JPS61228320A - Apparatus for indicating measuring position of radiation thermometer - Google Patents

Apparatus for indicating measuring position of radiation thermometer

Info

Publication number
JPS61228320A
JPS61228320A JP60070379A JP7037985A JPS61228320A JP S61228320 A JPS61228320 A JP S61228320A JP 60070379 A JP60070379 A JP 60070379A JP 7037985 A JP7037985 A JP 7037985A JP S61228320 A JPS61228320 A JP S61228320A
Authority
JP
Japan
Prior art keywords
light
measurement
radiation thermometer
wavelength
finder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60070379A
Other languages
Japanese (ja)
Inventor
Kenji Imura
健二 井村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP60070379A priority Critical patent/JPS61228320A/en
Publication of JPS61228320A publication Critical patent/JPS61228320A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/07Arrangements for adjusting the solid angle of collected radiation, e.g. adjusting or orienting field of view, tracking position or encoding angular position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0808Convex mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0813Planar mirrors; Parallel phase plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/084Adjustable or slidable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0896Optical arrangements using a light source, e.g. for illuminating a surface

Abstract

PURPOSE:To eliminate the necessity for using a halogen lamp or an electronic flash apparatus having large quantity of light, by constituting the titled apparatus so that the brightness of the specific wavelength region around a measuring part is made high and the measuring part can be clearly indicated by the difference of contrast even if the circumference is light enough. CONSTITUTION:The light emitted from a light projecting element 16 passes through the aperture part 6a of a concave mirror 6 and is converged by a condenser lens 18 to be incident to a focus plate 8 and reflected by the reflective surface 8a of said focus plate 8 while the reflected light is again reflected by the reflective part 6b of the concave mirror 6 to form a ring shaped illumination spot around a measuring part. A finder 22 having wavelength selectivity is provided to a finder 20 and, for example, when a red LED with a specific wavelength is used as the light projecting element 16, a long wavelength transmission type filter for blocking or attenuating the specific wavelength light thereof is used as the finder 22 having wavelength selectivity. When an observing region is observed by said filter, the contrast of the region A corresponding to the observing region and the region B in the periphery of said region A with the illumination spot C becomes large and visibility becomes easy even if the circumference is light enough.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、放射温度計に関し、更に詳しくはその測定位
置を使用者に指示する為の装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a radiation thermometer, and more particularly to a device for indicating the measurement position of the thermometer to a user.

従来の技術 従来、装置から測定位置に向けてスポットを投射し、こ
のスポットが使用者に視認されることによって測定位置
が指示されるようにした装置は知られている。
2. Description of the Related Art Conventionally, an apparatus is known in which a spot is projected from the apparatus toward a measurement position, and the measurement position is indicated by the user viewing the spot.

しかしながら、このような装置では、測定位置の周囲が
明るいとスポットが視認しにくくなるという欠点がある
。そこで、スポットをより高輝度にするために、光源と
してハロゲンランプや大光量の電子閃光装置を用いたも
のもあるが、光源の寿命か短かかったり、高熱が発生し
たり、大きな電力を消費したりするという欠点が新たに
生じる。
However, such a device has a drawback that the spot becomes difficult to see if the area around the measurement position is bright. Therefore, in order to make the spot even brighter, some methods use a halogen lamp or a high-power electronic flash device as a light source, but the light source has a short lifespan, generates high heat, and consumes a large amount of power. A new drawback arises:

従って、このような欠点を生じることなく、周囲が明る
くとも測定位置を明確lご指示できる装置は従来存在し
なかった。
Therefore, there has been no device that can clearly indicate the measurement position even in bright surroundings without causing such drawbacks.

本発明は、例え周囲か明るくとも測定位置を明確に指示
でき、かつ、ハロゲンランプや大光量の電子閃光装置を
用いる必要もない装置を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that can clearly indicate a measurement position even if the surrounding area is bright, and that does not require the use of a halogen lamp or a high-power electronic flash device.

問題点を解決するための手段 上記目的を達成する為に、本発明は、測定部からの赤外
光を測定用光学系を介して受光素子によって受光し、そ
の出力に応じて測定部の放射温度を測定する放射温度計
において、測定部を含む測定領域を観察する為のファイ
ンダと、測定部を指示する為に、測定用光学系を介して
測定部の周辺に光を投射する投光手段と、ファインダ光
路内に配置され、投射された光に多量に含まれる波長成
分に対して他の波長成分の透過を減少せしめる波長選択
手段とを有することを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the present invention receives infrared light from a measuring section via a measuring optical system by a light receiving element, and adjusts the radiation of the measuring section according to its output. In a radiation thermometer that measures temperature, there is a finder for observing the measurement area including the measurement part, and a light projection means for projecting light around the measurement part via the measurement optical system to indicate the measurement part. and a wavelength selection means disposed within the finder optical path for reducing transmission of other wavelength components compared to the wavelength components contained in a large amount in the projected light.

