JPS61228423A - Method for constituting electrochromic display element - Google Patents

Method for constituting electrochromic display element

Info

Publication number
JPS61228423A
JPS61228423A JP60069030A JP6903085A JPS61228423A JP S61228423 A JPS61228423 A JP S61228423A JP 60069030 A JP60069030 A JP 60069030A JP 6903085 A JP6903085 A JP 6903085A JP S61228423 A JPS61228423 A JP S61228423A
Authority
JP
Japan
Prior art keywords
coloring layer
electrode
reduction treatment
counter electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60069030A
Other languages
Japanese (ja)
Inventor
Hiroshi Kato
寛 加藤
Teruaki Katsube
勝部 昭明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP60069030A priority Critical patent/JPS61228423A/en
Publication of JPS61228423A publication Critical patent/JPS61228423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent deterioration in display quality due to foaming by reducing at least one of a color developing layer and its opposite electrode in advance before fabrication. CONSTITUTION:The preliminary by using constant-potential electrolytic reducing process is carried out before fabrication by using the color developing layer, generally combined with a base plate electrode into one body, as a cathode, with respect to an opposite electrode at the time of electrolytic reduction, and maintaining this cathode at an optional constant potential with respect with the potential of a standard electrode, thus permitting the reduction extent of the color developing layer to be controlled considerably exactly. For example, the electrolytic reduction process can be executed by using the color developing layer prepared by vapor depositing tungsten oxide on a transparent conductive base, a platinum black-attached platinum plate as an opposite electrode, and a silver-silver chloride electrode as the standard electrode, and setting the potential of the color developing layer electrode to -1.5-+0.3V, preferably, -0.5-+0.2V with respect to that of the standard electrode in an aq. soln. of 1N H2SO4 with a potentiostat.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエレクトロクロミックディスプレイ(以下EC
Dとも略称する)素子の構成法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an electrochromic display (hereinafter referred to as EC).
(also abbreviated as D) relates to a method of configuring an element.

(従来技術及び発明が解決しようとする問題点)ECD
素子は発色層における電気化学的な酸化還元反応により
ひき起こされる光吸収の変化を利用した表示素子である
。一般にECD素子は通常の使用に供する前に比較的高
い電圧で着消色を繰り返す所謂エイジングを行なうこと
により、エイソング上に比較して、同じ電圧で駆動させ
てもより大きなΔOD即ち着色時と消色時の光吸収の度
合の差が得られることや応答速度が改善されることが知
られている。
(Prior art and problems to be solved by the invention) ECD
The device is a display device that utilizes changes in light absorption caused by electrochemical redox reactions in the coloring layer. In general, ECD elements are subjected to so-called aging that repeats coloring and decoloring at a relatively high voltage before being used for normal use, so that compared to ECD elements, even when driven at the same voltage, the ΔOD is larger, that is, when coloring and decoloring. It is known that differences in the degree of light absorption during color can be obtained and response speed can be improved.

さらに、低電圧でECD素子を駆動させることが可能に
なるため寿命も改善されることが期待されるほかに1酸
化発色層と還元発色層を対向させた型0ECD素子では
消色時の透過率が向上することも知られている。
Furthermore, since it becomes possible to drive the ECD element with a low voltage, it is expected that the lifespan will be improved. In addition, in the type 0 ECD element, which has a monoxide coloring layer and a reduction coloring layer facing each other, the transmittance when decoloring increases. It is also known to improve

一方、エイジングを行なわないECD素子にお−ては、
定電圧で駆動させた場合に繰り返し回数にほぼ比例して
徐々にΔODが大きくなる場合が多くみられこのためE
CD素子の着色状態のコントロールができず、またセグ
メント間の着色状態に差が生じ色むらが発生する傾向が
みられる。
On the other hand, in ECD elements that do not undergo aging,
When driven with a constant voltage, ΔOD often increases gradually in proportion to the number of repetitions, and for this reason, E
It is not possible to control the coloring state of the CD element, and there is a tendency for differences in the coloring state between segments to occur, resulting in color unevenness.

従って一般にエイジフグを行なうことは好ましいもので
あるが、他方、エイジングを行なった素子内部には気泡
の発生が認められる場合が多く、特にエイソング上の電
圧が高いときやエイソング上間が長いときには、気泡の
発生が顕著である。
Therefore, in general, it is preferable to perform aging blowfish, but on the other hand, bubbles are often observed inside the aging device, and especially when the voltage on the A-Song is high or the A-Song top gap is long, air bubbles The occurrence of is remarkable.

該気泡の発生はECD素子の表示品質を者しく低下させ
、また劣化の原因ともなり、エイソング上の問題となっ
ていた。
The generation of bubbles significantly deteriorates the display quality of the ECD element, and also causes deterioration, posing a problem for ASONG.

本発明者はかかるエイソング上の問題に対処して研究を
重ねた結果、気泡の発生は水の分解が関与しているとの
知見を得た。即ち、弐H20→2H++1/20□↑+
26によって水が分解して生じた酸素02が気泡の原因
であると共に、同時に生じた水素イオンH+によって着
消色に関与するイオンの総量が増加してΔODの増大が
起るとの知見を得た。
The inventor of the present invention has conducted extensive research to address such Ason problems, and as a result has found that the generation of bubbles is related to the decomposition of water. That is, 2H20→2H++1/20□↑+
It was found that the oxygen 02 produced by the decomposition of water by 26 is the cause of bubbles, and that the hydrogen ions H+ produced at the same time increase the total amount of ions involved in coloring and fading, resulting in an increase in ΔOD. Ta.

本発明はかかる知見をもとに、エイジングを行なった場
合と同等以上のΔODの増大;応答速度の改善など0E
CD素子の緒特性の牧舎を図ると共に気泡の発生による
表示品質の低下や劣化のないECD素子の構成法を提供
するものである。
Based on this knowledge, the present invention provides an increase in ΔOD equal to or greater than that achieved by aging; an improvement in response speed;
The present invention provides a method for constructing an ECD element that improves the characteristics of a CD element and does not cause deterioration or deterioration of display quality due to the generation of bubbles.

(問題点を解決するための手段) 本発明はECD素子を構成する際に、構成前に予め発色
層及びその対向電極の少なくとも一方を還元処理するこ
とを還元処理するECD素子の構成法である。
(Means for Solving the Problems) The present invention is a method of configuring an ECD element in which, when configuring the ECD element, at least one of the coloring layer and its counter electrode is subjected to a reduction treatment in advance before configuring the ECD element. .

本発明における発色層及びその対極の素材は一般に発色
層及びその対極に使用される素材として従来知られてい
るものを初めとして、その機能を有するものが任意に採
用される。具体的には発色層の素材としては、酸化タン
グステン、酸化モリブデン、酸化チタン、酸化バナジウ
ム、酸化クロム、酸化イリゾウム、水酸化イリジウム、
水酸化ニッケル、水酸化ロジウム、ca化ニオブなどの
無機質材料又はビオロダン、希土類ジフタロシアニ/、
TTF化ポリスチレン、ビオロゲンポリマーなどの有機
質材料などが用いられる。
In the present invention, materials for the coloring layer and its counter electrode may be those that are conventionally known as materials generally used for the coloring layer and its counter electrode, as well as materials that have the functions thereof. Specifically, the materials for the coloring layer include tungsten oxide, molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, iridium oxide, iridium hydroxide,
Inorganic materials such as nickel hydroxide, rhodium hydroxide, niobium oxide, biorodane, rare earth diphthalocyanine/,
Organic materials such as TTF polystyrene and viologen polymer are used.

また対極としては、カーがンやグラファイトなどの比表
面積の大きな炭素材料と鉄錯体や酸化タングステン粉末
の混合圧粉体などが挙げられる。
Examples of the counter electrode include a mixed compact of a carbon material with a large specific surface area, such as carbon or graphite, and an iron complex or tungsten oxide powder.

本発明における還元処理には電気的還元処理と化学的還
元処理が挙げられる。
The reduction treatment in the present invention includes electrical reduction treatment and chemical reduction treatment.

以下発色層の還元処理を例にとり説明する。The reduction treatment of the coloring layer will be explained below as an example.

