η...Third photodetector group. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 (a-1st order tj-order missing number 5 Figure 7 Figure 8 XW□

Claims (4)

【特許請求の範囲】[Claims] (1)光源から出た光束を、第1の格子が形成されたレ
チクル、第1のレンズ系、空間フィルタ、第2のレンズ
系を経て、第2の格子が形成された基板上に入射させ、
前記第2の格子からの回折光を検出する光検出器から構
成された露光装置の前記空間フィルタは、前記光源から
出た光束が前記第1の格子によって回折された−1次又
は+1次の回折光のみを通過させるための第1の開孔群
と、この第1の開孔群を通過した回折光が前記第2の格
子によって回折される複数の回折光の光強度を各々検出
するための前記第1の光検出器群と、同じく前記第1の
格子によって回折された±1次の回折光を通過させるた
めの第3の開孔群と、この第3の開孔群を通過した回折
光が前記第2の格子によって回折される複数の回折光の
光強度を各々検出するための第3の光検出器群とを具備
し、前記空間フィルタの各開孔を各回折光の通過位置に
移動するための移動手段を有したことを特徴とする露光
装置。
(1) The light flux emitted from the light source passes through the reticle on which the first grating is formed, the first lens system, the spatial filter, and the second lens system, and is incident on the substrate on which the second grating is formed. ,
The spatial filter of the exposure apparatus, which includes a photodetector that detects the diffracted light from the second grating, detects the -1st or +1st order of the light flux emitted from the light source that is diffracted by the first grating. A first aperture group for allowing only the diffracted light to pass through, and a plurality of diffracted light beams that have passed through the first aperture group and are diffracted by the second grating to detect the light intensities of each of them. a third aperture group for passing the ±1st-order diffracted light diffracted by the first grating; a third photodetector group for respectively detecting the light intensity of a plurality of diffracted lights that are diffracted by the second grating, and each diffracted light passes through each aperture of the spatial filter. An exposure apparatus characterized by having a moving means for moving to a certain position.
(2)光源から出た光束が第1の格子によって回折され
た−1次又は+1次の回折光のみを通過させるための第
1の開孔群と、この第1の開孔群を通過した回折光が第
2の格子によって回折される複数の回折光の光強度を各
々検出するための第1の光検出器群とは別に、前記第1
の格子によって回折された+1次又は−1次の回折光の
みを通過させるための第2の開孔群と、この第2の開孔
群を通過した回折光が前記第2の格子によって回折され
る複数の回折光の光強度を各々検出するための第2の光
検出器群とを具備した空間フィルタを有したことを特徴
とする特許請求の範囲第1項記載の露光装置。
(2) A first aperture group for passing only -1st or +1st order diffracted light, which is the light beam emitted from the light source and is diffracted by the first grating; Apart from the first photodetector group for detecting the light intensity of each of the plurality of diffracted lights whose diffracted lights are diffracted by the second grating, the first photodetector group
a second aperture group for passing only the +1st-order or -1st-order diffracted light diffracted by the grating; and a second aperture group for allowing the diffracted light that has passed through the second aperture group to be diffracted by the second grating. 2. The exposure apparatus according to claim 1, further comprising a spatial filter including a second photodetector group for detecting the light intensity of each of the plurality of diffracted lights.
(3)第1、第2、第3の各開孔群を同心円状に配置し
たことを特徴とした特許請求の範囲第2項記載の露光装
置。
(3) The exposure apparatus according to claim 2, wherein the first, second, and third aperture groups are arranged concentrically.
(4)第1、第2、第3の各開孔群を直列配置したこと
を特徴とした特許請求の範囲第2項記載の露光装置。
(4) The exposure apparatus according to claim 2, wherein the first, second, and third aperture groups are arranged in series.
JP60068721A 1985-03-13 1985-04-01 Exposing device Pending JPS61228449A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60068721A JPS61228449A (en) 1985-04-01 1985-04-01 Exposing device
US06/837,766 US4828392A (en) 1985-03-13 1986-03-10 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068721A JPS61228449A (en) 1985-04-01 1985-04-01 Exposing device

Publications (1)

Publication Number Publication Date
JPS61228449A true JPS61228449A (en) 1986-10-11

Family

ID=13381940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068721A Pending JPS61228449A (en) 1985-03-13 1985-04-01 Exposing device

Country Status (1)

Country Link
JP (1) JPS61228449A (en)

Similar Documents

Publication Publication Date Title
JPS6313329A (en) Exposure device
US4422763A (en) Automatic photomask alignment system for projection printing
EP0652487A1 (en) Rotational deviation detecting method and system using a periodic pattern
JPS6141150A (en) Exposure device
JP3250563B2 (en) Photomask, exposure method, circuit pattern element manufacturing method using the exposure method, and exposure apparatus
JPH03134538A (en) Evaluating apparatus of lens
JPS61228449A (en) Exposing device
JP2003309066A (en) Measuring method for aberration of projection optical system
JPH01107102A (en) Optical automatic positioning apparatus
JP3977096B2 (en) Mask, exposure method and device manufacturing method
JPH0695007B2 (en) Positioning method and exposure apparatus
JPS6286722A (en) Exposure device
JPS6165251A (en) Exposing device
JPS61208220A (en) Exposure apparatus and positioning method
JPH0319312A (en) Alignment mark
JPS63185024A (en) Aligner
JPH0672766B2 (en) Position detector
JPH01240803A (en) Detecting apparatus for pattern position
JPS61290306A (en) Position detection and exposure using the same
JPH07101665B2 (en) Exposure equipment
JPS6318624A (en) Exposure apparatus
JPH05326365A (en) Projection aligner
JPS6173958A (en) Exposing device
JPS61264727A (en) Exposing device
JPH07122565B2 (en) Exposure equipment