作  用 従って、本発明によれば、ファインダ表示において、測
定指示部とそれ以外の箇所とのコントラストが増大され
て表示される。
Therefore, according to the present invention, in the finder display, the contrast between the measurement instruction section and other parts is increased and displayed.

実施例 以下、図面に基ついて本発明の実施例を詳細に説明する
。第1図は本発明一実施例の放射温度計を示す断面図で
あり、同図において、(2)は放射温度計本体である。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a sectional view showing a radiation thermometer according to an embodiment of the present invention, and in the figure, (2) is the radiation thermometer main body.

測定部から該本体(2)に入射した入射光は、保護フィ
ルタ(4)を透過し、光軸(Xi上に開口部(6a)が
形成された凹面鏡(6)の反射部(6b)によって反射
される。該凹面鏡(6)の結像面近傍には焦点板(8)
か配置され、該焦点板(8)は光軸凶上にピンホール(
8a)を有している。従って、凹面鏡(4)によって反
射された光のうち、焦点板(8)のピンホール(8a)
を透過したもののみが、モータ(10)によって回転せ
しめられるチョッパ(12)を介して受光素子(14)
に入射させられる。ここで、チョッパ(12)は、受光
素子(14)への入射光量を交流信号とするためのもの
である。そして、凹面鏡(2)及び焦点板(8)は測定
用光学系を構成し、該測定用光学系によって測定される
範囲は、焦点板(8)のピンホール(8a)の大きさに
よって定められる。
The incident light that enters the main body (2) from the measuring section is transmitted through the protective filter (4) and is reflected by the reflecting section (6b) of the concave mirror (6) having an opening (6a) formed on the optical axis (Xi). A focus plate (8) is located near the image forming surface of the concave mirror (6).
The focus plate (8) has a pinhole (
8a). Therefore, among the light reflected by the concave mirror (4), the pinhole (8a) of the focus plate (8)
Only the light that passes through the light is sent to the light receiving element (14) via the chopper (12) rotated by the motor (10).
is made to be incident on. Here, the chopper (12) is for converting the amount of light incident on the light receiving element (14) into an alternating current signal. The concave mirror (2) and the focus plate (8) constitute a measurement optical system, and the range measured by the measurement optical system is determined by the size of the pinhole (8a) of the focus plate (8). .

尚、受光素子(14)の出力は不図示の演算回路に入力
されて、測定部の放射温度の測定に用いられる。
Note that the output of the light receiving element (14) is input to an arithmetic circuit (not shown) and used to measure the radiation temperature of the measuring section.

(16)は光軸き)上に配置された投光素子で、該投光
素子(16)から発せられた光は、凹面鏡(6)の開口
部(6a)を透過してコンデンサレンズ(18) iこ
よって集束されて焦点板(8)に入射させられる。焦点
板(8)には、ピンホール(8a)の周囲1こ、凹面鏡
(6)に向けて径が徐々lこ増加する円錐状の反射面(
8b)が一体重に形成されており、投光素子(]6)か
らの入射光を凹面鏡(6)の反射部(6t))lこ向け
て反射する3、そして、焦点板(8)の反射面(8b)
以外の部分には黒色板か取付けられて光を反射しないよ
うにされている。従って、投光素子(16)から発せら
れた光は、凹面鏡(6)の開口部(6a)を透過してコ
ンデンサレンズ(18)によって集束されて焦点板(8
)に入射され、そのうち反射面(8b)によって反射さ
れて凹面鏡(6)の反射部(6b)によって再び反射さ
れたものが、測定部を囲むように測定領域に投射される
。すなわち、測定対象上においては測定部の周囲に、投
光素子(16)からの光によるリング状の照明スポット
が形成される。なぜなら、焦点板(8)の反射面(8b
)によって反射されて測定領域に投射される光の光路は
、凹面鏡(6)の反射部(6b)によって反射されて焦
点板(8)のピンホール(8a〕を透過して受光素子(
14)に入射する測定光の光路と極めて近接しているか
らである。
(16) is a light emitting element placed on the optical axis (optical axis), and the light emitted from the light emitting element (16) passes through the opening (6a) of the concave mirror (6) and passes through the condenser lens (18). ) i is thus focused and made incident on the reticle (8). The reticle (8) has a conical reflecting surface (1) around the pinhole (8a), the diameter of which gradually increases by 1 towards the concave mirror (6).
8b) is formed in one piece, and reflects the incident light from the light projecting element (6) towards the reflecting part (6t) of the concave mirror (6), and the focus plate (8). Reflective surface (8b)
Black plates are attached to other parts to prevent light from reflecting. Therefore, the light emitted from the light projecting element (16) passes through the opening (6a) of the concave mirror (6), is focused by the condenser lens (18), and is focused by the focusing plate (8).
), which is reflected by the reflecting surface (8b) and reflected again by the reflecting part (6b) of the concave mirror (6), and is projected onto the measuring area so as to surround the measuring part. That is, on the object to be measured, a ring-shaped illumination spot is formed around the measuring section by the light from the light projecting element (16). This is because the reflective surface (8b) of the focusing plate (8)
The optical path of the light that is reflected by the concave mirror (6) and projected onto the measurement area is reflected by the reflection part (6b) of the concave mirror (6), passes through the pinhole (8a) of the focus plate (8), and passes through the light receiving element (
This is because it is extremely close to the optical path of the measurement light incident on 14).