電気的還元処理とは、発色層一般には発色層が一体化さ
れた基板例えば透明導電性基板上に蒸着等の手段により
発色層が一体化された基板を一方の電極として、該電極
を電解達元時の対極に対して負極になるようにして電解
質溶液中で電圧を印加して電解還元する方法である。対
極としては通常、白金又は白金黒付白金板等の不活性電
極が使用される。
Electrical reduction treatment refers to a substrate on which a color-forming layer is generally integrated, for example, a transparent conductive substrate, with a substrate on which a color-forming layer is integrated by means of vapor deposition, etc. as one electrode, and the electrode is electrolyzed. This is a method of electrolytic reduction by applying a voltage in an electrolyte solution so that the electrode becomes a negative electrode with respect to the original counter electrode. As the counter electrode, an inert electrode such as platinum or a platinum plate with black platinum is usually used.

しかし、このように2極で単に電解した場合には、発色
層の還元量換言すれば注入又は引き抜かれるイオン量つ
まり注入又は引き抜かれる電荷量(以下単に注入電荷量
と称する)を制御することはやや困難なため、ECD素
子間或はセグメント間で注入電荷量が異なり、その結果
、同一電圧で駆動させた場合のΔODのばらつきが多々
みられる傾向がある。これに対処するには、次に述べる
定電位電解還元法及び定電流電解還元法が推奨される。
However, in the case of simply electrolyzing with two electrodes in this way, it is impossible to control the amount of reduction in the coloring layer, in other words, the amount of ions injected or extracted, or the amount of charge injected or extracted (hereinafter simply referred to as the amount of injected charge). Since this is somewhat difficult, the amount of charge injected differs between ECD elements or segments, and as a result, there is a tendency for ΔOD to vary widely when driven with the same voltage. To deal with this, the following constant potential electrolytic reduction method and constant current electrolytic reduction method are recommended.

定電位電解還元法とは発色層一般には発色層が一体化さ
れた基板電極(以下発色層電極と称する)を電解還元時
の対極に対して陰極とし、該陰極の電位を基準電極に対
して一定電位に保持しながら電解還元を行なうものであ
り1発色層電極の電位を任意の値に設定することによっ
て発色層の還元量をかなり正確に制御することができる
。発色層電極の電位を一定に保持する操作は例えば市販
のポテンシオスタットを用いることにより容易に行なう
ことができる。
What is the constant potential electrolytic reduction method? Color forming layer Generally, a substrate electrode with an integrated color forming layer (hereinafter referred to as color forming layer electrode) is used as a cathode with respect to a counter electrode during electrolytic reduction, and the potential of the cathode is set relative to a reference electrode. Electrolytic reduction is carried out while maintaining a constant potential, and by setting the potential of one color-forming layer electrode to an arbitrary value, the amount of reduction in the color-forming layer can be controlled quite accurately. The operation of keeping the potential of the coloring layer electrode constant can be easily carried out by using, for example, a commercially available potentiostat.

発色層電極の基準電極に対する好ましい電位は通常−1
,5v〜+0.3v更には−0,5v〜+〇、2vであ
る。
The preferred potential of the color forming layer electrode with respect to the reference electrode is usually -1
, 5v to +0.3v, and further -0.5v to +〇, 2v.

具体的には例えば、発色層電極として透明導電性基板上
に酸化タングステンを蒸着したものを使用し、対極に白
金黒付白金板、基準電極に銀−塩化銀電極を夫々使用し
、1NH2S04水溶液中でポテンシオスタットにより
発色層電極の電位を基準電極に対して好ましくは−1,
5v〜+0.3v更には−0,5v〜+0.2vに設定
して電解還元すればよい。その結果は、発色層電極上の
酸化タングステンは背く着色する現象がみられる。これ
は、水素イオンH+が注入されて還元されたことを意味
する。
Specifically, for example, a tungsten oxide vapor deposited on a transparent conductive substrate is used as the coloring layer electrode, a platinum black plate with platinum is used as the counter electrode, and a silver-silver chloride electrode is used as the reference electrode. The potential of the color forming layer electrode is set to -1, preferably -1, with respect to the reference electrode using a potentiostat.
What is necessary is just to set it to 5v - +0.3v, and furthermore, -0.5v - +0.2v, and just to carry out electrolytic reduction. As a result, a phenomenon in which the tungsten oxide on the color-forming layer electrode becomes colored is observed. This means that hydrogen ions H+ were implanted and reduced.

例えば、透明導電性基板上に酸化タングステンを蒸着し
て同じような発色層電極を10個得て、対極に白金黒付
白金板を使用し、銀−塩化銀の基準電極に対して−o、
osv、1時間電解還元し、これを用いてECD素子を
構成した素子間の所定電圧におけるΔODの差は殆んど
みられなかった。
For example, tungsten oxide is deposited on a transparent conductive substrate to obtain 10 similar coloring layer electrodes, a platinum black plate is used as a counter electrode, and -o,
osv was electrolytically reduced for 1 hour, and there was almost no difference in ΔOD at a given voltage between the ECD devices constructed using the same.

このように、定電位電解還元法においては、発色層は設
定電位以下には還元されないため電解時間を比較的長く
しておけば発色層の還元量を所望量にすることが容易で
ある。
As described above, in the constant potential electrolytic reduction method, since the coloring layer is not reduced to a potential lower than the set potential, it is easy to reduce the amount of the coloring layer to a desired amount by making the electrolysis time relatively long.

また、定電流電解還元法とは発色層電極全陰極とし、該
発色層電極に流れる電流つまり発色層に流れる電流を一
定に保持しながら電解還元を行なうものであり、還元量
に関係する電気量が電流値と電解時間の積として簡単に
定められる長所がある。発色層電極に流れる電流を一定
に保持する操作は、市販のガルバノスタットを用いるこ
とにより容易に行な5ことができる。ただし、注入電荷
量を正確に求めるためには、電流効率が100%である
ことが必要である。即ち、流れた電気量の全てが発色層
中にイオンが注入又は引き抜かれる反応にのみ使用され
、副反応として何らかの不純物の電解や水素ガスなどの
発生等が起らないことが必要である。従って使用する電
解質溶液は電解条件下でカンーfイクな電気分解を起こ
す、つまり陰極の発色層側で副反応を起こすようなn解
質物質は好ましくない。しかし、このような電解質物質
でも設定電流値を下げることによって副反応を抑えるこ
とは可能であり、また一般的にも電流値は余り高くない
方がよい。発色層電極に流れる電流として通常好ましく
用いられる電流値の範囲は1μA/cm” 〜10mA
/J更には5μA/z” 〜1mA/cn”である。具
体的には例えば、発色層電極として透明導電性基板上に
酸化タングステ/を蒸着したものを使用し、l N−H
2SO4水溶液中で定電流電解を行なった場合、設定電
流値を1 pA/cm” 〜10 mAlt−の範囲と
し、数秒〜数十分間の範囲の一定時間電解還元を行なう
ことにより、酸化タングステンの発色層中に数ミリクー
ロン/ cm”〜数十ミリクーロン/erR”の水素イ
オンの注入を行なうことができる。このような還元処理
を行なった酸化タングステンの発色層を用いて、ECD
素子を構成したところ、還元処理をせずに同様に構成し
たECD素子に比較してΔODで反射モードにおいて0
.2以上の改善がみられた。また定電流電解還元処理に
より注入電荷量を同一にした8個0ECD素子を同一電
圧で駆動させた場合のΔODのばらつきは極めて小さか
りた。
Furthermore, in the constant current electrolytic reduction method, the color forming layer electrode is used as a full cathode, and electrolytic reduction is carried out while the current flowing through the color forming layer electrode, that is, the current flowing through the color forming layer, is kept constant, and the amount of electricity related to the amount of reduction is has the advantage that it can be easily determined as the product of current value and electrolysis time. The operation of maintaining a constant current flowing through the coloring layer electrode can be easily carried out using a commercially available galvanostat. However, in order to accurately determine the amount of charge to be injected, the current efficiency must be 100%. That is, it is necessary that the entire amount of electricity that flows is used only for the reaction in which ions are injected into or extracted from the coloring layer, and that no side reactions such as electrolysis of impurities or generation of hydrogen gas occur. Therefore, the electrolyte solution to be used is not preferably an electrolyte substance that causes severe electrolysis under electrolytic conditions, that is, causes a side reaction on the coloring layer side of the cathode. However, even with such an electrolyte substance, side reactions can be suppressed by lowering the set current value, and it is generally better that the current value is not too high. The range of the current value usually preferably used as the current flowing through the coloring layer electrode is 1 μA/cm” to 10 mA.
/J is further 5 μA/z” to 1 mA/cn”. Specifically, for example, a tungsten oxide vapor deposited on a transparent conductive substrate is used as a coloring layer electrode, and lN-H
When constant current electrolysis is performed in a 2SO4 aqueous solution, the set current value is set in the range of 1 pA/cm'' to 10 mAlt-, and electrolytic reduction is performed for a certain period of time ranging from several seconds to several tens of minutes, thereby reducing tungsten oxide. It is possible to implant hydrogen ions of several millicoulombs/cm" to several tens of millicoulombs/erR" into the coloring layer. Using a tungsten oxide coloring layer that has been subjected to such reduction treatment, ECD
When the device was constructed, the ΔOD was 0 in the reflection mode compared to an ECD device similarly constructed without reduction treatment.
.. An improvement of 2 or more was observed. Further, when eight 0ECD elements with the same amount of charge injected through constant current electrolytic reduction treatment were driven with the same voltage, the variation in ΔOD was extremely small.

また、ECD素子における発色層は一層である場合のほ
か、更に好ましい態様として例えば酸化タングステンの
還元発色層と酸化イリジウムの酸化発色層の複数の発色
層が用いられる場合がある。
Further, in addition to the case where the coloring layer in the ECD element is a single layer, in a more preferable embodiment, a plurality of coloring layers such as a reduced coloring layer of tungsten oxide and an oxidized coloring layer of iridium oxide may be used.

このよう々場合は、本発明は少なくとも一つの発色層を
還元処理すればよい。例えば、酸化イリジウムの発色層
に好ましくは5ミリクーロン/611”〜200ミリク
ーロン/ 1M12更に好ましくは30ミリクーロン、
4−〜100ミリクーロン/副2の範囲でイオンを注入
するか、或は酸化タングステンの発色層に好ましくは3
ミリク一ロン/cIn2〜50ミリクーロン/cM1更
に好ましくは5ミリクーロy/cWl”〜30ミリクー
ロン/cm”の範囲でイオンを注入するか、或は酸化イ
リジウム、酸化タングステンの両発色層に夫々上記範囲
でイオンを注入した後に、これら複数の発色層を用いて
gcD素子を構成する態様があり、これらのいずれの態
様においても両発色層共に還元処理しない場合に比較し
て、ΔODの増大、応答速度及び寿命特性の改善など0
ECD素子の緒特性の改善を図ることができる。
In such a case, in the present invention, at least one coloring layer may be subjected to a reduction treatment. For example, for the coloring layer of iridium oxide, preferably 5 millicoulombs/611" to 200 millicoulombs/1M12, more preferably 30 millicoulombs,
Ions are implanted in the range of 4 to 100 milliCoulombs/sub2, or preferably 3 to 3
Ions are implanted in the range of millicoulombs/cIn2 to 50 millicoulombs/cM1, more preferably 5 millicoulombs/cWl" to 30 millicoulombs/cm", or the above-mentioned ions are implanted into both the iridium oxide and tungsten oxide coloring layers, respectively. There is an embodiment in which a gcD element is constructed using a plurality of color-forming layers after ion implantation within a range of Improvements in speed and life characteristics, etc. 0
It is possible to improve the characteristics of the ECD element.

以上のような電気的還元処理において電解質溶液は種々
のものが利用できる。即ち電解質溶液は酸性、中性、ア
ルカリ性のいずれでもよく、また電解質を含むならば水
溶液でも有機溶液でもよい。
Various electrolyte solutions can be used in the electrical reduction treatment described above. That is, the electrolyte solution may be acidic, neutral, or alkaline, and may be an aqueous solution or an organic solution as long as it contains an electrolyte.

ただし発色層の素材によっては、例えば酸性溶液中では
安定であるがアルカリ性では不安定なものなどがあり、
適宜良好な声の液を採用すべきである。例えば酸化タン
グステンよりなる発色層の場合は、アルカリ性よりも酸
性中において安定であるので酸性電解質溶液を利用すべ
きである。
However, depending on the material of the coloring layer, for example, some materials may be stable in acidic solutions but unstable in alkaline solutions.
Good vocal fluids should be adopted accordingly. For example, in the case of a coloring layer made of tungsten oxide, an acidic electrolyte solution should be used because it is more stable in an acidic environment than in an alkaline environment.

本発明に用いられる代表的な電解質溶液を挙げれば、硫
酸、塩酸、硝酸などの電解質無機酸水溶液;硫酸ナトリ
ウム、塩化ナトリウム、塩化カリウムなどの電解質を含
む水溶液;水酸化す) +Jウム、水酸化カリウム、ア
ンモニアなどの電解質アルカリ水溶液又は過塩素酸、過
塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウ
ムなどの電解質を含むグロビレンカーボネート、γ−プ
チロラクトン、アセトニトリルなどの有機溶液などがあ
る。
Typical electrolyte solutions used in the present invention include electrolyte inorganic acid aqueous solutions such as sulfuric acid, hydrochloric acid, and nitric acid; aqueous solutions containing electrolytes such as sodium sulfate, sodium chloride, and potassium chloride; Examples include aqueous electrolyte alkaline solutions such as potassium and ammonia, and organic solutions such as globylene carbonate, γ-butyrolactone, and acetonitrile containing electrolytes such as perchloric acid, lithium perchlorate, sodium perchlorate, and potassium perchlorate.

また、本発明における還元処理は電気的還元処理のほか
、次に述べる化学的還元処理で行なうこともできる。化
学的還元処理は、一般に還元剤の適当な濃度の溶液をつ
くり、発色層、一般には発色層が一体化された基板を該
溶液中に適当な時間浸漬することによって行なわれる。
Further, the reduction treatment in the present invention can be performed not only by electrical reduction treatment but also by chemical reduction treatment described below. Chemical reduction treatment is generally carried out by preparing a solution of a reducing agent at an appropriate concentration and immersing the coloring layer, generally the substrate with which the coloring layer is integrated, in the solution for an appropriate amount of time.

代表的な還元剤としては、水素化ホウ素ナトリウム、塩
化第一鉄、フェロシアン化カリウム、L−アスコルビン
酸、ヒドロキノン、ヒドラジン、ヨウ化水素、硫化水素
、ギ酸、シュウ酸などが挙げられる。これらの還元剤の
中から、発色層の素材等を考慮して適宜採用すればよい
。例えば酸化タングステンからなる発色層の場合は、ア
ルカリ性溶液中では溶解するために、ホウ化水素ナトリ
ウムなどのようなアルカリ性を呈する還元剤は好ましく
ない。酸化イリジウムからなる発色層を例にあげて具体
的に述べれば、還元剤としてL−アスコルビン酸のよう
な酸性を呈する還元剤が好ましく用いられ、通常好まし
くはo、oi〜2tnol/lの濃度更に好ましくは0
.1〜1モル/lの濃度の水溶液にして、10分〜1時
間浸漬すれば本発明における還元処理が十分行なわれる
Typical reducing agents include sodium borohydride, ferrous chloride, potassium ferrocyanide, L-ascorbic acid, hydroquinone, hydrazine, hydrogen iodide, hydrogen sulfide, formic acid, oxalic acid, and the like. From among these reducing agents, an appropriate reducing agent may be selected in consideration of the material of the coloring layer and the like. For example, in the case of a coloring layer made of tungsten oxide, a reducing agent exhibiting alkalinity such as sodium borohydride is not preferable because it dissolves in an alkaline solution. To specifically describe a coloring layer made of iridium oxide as an example, an acidic reducing agent such as L-ascorbic acid is preferably used as the reducing agent, and the concentration is usually preferably o, oi to 2 tnol/l. Preferably 0
.. The reduction treatment in the present invention can be sufficiently carried out by immersion in an aqueous solution with a concentration of 1 to 1 mol/l for 10 minutes to 1 hour.