(20)は、放射温度計本体(2)の土壁(2a)の後
端近傍の中央に図示のように回転可能゛に軸支されたフ
ァインダであり、その内部に波長選択性を有するフィル
タ(22)が設けられている。このファインダ(20)
は、不使用時には、図示二点鎖線のように土壁(2a、
)の凹部に収納される。ここで、フィルタ(22)の波
長選択性は、投光素子(16)の発光波長に応じて定め
られる。例えば、投光素子(16)として中心波長が6
60nmの赤色LEDを用いる場合、フィルタ(22)
としては、600nm以下の短波長光を遮断もしくは減
少せしめる長波長透過型のガラスもしくはプラスチック
からなるフィルタを用いる。このように構成すること【
こよって、ファインダ(20)を用いて測定領域を観察
すると、第2図に二点鎖線にて示されるように、測定部
に対応する領域(A)及びその周辺の測定領域に対応す
る領域間に比べて、リング状の照明スポラ) fc)は
長波長成分が多いので、fA) Plとfc)とのコン
トラストは実際よりも大きくなるので、周辺の明るさに
関係なく測定部を良好に視認できる。
(20) is a finder rotatably supported in the center near the rear end of the earthen wall (2a) of the radiation thermometer body (2) as shown in the figure, and a filter having wavelength selectivity inside the finder. (22) is provided. This finder (20)
When not in use, the earth wall (2a,
) is stored in the recess. Here, the wavelength selectivity of the filter (22) is determined according to the emission wavelength of the light projecting element (16). For example, the center wavelength of the light projecting element (16) is 6.
When using 60nm red LED, filter (22)
As a filter, a long-wavelength transmitting glass or plastic filter that blocks or reduces short-wavelength light of 600 nm or less is used. Configure like this [
Therefore, when observing the measurement area using the finder (20), as shown by the two-dot chain line in FIG. Compared to the ring-shaped illumination spora) fc), there are many long wavelength components, so the contrast between fA) Pl and fc) is larger than it actually is, so the measuring part can be clearly seen regardless of the surrounding brightness. can.

更に、上記実施例のように、投光素子(16)として赤
色LEDを用いると、LEDは発熱もわずかで寿命も長
く、消費電力も小さい上に、安価であるので、ハロゲン
ランプや大光量の電子閃光装置を用いることによる上述
の欠点は生じない。更に、LEDは応答性が良いので、
チョッパ(12)の回転に同期させてチョッパ(12)
による遮光時のみ点灯させて測光に影響しないように構
成することも可能であるし、また、パルス点灯させて視
認をより容易にすることも可能である。
Furthermore, when a red LED is used as the light emitting element (16) as in the above embodiment, the LED generates little heat, has a long life, consumes little power, and is inexpensive, so it is not suitable for halogen lamps or high-intensity lamps. The above-mentioned disadvantages of using an electronic flash device do not occur. Furthermore, since LEDs have good responsiveness,
The chopper (12) is synchronized with the rotation of the chopper (12).
It is also possible to turn on the light only when light is blocked by the light so as not to affect photometry, or it is also possible to turn on the light in pulses to make visual recognition easier.

更に、第1図において、(2b)は本体(2)の下部に
固設されたグリップで該グリップ(2b)には、測定ボ
タン(24)が押圧可能に設けられている。
Furthermore, in FIG. 1, (2b) is a grip fixed to the lower part of the main body (2), and the grip (2b) is provided with a pressable measurement button (24).

測定ボタン(24)は、その押圧によって給電スイッチ
(26)及び測定スイッチ(28)をコントロールする
ものであり、各スイッチの機能について動作とともに以
下に説明する。まず、測定ボタン(24)が一段目まで
押圧されると、給電スイッチ(26)の接片(26a)
と(26b)とが導通せしめられてモータ(10)への
給電か開始され、チョッパ(12)が回転せ(7められ
る。同時に、接片(26b)を介して接片(26a)と
(26C)とも導通せしめられ、これによって投光素子
(I6)か給電されて、測定部の周囲に照明スポットが
形成される。従って、この状態でファインダをのぞいて
所望の対象か測定部内に入るように放射温度計の向きを
調整して、照準を合わせることができる。
The measurement button (24) controls the power supply switch (26) and measurement switch (28) by pressing it, and the functions of each switch will be described below along with their operations. First, when the measurement button (24) is pressed to the first step, the contact piece (26a) of the power supply switch (26)
and (26b) are brought into conduction, power supply to the motor (10) is started, and the chopper (12) is rotated (7).At the same time, the contact piece (26a) and ( 26C), thereby supplying power to the light emitting element (I6) and forming an illumination spot around the measuring section.Therefore, in this state, look through the viewfinder and enter the desired object into the measuring section. You can adjust the direction of the radiation thermometer to aim it.