このような化学的還元処理は前記の電気的還元処理の場
合のように、個々の発色層電極にリード線をつけて電解
するような手数を必要とせず、例えば同一基板上に多数
の分離された発色層を有する場合でも、還元剤を含む溶
液中に浸漬するだけでよいので生産性の上で有利である
This type of chemical reduction treatment does not require the trouble of attaching lead wires to the individual coloring layer electrodes and electrolyzing them, as is the case with the electrical reduction treatment described above. Even in the case of having a colored layer, it is advantageous in terms of productivity because it only requires immersion in a solution containing a reducing agent.

以上発色層を例にとり説明したが発色層の対向電極を還
元処理する場合も同様に行なえばよい。
Although the above description has been made by taking the coloring layer as an example, the reduction treatment may be performed in the same manner when the counter electrode of the coloring layer is subjected to the reduction treatment.

即ち、電気的還元処理では、対向電極を電解還元時の対
極に対して陰極として電解溶液中で電圧を印加して電解
還元を行なえばよい。また化学的還元処理では適当な還
元剤を含む溶液中で対向電極を還元処理すればよい。
That is, in the electrical reduction process, electrolytic reduction may be performed by applying a voltage in an electrolytic solution using the counter electrode as a cathode with respect to the counter electrode during electrolytic reduction. In the chemical reduction treatment, the counter electrode may be reduced in a solution containing an appropriate reducing agent.

また本発明において留意すべきことは、還元処理の還元
量つまり注入電荷量には本発明の目的を一般に、ECD
素子のΔODとそのときの注入電荷量との間には、比例
関係があり、このときの比例定数は発色効率ηcm” 
/クーロンで表わされる。ここでηとは1クーロンの電
荷量でΔOD −1の色変化が得られる面積と定義され
る。つまりηの小さいものほど低消費電力化が可能であ
る。
In addition, what should be noted in the present invention is that the amount of reduction in the reduction process, that is, the amount of charge injected, is generally based on the ECD
There is a proportional relationship between the ΔOD of the element and the amount of charge injected at that time, and the proportionality constant at this time is the coloring efficiency ηcm"
/ expressed in coulombs. Here, η is defined as the area where a color change of ΔOD −1 is obtained with a charge amount of 1 coulomb. In other words, the smaller η is, the lower the power consumption is possible.

そこでECD素子の設計段階においてΔODと表示面積
の所望値が定まれば注入電荷量が算出できる。
Therefore, if the desired values of ΔOD and display area are determined at the design stage of the ECD element, the amount of charge to be injected can be calculated.

本発明の還元処理における注入電荷量は上記で電解質層
の徨類など多くの要素とも関連し一概に決定できないが
、本発明の還元処理における注入電荷量は上記で算出さ
れる電荷量の1.5〜10倍更には2〜5倍が好ましい
範囲である。これらの上限をこえて余りに過度に還元処
理した場合には逆にECD素子の特性低下が生ずること
もあり、また下限未満の場合は、十分な効果が得られな
い場合がある。
Although the amount of charge injected in the reduction treatment of the present invention cannot be determined unconditionally because it is related to many factors such as the substances in the electrolyte layer described above, the amount of charge injected in the reduction treatment of the present invention is 1.5% of the amount of charge calculated above. The preferable range is 5 to 10 times, more preferably 2 to 5 times. If the reduction treatment exceeds these upper limits and is excessively reduced, the characteristics of the ECD element may deteriorate, and if the reduction is below the lower limit, sufficient effects may not be obtained.

以上のように、本発明はECD素子を構成する際に、発
色層を予め還元処理することを還元処理するものである
が、還元処理を行なりた発色層の大部分は極めて低酸化
状態つまり還元されて不安定な状態にあるので、空気中
に放置すると再酸化される傾向がみられる。従って還元
処理を行なった後は、速やかK ECD素子を構成する
か或は、嫌気性雰囲気中で保管する等の手段を講じるこ
とが好ましい。
As described above, in the present invention, when constructing an ECD element, the coloring layer is previously subjected to a reduction treatment, but most of the coloring layer subjected to the reduction treatment is in an extremely low oxidation state, that is, Since it is reduced and in an unstable state, it tends to be re-oxidized when left in the air. Therefore, after performing the reduction treatment, it is preferable to take measures such as constructing the K ECD element immediately or storing it in an anaerobic atmosphere.

(作用及び効果) 本発明の構成法を採用することにより、得られるECD
素子は、同じ電圧で駆動させてもより大きなΔCDj5
E得られ、且つ応答速度が改善される。更に低電圧でE
CD素子を駆動させることが可能となり、寿命も改善さ
れるほか、酸化発色層と還元発色層を対向させた型0E
CD素子では消色時の透過率が向上する。
(Action and Effect) ECD obtained by adopting the composition method of the present invention
The element has a larger ΔCDj5 even when driven with the same voltage.
E is obtained, and the response speed is improved. E at even lower voltage
In addition to being able to drive the CD element and improving its lifespan, it is also possible to use type 0E, which has an oxidized coloring layer and a reduced coloring layer facing each other.
In a CD element, the transmittance when decoloring is improved.

このような効果が得られる理由は定かではないが本発明
者は次のように推考している。すなわちECD素子の発
消色は、発色層中にイオンが注入されるか、あるいは引
き抜かれることKよって生ずるものであるとされている
。したがって、例えば発色層に電解質層よりイオンを注
入するためには電荷の中性を保つために必ず、対向電極
と、電解質層の間でもイオンの出し入れが起こらなけれ
ばならず、逆に発色層より電解質中にイオンが放出され
る場合にも、必ず対向電極と電解質層の間でイオンの出
し入れが起こらなければならない。このとき発色層と対
向電極のどちらにも出し入れできるイオンがあまり存在
しない場合には、着消色する度合も小さくなってしまう
が、発色層と対向電極の中に還元処理の方法で十分な量
のイオンを存在させ得るならば、このような発色層と対
向電極間のイオンのやり取りがスムースとなり、かつ、
十分な量のイオンをやり取りできるためにΔODが増大
するなどの特性の改善が起こるものと予想される。この
ような効果をもたらすイオンは水素イオンH” K限ら
ず、水素イオンと同様な機能を有する他のイオンでも同
様な効果が期待される。例えば電気的還元処理において
過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリ
ウムを電解質として有機溶媒に溶かしたものを電解質溶
液として用いた場合は、夫々Li” + Na” +に
+がH+にとって代るものと考えられる。
The reason why such an effect is obtained is not clear, but the inventor of the present invention conjectures as follows. That is, it is said that the coloring and fading of the ECD element is caused by ions being implanted into or extracted from the coloring layer. Therefore, for example, in order to inject ions into the coloring layer from the electrolyte layer, ions must be transferred in and out between the counter electrode and the electrolyte layer in order to maintain charge neutrality, and vice versa. Even when ions are released into the electrolyte, the ions must be transferred in and out between the counter electrode and the electrolyte layer. At this time, if there are not many ions that can be taken in and out of both the coloring layer and the counter electrode, the degree of coloring and decoloring will be small, but a sufficient amount can be created in the coloring layer and the counter electrode by reduction treatment. If such ions can be present, the exchange of ions between the coloring layer and the counter electrode will be smooth, and
It is expected that improvements in characteristics such as an increase in ΔOD will occur because a sufficient amount of ions can be exchanged. The ion that brings about this effect is not limited to hydrogen ion H''K, but other ions that have the same function as hydrogen ion are also expected to have similar effects.For example, in electrical reduction treatment, lithium perchlorate, perchlorate When an electrolyte containing sodium or potassium perchlorate dissolved in an organic solvent is used as an electrolyte solution, Li" + Na" + and + are considered to replace H+, respectively.

また、場合によりてはOH−などの−価のアニオンが引
き抜かれて、前記の一価のカチオンが注入された場合と
同様な効果が生ずるものとみられる。
Furthermore, in some cases, -valent anions such as OH- are extracted, and the same effect as when monovalent cations are injected may be produced.

アニオンの引き抜きはカチオンの注入と共に、又は単独
で生ずるものと推考される。
It is assumed that anion abstraction occurs together with cation injection or alone.

また、従来のエイソングを行なった場合と比較して、顕
著な差異は本発明の場合、エイソングにおけるような気
泡の発生が生ぜず、ECD素子の表示品質の低下や劣化
がみられないことである。これは前記した通り、本発明
においては気泡の発生の原因となる水の分解が生じない
ことに起因するとみられる。
Furthermore, compared to the conventional A-SONG method, the notable difference is that in the case of the present invention, bubbles do not occur as in A-SONG, and there is no deterioration or deterioration of the display quality of the ECD element. . As mentioned above, this seems to be due to the fact that water decomposition, which causes bubbles, does not occur in the present invention.

更に、ECD素子の表示メモリー機能が向上することも
挙げられる。この理由は、エイソングを行なったECD
素子ではエイソングによって発生した酸素が電解質中に
溶けていて、この酸素から還元体となって発色あるいは
消色した発色層材料を再酸化することが、メモリー性が
悪い原因と考えられる。一方、前処理として発色層を還
元処理したECD素子では、エイソング処理のように水
の分解によって02が発生することも殆んどないこと、
さらに電解質中の溶存酸素量をあらかじめ下げておくこ
とKよってメモリー性をさらに向上させることができる
と考えられる。
Furthermore, the display memory function of the ECD element can be improved. The reason for this is that the ECD that performed the A song
In the device, the oxygen generated by A-SONG is dissolved in the electrolyte, and this oxygen becomes a reductant that reoxidizes the colored or discolored coloring layer material, which is thought to be the cause of poor memory performance. On the other hand, in an ECD element in which the coloring layer is subjected to reduction treatment as a pre-treatment, 02 is almost never generated due to water decomposition as in A-SONG treatment.
Furthermore, it is considered that the memory property can be further improved by lowering the amount of dissolved oxygen in the electrolyte in advance.

また、エイソングの場合は、ECD素子の緒特性の改善
度の制御が必ずしも容易でないが、本発明における電気
的還元処理はECD素子の緒特性の改善度に密接に関連
する還元量の制御が容易であり、また化学的還元処理は
複数の発色層を有する場合や大量の発色層や対向電極一
度に処理し易いという利点も存する。
In addition, in the case of ASONG, it is not necessarily easy to control the degree of improvement in the characteristics of the ECD element, but the electrical reduction treatment in the present invention makes it easy to control the amount of reduction, which is closely related to the degree of improvement in the characteristics of the ECD element. The chemical reduction treatment also has the advantage that it is easy to treat a plurality of color-forming layers or a large amount of color-forming layers or counter electrodes at once.

以下、更に本発明の効果を具体的に示すために実施例及
び比較例を挙げる。
Examples and comparative examples will be given below to further specifically demonstrate the effects of the present invention.

なお、以下の実施例等におけるECD素子の特性の評価
は次の方法で行なった。
Note that the characteristics of the ECD elements in the following Examples and the like were evaluated by the following method.

発色層を一層だけ用いる場合には、対向電極としてカー
?ンと酸化タングステンの混合圧粉体を用い、白色背景
板としてその両層の間にアルミナの多孔質板を挿入した
。電解質層としてはlN−H2SO4水溶液を用いた。
When only one coloring layer is used, a coloring layer is used as the counter electrode. A porous alumina plate was inserted between the two layers as a white background plate. An aqueous 1N-H2SO4 solution was used as the electrolyte layer.

また、発色層を2層用いる場合には一方の発色層の基板
にアルミナ基板を用いた。
Furthermore, when two coloring layers were used, an alumina substrate was used as the substrate for one of the coloring layers.

(1)ΔOD 着色時と消色時の光吸収の度合の差すなわち着色時と消
色時のオプティカルデンシティの差ΔOD= −tag
 IC/III (但し、Ic+IBは夫々着色時、消
色時の反射光の強度)の評価は、ECD素子を周期4秒
、振幅±0.5vの方形波で駆動させたときの反射率の
変化を調べることによって行なった・反射率の変化は光
源としてハロゲンランプを用い、反射光の強度を視感度
補正したホトマルチプライヤで測定し、トランジェント
レコーダーで記録し調べた。
(1) ΔOD Difference in the degree of light absorption during coloring and decolorization, that is, difference in optical density between coloring and decolorization ΔOD = −tag
The evaluation of IC/III (where Ic+IB is the intensity of reflected light when colored and when decolored, respectively) is the change in reflectance when the ECD element is driven with a square wave with a period of 4 seconds and an amplitude of ±0.5V. Changes in reflectance were investigated by using a halogen lamp as a light source, measuring the intensity of reflected light with a photomultiplier corrected for visibility, and recording it with a transient recorder.

(2)反答速度 消色から着色に切り換ったときに、消色時からΔODで
0.5だけ着色するまでの時間で評価した。
(2) Response speed When switching from decoloring to coloring, evaluation was made based on the time from decoloring to coloring by 0.5 in ΔOD.

(3フメモリー特性 ECD素子を±0.5vで駆動したときの最大の着色状
態でECD素子を開回路状態にし、ΔODの減衰率が5
%をこえるまでの時間で評価した。但し、駆動波形の周
期を変えた初期にはΔODは安定していないため数十〜
数百回の繰シ返しを行ないΔODが安定した時点を0回
目として、測定を開始した。
(3 memory characteristics When the ECD element is driven at ±0.5v, the ECD element is brought into an open circuit state in the maximum colored state, and the attenuation rate of ΔOD is 5
Evaluation was made based on the time taken to exceed %. However, at the beginning of changing the period of the drive waveform, ΔOD is not stable, so it varies from several tens to
The measurement was started at the time when ΔOD became stable after several hundred repetitions.

(4)寿命特性 ECD素子を周期1秒、振幅±0,5vの方形波で駆動
したときのΔODが初期値の±10%をこえるまでの繰
シ返し回数で評価した。
(4) Life characteristics The ECD element was evaluated by the number of repetitions until ΔOD exceeded ±10% of the initial value when the ECD element was driven with a square wave having a period of 1 second and an amplitude of ±0.5V.

実施例1 酸化タングステンをITO付ガツガラス基板上空中で抵
抗加熱蒸着し、厚さ3000Xの膜層とし、これを発色
層とした。この発色層をlN−H2SO4水溶液中でI
テンジオスタットを用いて定電位電解法により還元処理
を行った。発色層の電位をkAgC!−基準電極に対し
、−o、osvに設定し電流が流れなくなった点で電解
をやめ、すげやく洗浄乾燥後ECD素子を組み立て、特
性の評価を行なった。その結果、ΔOD:0.73、応
答時間;130ミリ秒、メモリー特性は3時間以上あっ
てかなシ良好であシ、寿命特性は3×10回において未
だΔODの変化が初期値の±10%以内であった。
Example 1 Tungsten oxide was vapor-deposited by resistance heating in the air on a glass substrate with ITO to form a film layer with a thickness of 3000×, which was used as a coloring layer. This coloring layer was I
Reduction treatment was performed by constant potential electrolysis using a Tendiostat. The potential of the coloring layer is kAgC! - With respect to the reference electrode, it was set to -o, osv, and electrolysis was stopped at the point where no current flowed, and the ECD element was quickly washed and dried, and then the ECD element was assembled and its characteristics were evaluated. As a result, ΔOD: 0.73, response time: 130 milliseconds, memory characteristics were good for more than 3 hours, and life characteristics showed that the change in ΔOD was still ±10% of the initial value after 3×10 cycles. It was within

また、寿命特性の測定中、気泡の発生は全く見られず表
示も鮮明であった。
Further, during the measurement of life characteristics, no bubbles were observed and the display was clear.

実施例2 ガルバノスタットを用いて定電流電解法によシ還元処理
した以外は実施例1と同様の条件で行なった。設定電流
値は50μA /crn で400秒電解を行なった。
Example 2 The same conditions as in Example 1 were carried out except that the reduction treatment was carried out by constant current electrolysis using a galvanostat. Electrolysis was performed for 400 seconds at a set current value of 50 μA/crn.