そして、照準を合わせたら、測定ボタン(24)を二段
目まで押し込む。すると、給電スイッチ(26)の接片
(26C)が押動されて接片(26a)と不導通になり
、投光素子(16)が消灯されるか、接片(26a)と
(26b)とは導通したままであるのでチョッパ(12
)は回転し続ける。これとほぼ同時に、測定スイッチ(
28)が閉成されて不図示の測光演算回路が作動させら
れ、放射温度か受光素子(14)の測光出力から演算さ
れて、不図示の表示素子に表示される。
After aiming, push the measurement button (24) to the second step. Then, the contact piece (26C) of the power supply switch (26) is pushed and becomes disconnected from the contact piece (26a), and the light emitting element (16) is turned off or the contact piece (26a) and (26b) Since it remains conductive with the chopper (12
) continues to rotate. At about the same time, the measurement switch (
28) is closed, a photometric calculation circuit (not shown) is activated, and the radiation temperature is calculated from the photometric output of the light receiving element (14) and displayed on a display element (not shown).

尚、本実施例においては、ファインダ(20)か二点鎖
線図示の収納位置にある場合は投光素子(16)を点灯
させないために、ファインダ(20)が実線図示の観察
位置に位置させられた場合に閉成されるスイッチを別設
し、これを給電スイッチ(26)の接片(26a)(2
6b)と並列接続させるとともに、接片(26b)と(
26C)とに直列接続させても良い。
In this embodiment, the finder (20) is located at the observation position shown by the solid line in order to prevent the light emitting element (16) from being lit when the finder (20) is in the storage position shown by the two-dot chain line. A separate switch is provided that closes when the
6b) in parallel, and the contact piece (26b) and (
26C) may be connected in series.

このように構成すれば、ファインダ(20)が観察位置
にある場合にのみ投光素子(16)が点灯させられ、測
定ボタン(24)の二段目までの押し込みにより測光を
行うときに消灯させられるので、むだな点灯をなくする
ことができる。
With this configuration, the light emitting element (16) is turned on only when the finder (20) is at the observation position, and turned off when performing photometry by pressing the measurement button (24) to the second step. This eliminates unnecessary lighting.

第3図は、上記実施例の変形例を示す要部断面図であり
、同変形例においては、焦点板(8)のピンホール(8
a)の反射面として、円錐状の斜面の代わりに該斜面を
凹面鏡(6)に向かって凹面を向けた曲面(8C)が用
いられている。このように構成すれば、投光素子(16
)から発せられた光はコンデンサレンズ(18)で集束
され、更に焦点板(8)の反射面(8C)で集束される
ので、その照明スポットは、第2図に実線で示されるよ
うに、二点鎖線で示される先の実施例の照明スポットよ
りも狭い範囲に形成され、先の実施例よりも明るくなる
。従ってその他の部分とのコントラストはより大きくな
り、測定部をより視認しやすくすることができる。更に
、先の実施例においては、平面状の反射面(8b)の角
度を精度良く形成しないと正確な測定部の指示か不可能
であるのに対して、第3図の変形例では、必要な角度は
曲面上のどこかに必ず生じるので平面はどその角度の精
度は要求されず、コストを下げることができる。
FIG. 3 is a sectional view of a main part showing a modification of the above embodiment. In the modification, the pinhole (8) of the focus plate (8)
As the reflecting surface in a), instead of the conical slope, a curved surface (8C) in which the slope is concave toward the concave mirror (6) is used. With this configuration, the light projecting element (16
) is focused by the condenser lens (18) and further focused by the reflective surface (8C) of the focus plate (8), so the illumination spot is as shown by the solid line in FIG. The illumination spot is formed in a narrower range than the illumination spot of the previous embodiment shown by the two-dot chain line, and is brighter than that of the previous embodiment. Therefore, the contrast with other parts becomes larger, and the measuring part can be more easily recognized. Furthermore, in the previous embodiment, it is impossible to accurately indicate the measurement unit unless the angle of the planar reflective surface (8b) is precisely formed, whereas in the modified example shown in FIG. Since a certain angle always occurs somewhere on a curved surface, the precision of the angle is not required for flat surfaces, which can reduce costs.

第4図、第5図及び第6図は本発明の別の実施例の要部
を示す側面図及び断面図である。本実施例は、高温度測
定時と低温度測定時とで投光素子及びフィルタの波長を
変えることを特徴とするものである。尚、放射温度計の
不図示の部分は第1図と同様であるので省略されている
FIGS. 4, 5, and 6 are a side view and a sectional view showing essential parts of another embodiment of the present invention. This embodiment is characterized in that the wavelengths of the light projecting element and filter are changed between high temperature measurement and low temperature measurement. Note that the unillustrated portions of the radiation thermometer are the same as those in FIG. 1 and are therefore omitted.

第4図において、(30)は本体(2)の側壁(2C)
に軸(32)によって回転可能に軸支された操作部材で
、指標(30a)を有、している。今、第4図のように
指標(30a)が指標ゝL−ON“に合わせられている
状態のときには、中心波長660nmの赤色光と投光す
る赤色LED(34)が点灯可能であるとともに、波長
600nm以下の光を遮光し赤色光のみを透過させる赤
色透過フィルタ(36a)がファインダ光路内の観察位
置に位置せしめられている。ここで、赤色L E D 
(34)は第5図の縦断面図に示されるように、凹面鏡
(6)の光軸(X)上に配置されている。更に、赤色透
過フィルタ(36a)は、第6図の横断面図に示される
第1フィルタ部材(36)の一端に固着されており、該
第1フィルタ部材(36)は、軸(38)によって回転
可能に軸支されているとともに、他端にピン(36b)
が植設されている。
In Fig. 4, (30) is the side wall (2C) of the main body (2).
The operating member is rotatably supported by a shaft (32) and has an index (30a). Now, when the index (30a) is set to the index "L-ON" as shown in FIG. 4, the red LED (34) that emits red light with a center wavelength of 660 nm can be lit. A red transmission filter (36a) that blocks light with a wavelength of 600 nm or less and transmits only red light is positioned at the observation position in the finder optical path.Here, the red L E D
(34) is arranged on the optical axis (X) of the concave mirror (6), as shown in the longitudinal sectional view of FIG. Furthermore, the red transmission filter (36a) is secured to one end of a first filter member (36) shown in the cross-sectional view of FIG. It is rotatably supported and has a pin (36b) at the other end.
has been planted.

(40)は、青及び緑色の光を透過する青緑色透過フィ
ルタ(40a)が一端に固着され、他端にピン(40b
)が植設された第2フィルタ部材で、同じく軸(38)
に回転可能に軸支されている。そして、操作部材(30
)の指標(30a)が指標“L−ON“に合わせられた
状態では、第6図のように本体(2)の内部に収納され
た不使用位置にある。そして、第1・第2フィルタ部材
(36)(40)とも第6図の時計方向すなわち本体(
2)へ収納される方向に付勢されている。
(40) has a blue-green transmission filter (40a) that transmits blue and green light fixed to one end, and a pin (40b) to the other end.
) is implanted in the second filter member, which also has a shaft (38).
It is rotatably supported on the shaft. Then, the operation member (30
) When the indicator (30a) is aligned with the indicator "L-ON", it is in an unused position housed inside the main body (2) as shown in FIG. The first and second filter members (36) and (40) are rotated clockwise in FIG. 6, that is, the main body (
2) is biased in the direction of storage.

第5図において、(42)は図示実線位置と二点鎖線位
置との間を回動可能なように軸(44)に軸支されたミ
ラーで、実線図示の光軸(X)上から退避した上方位置
に付勢されている。そして、軸(44)は、第6図図示
のように本体の内壁(2C)によって軸支されており、
更に該内壁(2C)には、ミラー(42)が当接してそ
の上方位置及び第5図二点鎖線図示の下方位置を規制す
る為のピン(46048)かそれぞれ植設されている。
In FIG. 5, (42) is a mirror supported on a shaft (44) so as to be rotatable between the solid line position and the two-dot chain line position, and is retracted from the optical axis (X) shown in the solid line. is biased to the upper position. The shaft (44) is pivotally supported by the inner wall (2C) of the main body as shown in FIG.
Furthermore, pins (46048) are implanted in the inner wall (2C) for abutting the mirror (42) to restrict its upper position and the lower position shown by the two-dot chain line in FIG.

更に、軸(44)には連絡部材(50)が固着されてお
り、該連絡部材(50)は、該軸(44)に対して回転
可能に軸支されたレバー(’52)とバネ(54)によ
って一方向(ミラー(20)を下方位置に移動させる方
向)にのみ連結されている。
Further, a communication member (50) is fixed to the shaft (44), and the communication member (50) is connected to a lever ('52) rotatably supported on the shaft (44) and a spring ( 54) in only one direction (the direction in which the mirror (20) is moved to the lower position).

更に、第5図及び第6図において、操作部材(30)が
固着された軸(32)には、L字形のフィルタ操作部材
(56)及びミラー操作部材(58)がそれぞれ固着さ
れている。フィルタ操作部材(56)は、−腕に第1フ
ィルタ部材(36)のピン(36b)と当接可能なピン
(56a)を有し、細腕に第2フィルタ部材(40)の
ピン(40b)と当接可能なピン(56b)を有してい
る。一方、ミラー操作部材(58)は、一端にレバー 
(52)と当接可能なピン(58a)を有している。
Further, in FIGS. 5 and 6, an L-shaped filter operating member (56) and a mirror operating member (58) are respectively fixed to the shaft (32) to which the operating member (30) is fixed. The filter operation member (56) has a pin (56a) on its arm that can come into contact with the pin (36b) of the first filter member (36), and a pin (40b) of the second filter member (40) on its narrow arm. It has a pin (56b) that can come into contact with. On the other hand, the mirror operation member (58) has a lever at one end.
It has a pin (58a) that can come into contact with (52).