その結果は、ΔOD:0.66、応答速度140ミリ秒
、メモリー特性イ、寿命特性、気泡の不発生及び表示の
鮮明さはほぼ実施例1と同じように良好であった。
The results showed that ΔOD: 0.66, response speed of 140 milliseconds, memory characteristics, life characteristics, no bubbles, and display clarity were almost as good as in Example 1.

実施例3 1 N −HNO,水溶液中で定電流電解法によシ還元
処理した以外は実施例2と同様の条件で行なった。
Example 3 The same conditions as in Example 2 were carried out except that the reduction treatment was carried out by constant current electrolysis in an aqueous solution of 1N-HNO.

その結果は、ΔOD:0.69.応答速度:140ミリ
秒、寿命特性は4X10’回その他は実施例1とほぼ同
様でありた。
The result is ΔOD: 0.69. Response speed: 140 milliseconds, life characteristics: 4×10′ times, and other aspects were almost the same as in Example 1.

実施例4 1モルチのL−アスコルビン酸水溶液中で10分間還元
処理した以外は実施例1と同様の条件で行なった。
Example 4 The same conditions as in Example 1 were carried out except that the reduction treatment was carried out for 10 minutes in a 1 molti L-ascorbic acid aqueous solution.

その結果は、ΔOD:0.63.応答時間;165ミリ
秒;寿命特性;2X10’その他は実施例1とは′  
 は同様であった。
The result is ΔOD: 0.63. Response time: 165 milliseconds; Life characteristics: 2X10'Others are the same as Example 1'
were similar.

実施例5 酸化イリジウムをITO付ガツガラス基板上素雰囲気中
で高周波反応性スフ9ツタによj51000Xの厚さの
膜層とし、これを発色層とした。また、発色層の電位を
基準電極に対し、+0,2Vとした。
Example 5 Iridium oxide was formed into a film layer with a thickness of 51,000X by using high-frequency reactive foam in an elemental atmosphere on a glass substrate with ITO, and this was used as a coloring layer. Further, the potential of the coloring layer was set to +0.2V with respect to the reference electrode.

これら以外は実施例1と同様の条件で行なった。Other than these conditions, the same conditions as in Example 1 were used.

その結果は、ΔOD : 0.59 、応答時間;80
ミリ秒、寿命特性は5X10’回その他は実施例1とは
The results are ΔOD: 0.59, response time: 80
The life characteristics were 5×10' times in milliseconds, and the other characteristics were the same as in Example 1.

は同様であった。were similar.

実施例6 実施例5と同様な酸化イリジウム膜の発色層を実施例2
と同様な条件で定電流電解法によシ還元処理を行なった
。設定電流値は50μA/cmで800秒電解を行なっ
た。
Example 6 A coloring layer of iridium oxide film similar to Example 5 was prepared in Example 2.
The reduction treatment was carried out by constant current electrolysis under the same conditions as described above. Electrolysis was performed for 800 seconds at a set current value of 50 μA/cm.

その結果は、Δ00 : 0.61 、応答時間;75
ミリ秒、寿命特性:6X10’回であった。
The result is Δ00: 0.61, response time; 75
Milliseconds, life characteristics: 6 x 10' times.

実施例7 1 N −H2So4水溶液に代えてI N −KCt
水溶液を用いた以外は実施例6と同様な条件で行なった
Example 7 I N -KCt in place of 1 N -H2So4 aqueous solution
The same conditions as in Example 6 were used except that an aqueous solution was used.

その結果は、ΔOD:0.60.応答時間;80ミリ秒
、寿命特性:6X10’回でありた。
The result is ΔOD: 0.60. Response time: 80 milliseconds, life characteristics: 6 x 10' times.

実施例8 実施例5と同様な酸化イリジウム膜の発色層を、1 M
 −NaBH4水溶液中で化学的還元処理した以外は実
施例5と同様の条件で行なった。
Example 8 A coloring layer of the same iridium oxide film as in Example 5 was prepared at 1 M
The process was carried out under the same conditions as in Example 5, except that the chemical reduction treatment was carried out in an aqueous solution of -NaBH4.

その結果はΔOD:0.64、応答速度;70ミリ秒、
寿命特性5×10 回であった。
The results are ΔOD: 0.64, response speed: 70 ms,
The life characteristics were 5 x 10 times.

実施例9 実施例1と同様の発色層をつくシ、一方実施例5と同様
にしてITO付白色アルミナ基板上に厚さ500Xの酸
化イリジウム膜層を形成した発色層を得た。このうち酸
化タングステン膜の発色層の方だけを実施例2と同様な
条件で還元処理し、この2つの発色層を対向させた型0
ECD素子を組み立てて特性を調べた。
Example 9 A coloring layer was formed in the same manner as in Example 1, and in the same manner as in Example 5, an iridium oxide film layer having a thickness of 500× was formed on a white alumina substrate with ITO to obtain a coloring layer. Of these, only the coloring layer of the tungsten oxide film was reduced under the same conditions as in Example 2, and the two coloring layers were made to face each other.
An ECD element was assembled and its characteristics were investigated.

その結果、ΔOD ; 0.68 、応答速度;150
ミリ秒、寿命特性:2X10’回、消色時の反射率は8
2チその他は実施例1とほぼ同様であった。
As a result, ΔOD; 0.68, response speed; 150
Milliseconds, life characteristics: 2 x 10' times, reflectance when decolored is 8
The other parts were almost the same as in Example 1.

実施例10 実施例9と同様にして得た2つの発色層のうち、酸化イ
リジウム膜の発色層だけを実施例6と同様な方法で50
μA/の2で700秒間定電流電解法によシ還元処理し
た。実施例9と同様にしてECD素子を組み立て特性を
調べた。
Example 10 Of the two coloring layers obtained in the same manner as in Example 9, only the coloring layer of the iridium oxide film was heated to 50% by the same method as in Example 6.
The reduction treatment was carried out by constant current electrolysis at 2 μA/2 for 700 seconds. An ECD element was assembled in the same manner as in Example 9, and its characteristics were investigated.

その結果はΔOD:0.74、応答速度;120ミリ秒
、寿命特性:5X10’回、消色時の反射率は86チで
あった。
The results were as follows: ΔOD: 0.74, response speed: 120 milliseconds, life characteristics: 5×10' times, and reflectance when decolored was 86 cm.

実施例11 実施例9と同様にして得た2つの発色層のうち、酸化タ
ングステン膜の発色層は実施例9と同様にして50μA
/an2で200秒、酸化イリジウム膜の発色層は実施
例10と同様にして700秒夫々定電流電解により還元
処理した。実施例9と同様にしてECD素子を組み立て
特性を調べた。
Example 11 Of the two coloring layers obtained in the same manner as in Example 9, the coloring layer of the tungsten oxide film was 50 μA in the same manner as in Example 9.
/an2 for 200 seconds, and the coloring layer of the iridium oxide film was reduced by constant current electrolysis in the same manner as in Example 10 for 70 seconds. An ECD element was assembled in the same manner as in Example 9, and its characteristics were investigated.

その結果は、ΔOD:0.79、応答速度;110ミリ
秒、寿命特性7X10’回、消色時の反射率は89チに
達した。
The results were as follows: ΔOD: 0.79, response speed: 110 milliseconds, life characteristic 7×10' times, and reflectance upon decolorization reaching 89 inches.

その他は実施例1とほぼ同様であった。The rest was almost the same as in Example 1.

実施例12 反応性スノ母ツタによシ、ITOガラス基板上に酸化モ
リブデンを厚さ4000Xの膜層に形成し、これを発色
層とした。
Example 12 A film layer of molybdenum oxide with a thickness of 4000× was formed on an ITO glass substrate using reactive vines, and this was used as a coloring layer.

その他は実施例2と同様の条件で行なった。Other conditions were the same as in Example 2.

その結果は、ΔoD:o、56、応答速度;500ミリ
秒、寿命特性:5X10’であった。
The results were: ΔoD: 56, response speed: 500 milliseconds, and life characteristics: 5×10'.