第5図において、(60)は青色や緑色などの短波長域
の光が多量に含まれている光を発する閃光放電管で、ミ
ラー(42)が下方位置にあるときに該ミラー(42)
によって折曲られる光軸(Xl上に配置されている。
In FIG. 5, (60) is a flash discharge tube that emits light containing a large amount of light in the short wavelength range such as blue and green, and when the mirror (42) is in the downward position, the mirror (42)
The optical axis (Xl) is bent by

以上のような構成により、第4図のように指標(30a
)が指標“L−ONIIに冬わせられている状態では、
フィルタ操作部材(56)のピン(56a)によって第
1フィルタ部材(36)のピン(36t))が押圧され
て、該第1フィルタ部材(36)が付勢に抗して図示の
観察位置に保持されるとともに、ミラー(42)はミラ
ー操作部材(58)によって押圧されないので図示の上
方位置に位置せしめられる。そして指標(30a)が指
標”L−ONIIに合わせられているときには、赤色L
ED(34)の電源スィッチ(不図示)が閉成されてお
り、該赤色L E D (34)は測定ボタン(24)
の抑圧によって発光させられる。一方、このときには閃
光放電管(60)の電源スィッチ(不図示)は開放され
ている。従って、この状態では、赤色光によって測定部
の周囲に照明スポットが形成され、これを赤色透過フィ
ルタ(36a)を通してファインダで観察するので、測
定部周囲か強調されて測定部か視認しや4くなる。
With the above configuration, the index (30a
) is wintered by the index “L-ONII,”
The pin (36t) of the first filter member (36) is pressed by the pin (56a) of the filter operation member (56), and the first filter member (36) is moved to the observation position shown in the figure against the force. While being held, the mirror (42) is not pressed by the mirror operating member (58), so it is positioned at the upper position shown. When the indicator (30a) is aligned with the indicator “L-ONII”, the red L
The power switch (not shown) of the ED (34) is closed, and the red LED (34) is connected to the measurement button (24).
is made to emit light by suppressing it. On the other hand, at this time, the power switch (not shown) of the flash discharge tube (60) is open. Therefore, in this state, an illumination spot is formed around the measurement section by the red light, and this is observed through the finder through the red transmission filter (36a), so the area around the measurement section is emphasized, making it easier to visually recognize the measurement section. Become.

次に、操作部材(30)の指標(30a)を指標ゝIO
N“に合わせると、赤色L E D (34)の電源ス
ィッチは閉成されたままであるが、第5図のフィルタ操
作部材(56)及びミラー操作部材(58)はそれぞれ
一点鎖線で示す位置に移動させられる。従って、第1フ
ィルタ部材(36)は付勢力によって時計回動し、赤色
透過フィルタ(36a)はファインダ光路から退避して
本体(2)内に収納される。この状態は、測定部の周辺
がさほど明るくないので赤色透過フィルタ(36)を用
いずとも測定部が視認できる場合に用いられる。
Next, the index (30a) of the operating member (30) is set to the index IO.
When set to "N", the power switch of the red LED (34) remains closed, but the filter operation member (56) and mirror operation member (58) in FIG. Therefore, the first filter member (36) is rotated clockwise by the biasing force, and the red transmission filter (36a) is retracted from the finder optical path and housed in the main body (2). This is used when the measuring section can be visually recognized without using the red transmission filter (36) because the surrounding area of the measuring section is not so bright.

更に操作部材(30)を反時計回動させて指標(30a
)を指標ゝOFF“に合わせると、放射温度計の測定用
メインスイッチ(不図示)が開放され、赤色L E D
 (34)及び閃光放電管(6o)の電源スィッチも開
放される。また、フィルタ操作部材(56)及びミラー
操作部材(58)は共に第5図の二点鎖線に示された位
置にあり、第1・第2フィルタ部材(36)(40)及
びレバー(52)に当接しない。
Further, rotate the operating member (30) counterclockwise to set the indicator (30a).
) to the index "OFF", the main measurement switch (not shown) of the radiation thermometer is opened and the red LED
(34) and the power switch of the flash discharge tube (6o) are also opened. Further, the filter operation member (56) and the mirror operation member (58) are both located at the positions shown by the two-dot chain line in FIG. Do not come into contact with the