実施例13 発色層として、イリジウムのスパッタ膜をlN−H2S
O4中で陽極酸化することによシ得られる水酸化イリジ
ウムを用い、実施例5と同様にして発色層を還元処理し
た後K ECD素子を組み立てた。
Example 13 Sputtered iridium film was used as a coloring layer in IN-H2S
Using iridium hydroxide obtained by anodic oxidation in O4, the coloring layer was reduced in the same manner as in Example 5, and then a KECD element was assembled.

その結果はΔOD:0.65、応答速度;70ミリ秒、
寿命特性: 4 X I 95回でありた。
The results are ΔOD: 0.65, response speed: 70 ms,
Life characteristics: 4 x I 95 times.

実施例14 1モルL i C1O4を含むプロピレンカーゲネート
溶液中でイオン注入を行なう以外は、実施例2と同じ条
件で行った。ただし、ECD素子を組み立てるときの電
解質溶液にも1モルLiC2O4を含むプロピレンカー
ブネート溶液を用いた。その結果、ΔoD;0.65、
応答速度:140ミリ秒、寿命特性:5×10 回でそ
の他は実施例1とほぼ同様であった。
Example 14 The same conditions as in Example 2 were carried out except that ion implantation was performed in a propylene cargenate solution containing 1 mol L i C1O4. However, a propylene carbinate solution containing 1 mol LiC2O4 was also used as the electrolyte solution when assembling the ECD element. As a result, ΔoD; 0.65,
Response speed: 140 milliseconds, life characteristics: 5×10 cycles, and other aspects were almost the same as in Example 1.

実施例15 発色層として酸化タングステン膜の発色層を用い、対向
電極のみを実施例4と同様にして化学的還元処理し、E
CD素子を組み立てた。
Example 15 A tungsten oxide film coloring layer was used as the coloring layer, and only the counter electrode was chemically reduced in the same manner as in Example 4.
Assembled the CD element.

その結果は、ΔOD:0.71.応答時間;135ミリ
秒、寿命特性:3X10’回で、その他は実施例1とほ
ぼ同様であった。
The result is ΔOD: 0.71. Response time: 135 milliseconds, life characteristics: 3×10' times, and other aspects were almost the same as in Example 1.

実施例16 実施例15において、発色層と対向電極の両方を還元処
理した以外は、実施例15と同様に行った。
Example 16 The same procedure as in Example 15 was carried out except that both the coloring layer and the counter electrode were subjected to the reduction treatment.

その結果は、ΔOD : 0.75 、応答時間;13
0ミリ秒、寿命特性;6X10’回で、その他は実施例
1とほぼ同様であった。
The result is ΔOD: 0.75, response time: 13
0 millisecond, life characteristics: 6 x 10' times, and other aspects were almost the same as in Example 1.

比較例1 還元処理を施さないまま実施例1と同様にしてECD素
子を組み立てその特性を調べた。まずエイジングを行な
うことなく、その特性を調べたところ、初期には、ΔO
Dは0.2程度しか得られなかったが、徐々にΔODが
増加し繰シ返し回数が1000回目には、ΔODは0.
4程度にまで達し、その後もΔODは安定しなかった。
Comparative Example 1 An ECD element was assembled in the same manner as in Example 1 without being subjected to reduction treatment, and its characteristics were investigated. When we first investigated its characteristics without aging, we found that in the initial stage, ΔO
D was only about 0.2, but ΔOD gradually increased and by the 1000th repetition, ΔOD reached 0.
4, and ΔOD remained unstable even after that.

こ0ECD素子をさらに±0.8vで500回エイジン
グした後、評価基準である±O,SVで駆動した場合に
ΔODは0.62にまで増加した。この後、±0.5V
で1000回駆動させてもΔODの変化は極めて小さか
った。また応答速度は135ミリ秒で実施例1と比較し
てもほぼ同等の値を示した。しかし、このECD素子の
メモリー特性を調べると20分程度であり、極めてメモ
リー性が悪かった。また寿命特性は8X10’回程度で
Stυ良好でなく、しかもこの後2×10 回を超える
と電解質層中に気泡の発生が献められ、5×10回を超
えると無数の気泡が発生し、色むらも大きくなり、表示
品質の低下が大きかった。
After this 0ECD element was further aged 500 times at ±0.8 V, ΔOD increased to 0.62 when driven at ±0, SV, which is the evaluation standard. After this, ±0.5V
Even after driving 1000 times, the change in ΔOD was extremely small. Further, the response speed was 135 milliseconds, which was almost the same value as in Example 1. However, when examining the memory characteristics of this ECD element, it was approximately 20 minutes, indicating extremely poor memory characteristics. In addition, the life characteristics are not good after about 8 x 10' cycles, and moreover, if the cycle exceeds 2 x 10 times, bubbles will be generated in the electrolyte layer, and if it exceeds 5 x 10 cycles, countless bubbles will be generated. Color unevenness also increased, and the display quality deteriorated significantly.

比較例2 還元処理を施さないまま実施例6と同様にしてECD素
子を組み立てその特性を調べた。
Comparative Example 2 An ECD element was assembled in the same manner as in Example 6 without being subjected to reduction treatment, and its characteristics were investigated.

その結果比較例1と同様に、エイソング前はΔODが小
さくしかも安定しなかった。さらに±0.8Vで500
回エイジングした後には、ΔODは、0.51が得られ
たが、メモリー性は比較例1と同様に悪く、30分未満
であった。
As a result, as in Comparative Example 1, ΔOD was small and unstable before Aison. Furthermore, 500 at ±0.8V
After aging twice, a ΔOD of 0.51 was obtained, but the memory property was poor as in Comparative Example 1, lasting less than 30 minutes.

また寿命特性は、4×10回で、10回を超えると気泡
の発生量が多くなり、その他の特性も極めて低下した。
Moreover, the life characteristics were 4×10 times, and when the number of times exceeded 10 times, the amount of bubbles generated increased and other characteristics were also extremely deteriorated.

比較例3 発色層を還元処理することな〈実施例11と同様なEC
D素子を組み立てその特性を訓べた。
Comparative Example 3 EC similar to Example 11 without reducing the coloring layer
I assembled a D element and learned its characteristics.

その結果、エイソング前では初期ΔODは0.2程度だ
ったものが1000回後には0.45にまで達した。次
に±0.8vで500回エイジング処理を行った後特性
を測るとΔOD ; 0.70、応答速度;125ミリ
秒が得られたが、メモリー性は20分弱と極めて悪かっ
た。また寿命特性は8×10回で、1×105回よシ気
泡の発生が多くなシ、素子品質の低下がはなはだしくな
った。
As a result, the initial ΔOD was about 0.2 before Aison, but after 1000 times it reached 0.45. Next, after performing an aging process 500 times at ±0.8V, the characteristics were measured and a ΔOD of 0.70 and a response speed of 125 milliseconds were obtained, but the memory performance was extremely poor at just under 20 minutes. In addition, the lifetime characteristics were 8×10 times, and as compared to 1×105 times, the occurrence of bubbles was more frequent, and the deterioration of the element quality was significant.

Claims (11)