操作部材(30)を更に反時計回動させて指標(30a
)か指標l′H−ON〃に合わせられると、この回動に
よってフィルタ操作部材(56)のピン(56b)が第
2フィルタ部材(40)のピン(40b)を押動させて
反時計回動させ、青緑色透過フィルタ(40a)を付勢
力に抗して観察位置に移動させる。これとともに、該回
動によってミラー操作部材(58)のピン(58a)が
レバー(52)を下方へ押圧し、レバー(52)ととも
にバネ(54)の付勢力によってミラー(42)も第5
図の反時計方向に押圧せしめられて下降し、その下降は
ミラー(42)がピン(46)に当接すること、によっ
て阻止され、ミラー(42)が下方位置に位置せしめら
れる。そして、この状態では、閃光放電管(60)の電
源スィッチのみ閉成され、赤色L E D (34)の
電源スィッチは開放されている。従って、測定ボタン(
24)が押圧されると閃光放電管(60)が発光させら
れ、その光は下方位置にあるミラー(20)によっt反
射されて赤色L E D (34)の発光光の場合と同
様にして測定部に投光される。故に、測定部の周囲には
青緑色の照明スポットが形成され、これを青緑色透過フ
ィルタ(40a)を通してファインダで観察するので、
測定部の周囲が強調されて測定部が視認しやす(なる。
Further rotate the operating member (30) counterclockwise to set the indicator (30a).
) or index l'H-ON〃, this rotation causes the pin (56b) of the filter operation member (56) to push the pin (40b) of the second filter member (40) and rotate it counterclockwise. and move the blue-green transmission filter (40a) to the observation position against the urging force. At the same time, due to this rotation, the pin (58a) of the mirror operation member (58) presses the lever (52) downward, and together with the lever (52), the mirror (42) is also moved to the fifth position by the biasing force of the spring (54).
The mirror (42) is pressed counterclockwise in the figure and lowered, and the lowering is prevented by the mirror (42) coming into contact with the pin (46), so that the mirror (42) is positioned at the lower position. In this state, only the power switch for the flash discharge tube (60) is closed, and the power switch for the red LED (34) is open. Therefore, the measurement button (
When 24) is pressed, the flash discharge tube (60) emits light, and the light is reflected by the mirror (20) located at the lower position, similar to the case of the red LED (34). The light is projected onto the measuring section. Therefore, a blue-green illumination spot is formed around the measuring section, and this is observed with a finder through a blue-green transmission filter (40a).
The area around the measurement part is highlighted, making it easier to see the measurement part.

ここで、測定部が比較的に高温の場合には、その放射光
は赤色を含む長波長成分が多いので、青緑色の成分が多
い閃光放電管(60)を用いて測定部の指示を行うのが
良く、一方、測定部が比較的低温の場合には、その放射
光中に赤色を含む長波長成分はほとんどないので、赤色
の成分か多くかつ長寿命で低電力の赤色L E D (
34)を用いて測定部の指示を行うのが効率か良い。従
って、高温測定時には操作部材(30)の指標(30a
)を指標”H−ON“に合わせて測定を行うのが良(、
低温測定時には指標“L−ON“もしくは“ONIIに
合わせて測定を行うのが良い。従って、本実施例では、
測定部の温度にかかわらず常に明瞭な指示が可能である
Here, when the measurement part is relatively high temperature, the emitted light has many long wavelength components including red, so the flash discharge tube (60) with many blue-green components is used to instruct the measurement part. On the other hand, when the measurement part is relatively low temperature, there are almost no long wavelength components including red in the emitted light, so a long-life, low-power red LED with a large red component and a long life (
It is efficient to use 34) to instruct the measurement unit. Therefore, when measuring high temperature, the indicator (30a) of the operating member (30)
) to the index "H-ON".
When measuring low temperatures, it is best to measure according to the index "L-ON" or "ONII. Therefore, in this example,
Clear instructions are always possible regardless of the temperature of the measuring part.

発明の効果 以上のように、本発明は、測定部からの赤外光を、測定
用光学系を介して受光素子によって受光し、その出力に
応じて測定部の放射温度を測定する放射温度計において
、測定部を含む測定領域を観察する為のファインダと、
測定部を指示する為に、測定用光学系を介して測定部の
周辺に光を投射する投光手段と、ファインダ光路内に配
置され投射された光に多量に含まれる波長成分に対して
他の波長成分の透過を減少せしめる波長選択手段とを有
することを特徴とするものであり、このように構成する
ことによって、測定部の周囲の特定波長域の輝度を高(
して、コントラストの差によって例え周辺が明るくとも
測定部を明瞭に指示することができ、特にハロゲンラン
プや大光量の電子閃光装置を用いる必要もない。
Effects of the Invention As described above, the present invention provides a radiation thermometer that receives infrared light from a measuring section by a light receiving element via a measurement optical system, and measures the radiation temperature of the measuring section according to the output thereof. , a finder for observing the measurement area including the measurement part;
A light projection means that projects light around the measurement section through a measurement optical system in order to direct the measurement section, and a light projection means that is placed in the finder optical path and is used to detect other wavelength components that are contained in a large amount in the projected light. This device is characterized by having a wavelength selection means for reducing the transmission of wavelength components of
The contrast difference makes it possible to clearly indicate the measuring section even if the surroundings are bright, and there is no need to use a halogen lamp or a high-power electronic flash device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例の放射温度計を示す縦断面図、
第2図はその測定対象上の照明スポットを示す模式図、
第3図はその変形例を示す要部拡大断面図、第4図は別
の実施例の要部測面図、第5図はその要部縦断面図、第
6図はその要部横断面図である。 (61(81:測定用光学系、(14) :受光素子、
(16)(18X8b)(80) ;投光手段、(20
) :ファインダ、(22) ;波長選択手段、(34
)(60) ;投光手段、(36a)(40a)波長選
択手段 以上 出願人  ミノルタカメラ株式会社 第5riA $b図
FIG. 1 is a longitudinal cross-sectional view showing a radiation thermometer according to an embodiment of the present invention;
Figure 2 is a schematic diagram showing the illumination spot on the measurement target.
Fig. 3 is an enlarged sectional view of the main part showing a modified example, Fig. 4 is a surface survey of the main part of another embodiment, Fig. 5 is a vertical sectional view of the main part, and Fig. 6 is a cross-sectional view of the main part. It is a diagram. (61 (81: measurement optical system, (14): light receiving element,
(16) (18X8b) (80); Light projecting means, (20
) : Finder, (22) ; Wavelength selection means, (34
) (60); Light projecting means, (36a) (40a) Wavelength selection means Applicant: Minolta Camera Co., Ltd. No. 5riA $b Figure