【特許請求の範囲】[Claims] (1)エレクトロクロミックディスプレイ素子を構成す
る際に、構成前に予め発色層及びその対向電極の少なく
とも一方を還元処理することを特徴とするエレクトロク
ロミックディスプレイ素子の構成法
(1) A method for configuring an electrochromic display element, characterized in that, when configuring the electrochromic display element, at least one of the coloring layer and its counter electrode is subjected to a reduction treatment in advance before configuring the electrochromic display element.
(2)発色層が複数の発色層からなる場合、少なくとも
一つの発色層を還元処理する特許請求の範囲第1項記載
の構成法
(2) When the color-forming layer is composed of a plurality of color-forming layers, the composition method according to claim 1, wherein at least one color-forming layer is subjected to a reduction treatment.
(3)還元処理の方法として、発色層又は対向電極を電
解還元時の対極に対して陰極として、電解質溶液中で電
圧を印加して電解還元を行なう特許請求の範囲第1項記
載の構成法
(3) The method of construction according to claim 1, in which the reduction treatment is performed by applying a voltage in an electrolyte solution using the coloring layer or the counter electrode as a cathode with respect to a counter electrode during electrolytic reduction.
(4)電解還元の方法として、発色層又は対向電極を電
解還元時の対極に対して陰極とし、該陰極の電位を基準
電極に対して一定電位に保持しながら電解を行なう特許
請求の範囲第3項記載の構成法
(4) As a method of electrolytic reduction, a coloring layer or a counter electrode is used as a cathode with respect to a counter electrode during electrolytic reduction, and electrolysis is carried out while maintaining the potential of the cathode at a constant potential with respect to a reference electrode. Construction method described in Section 3
(5)電解還元の方法として発色層又は対向電極を陰極
とし、該陰極に流れる電流を一定に保持しながら電解を
行なう特許請求の範囲第3項記載の構成法
(5) As a method of electrolytic reduction, the color forming layer or the counter electrode is used as a cathode, and electrolysis is carried out while keeping the current flowing through the cathode constant.
(6)電解質溶液として、硫酸、塩酸、硝酸などの電解
質無機酸水溶液;硫酸ナトリウム、塩化ナトリウム、塩
化カリウムなどの電解質を含む水溶液;水酸化ナトリウ
ム、水酸化カリウム、アンモニアなどの電解質アルカリ
水溶液又は過塩素酸、過塩素酸リチウム、過塩素酸ナト
リウム、過塩素酸カリウムなどの電解質を含むプロピレ
ンカーボネート、γ−プチロラクトン、アセトニトリル
などの有機溶液などの−以上を用いる特許請求の範囲第
3項記載の構成法
(6) As the electrolyte solution, electrolyte inorganic acid aqueous solution such as sulfuric acid, hydrochloric acid, nitric acid; aqueous solution containing electrolyte such as sodium sulfate, sodium chloride, potassium chloride; electrolyte alkaline aqueous solution or supernatant such as sodium hydroxide, potassium hydroxide, ammonia. The composition according to claim 3, which uses an organic solution such as propylene carbonate, γ-butyrolactone, acetonitrile, etc. containing an electrolyte such as chloric acid, lithium perchlorate, sodium perchlorate, potassium perchlorate, etc. law
(7)還元処理の方法として、還元剤を含む溶液中で発
色層又はその対向電極を還元する特許請求の範囲第1項
記載の構成法
(7) The method of construction according to claim 1, wherein the reduction treatment method involves reducing the coloring layer or its counter electrode in a solution containing a reducing agent.
(8)還元剤として、水素化ホウ素ナトリウム、塩化第
一鉄、フェロシアン化カリウム、L−アスコルビン酸、
ヒドロキノン、ヒドラジン、ヨウ化水素、硫化水素、ギ
酸、シュウ酸などの還元剤を用いる特許請求の範囲第7
項記載の構成法
(8) As a reducing agent, sodium borohydride, ferrous chloride, potassium ferrocyanide, L-ascorbic acid,
Claim 7 using a reducing agent such as hydroquinone, hydrazine, hydrogen iodide, hydrogen sulfide, formic acid, oxalic acid, etc.
Configuration method described in section
(9)還元処理の際に、発色層に注入されるイオン種が
、H^+、Li^+、Na^+、K^+、Ag^+など
の1価のカチオンである特許請求の範囲第1項記載の構
成法
(9) Claims in which the ion species injected into the coloring layer during the reduction treatment are monovalent cations such as H^+, Li^+, Na^+, K^+, Ag^+, etc. Construction method described in paragraph 1
(10)還元処理の際に、発色層から引き抜かれるイオ
ン種がOH^−などの1価のアニオンである特許請求の
範囲第1項記載の構成法
(10) The composition method according to claim 1, wherein the ionic species extracted from the coloring layer during the reduction treatment is a monovalent anion such as OH^-.
(11)発色層が、酸化タングステン、酸化モリブデン
、酸化チタン、酸化バナジウム、酸化クロム、酸化イリ
ジウム、水酸化イリジウム、水酸化ニッケル、水酸化ロ
ジウム、酸化ニオブなどの無機質材料又はビオロゲン、
希土類ジフタロシアニン、TTF化ポリスチレン、ビオ
ロゲンポリマーなどの有機質材料よりなる特許請求の範
囲第1項記載の構成法
(11) The coloring layer is an inorganic material such as tungsten oxide, molybdenum oxide, titanium oxide, vanadium oxide, chromium oxide, iridium oxide, iridium hydroxide, nickel hydroxide, rhodium hydroxide, niobium oxide or viologen,
The composition method according to claim 1, which is made of organic materials such as rare earth diphthalocyanine, TTF polystyrene, and viologen polymer.
JP60069030A 1985-04-03 1985-04-03 Method for constituting electrochromic display element Pending JPS61228423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069030A JPS61228423A (en) 1985-04-03 1985-04-03 Method for constituting electrochromic display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069030A JPS61228423A (en) 1985-04-03 1985-04-03 Method for constituting electrochromic display element

Publications (1)

Publication Number Publication Date
JPS61228423A true JPS61228423A (en) 1986-10-11

Family

ID=13390773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069030A Pending JPS61228423A (en) 1985-04-03 1985-04-03 Method for constituting electrochromic display element

Country Status (1)

Country Link
JP (1) JPS61228423A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527495A (en) * 2010-05-27 2013-06-27 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method for manufacturing electrochromic article
JPWO2019123846A1 (en) * 2017-12-20 2021-01-28 国立大学法人千葉大学 Electrochromic display element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129316A (en) * 1979-03-28 1980-10-07 Seiko Epson Corp Production of electrochromic electrode
JPS58172231A (en) * 1982-03-30 1983-10-11 Nippon Sheet Glass Co Ltd Manufacture of transition metallic oxide film
JPS6083918A (en) * 1983-10-14 1985-05-13 Nippon Sheet Glass Co Ltd Electrochromic element
JPS61219030A (en) * 1985-03-25 1986-09-29 Nippon Sheet Glass Co Ltd Electrochromic element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55129316A (en) * 1979-03-28 1980-10-07 Seiko Epson Corp Production of electrochromic electrode
JPS58172231A (en) * 1982-03-30 1983-10-11 Nippon Sheet Glass Co Ltd Manufacture of transition metallic oxide film
JPS6083918A (en) * 1983-10-14 1985-05-13 Nippon Sheet Glass Co Ltd Electrochromic element
JPS61219030A (en) * 1985-03-25 1986-09-29 Nippon Sheet Glass Co Ltd Electrochromic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527495A (en) * 2010-05-27 2013-06-27 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Method for manufacturing electrochromic article
JPWO2019123846A1 (en) * 2017-12-20 2021-01-28 国立大学法人千葉大学 Electrochromic display element

Similar Documents

Publication Publication Date Title
US5876581A (en) Film of iron (III) hexacyanoferrate (II) and process of synthesizing same
US4498739A (en) Electrochromic display devices using iron(III) hexacyanoferrate(II) salt
US5209980A (en) Transparent counterelectrodes
US5215821A (en) Solid-state electrochromic device with proton-conducting polymer electrolyte and Prussian blue counterelectrode
JP2004504628A (en) Fast switching reversible electrochemical mirror
EP0180204B1 (en) Electrochromic display device
Yamanaka The electrochemical behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells
US4726664A (en) Electrochromic device
US4191453A (en) Iridium oxide based electrochromic devices
US4326777A (en) Electrochromic display device
JPS61228423A (en) Method for constituting electrochromic display element
Shen et al. Electrochromism of Electrodeposited Tungsten Trioxide Films: I. Electrochemical Characterization
US4201454A (en) Heat treated electrochromic devices
EP0068634B1 (en) A process of making iron (iii) hexacyanoferrate (ii) and to iron (iii) hexacyanoferrate (ii) made thereby
US4432612A (en) Phthalocyanine electrochromic display with improved cycle life
JPS6360799B2 (en)
US4526659A (en) Method of electrodepositing hexacyano-cobalt iron complex
JPS6328289B2 (en)
JP2007199581A (en) Driving method of electrochemical display element
JPS5943071B2 (en) electrochromic display element
JPH05224242A (en) Electrochromic display device
JPS60235831A (en) Synthesis of aniline polymer
JPH0549969B2 (en)
JPS6353294A (en) Production of iridium oxide film
JPS6039629A (en) Electrochromic display element