Claims (1)

【特許請求の範囲】 1、測定部からの赤外光を、測定用光学系を介して受光
素子によって受光し、その出力に応じて測定部の放射温
度を測定する放射温度計において、測定部を含む測定領
域を観察する為のファインダと、 測定部を指示する為に、測定用光学系を介して測定部の
周辺に光を投射する投光手段と、 ファインダ光路内に配置され、投射された光に多量に含
まれる波長成分に対して他の波長成分の透過を減少せし
める波長選択手段と を有することを特徴とする放射温度計の測定位置指示装
置。 2、投光手段は、上記特定波長域の光を発光する発光素
子を有することを特徴とする特許請求の範囲第1項記載
の放射温度計の測定位置指示装置。 3、波長選択手段は、上記他の波長域の光を遮光するフ
ィルタからなることを特徴とする特許請求の範囲第1項
記載の放射温度計の測定位置指示装置。 4、測定用光学系は、測定部からの赤外光を集束させる
ように反射する凹面鏡と、その焦点面の近傍に配置され
、光軸上に開口部を有する焦点板とを有し、受光素子は
その開口部を透過した赤外光を受光するように配置され
ていることを特徴とする特許請求の範囲第1項記載の放
射温度計の測定位置指示装置。 5、投光手段は、上記特定波長域の光を発し、光軸上に
配置された発光素子と、焦点板の開口部の周囲に形成さ
れ発光素子から発せられた光を凹面鏡に向けて反射する
反射手段とを有することを特徴とする特許請求の範囲第
4項記載の放射温度計の測定位置指示装置。 6、反射手段は、光軸について回転する対称な円錐面状
の反射面からなることを特徴とする特許請求の範囲第5
項記載の放射温度計の測定位置指示装置。 7、波長選択手段は、互いに透過する波長域が異なり選
択的にファインダ光路上に位置せしめられる2つのフィ
ルタからなることを特徴とする特許請求の範囲第1項記
載の放射温度計の測定位置指示装置。 8、投光手段は、互いに発光波長域が異なり選択的に発
光させられる2つの投光素子からなることを特徴とする
特許請求の範囲第7項記載の放射温度計の測定位置指示
装置。
[Scope of Claims] 1. In a radiation thermometer that receives infrared light from a measuring section by a light receiving element via a measurement optical system and measures the radiation temperature of the measuring section according to its output, the measuring section a finder for observing the measurement area including the measurement area; a light projection means for projecting light around the measurement area via the measurement optical system to direct the measurement area; 1. A measurement position indicating device for a radiation thermometer, comprising wavelength selection means for reducing transmission of other wavelength components with respect to wavelength components contained in a large amount in the light. 2. The measurement position indicating device for a radiation thermometer according to claim 1, wherein the light projecting means includes a light emitting element that emits light in the specific wavelength range. 3. The measurement position indicating device for a radiation thermometer as set forth in claim 1, wherein the wavelength selection means comprises a filter that blocks light in the other wavelength ranges. 4. The measuring optical system includes a concave mirror that reflects infrared light from the measuring section so as to focus it, and a focusing plate that is placed near the focal plane and has an opening on the optical axis. 2. The measurement position indicating device for a radiation thermometer according to claim 1, wherein the element is arranged to receive infrared light transmitted through the opening. 5. The light projecting means emits light in the specific wavelength range, and is formed around the light emitting element arranged on the optical axis and the opening of the focus plate, and reflects the light emitted from the light emitting element toward the concave mirror. 5. The measurement position indicating device for a radiation thermometer according to claim 4, further comprising a reflecting means for reflecting the radiation thermometer. 6. Claim 5, characterized in that the reflecting means consists of a symmetrical conical reflecting surface that rotates about the optical axis.
Measurement position indicating device for the radiation thermometer described in Section 3. 7. Measurement position indication of the radiation thermometer according to claim 1, wherein the wavelength selection means is comprised of two filters that transmit different wavelength ranges and are selectively positioned on the finder optical path. Device. 8. The measurement position indicating device for a radiation thermometer according to claim 7, wherein the light projecting means is comprised of two light projecting elements that have different emission wavelength ranges and are selectively emitted.
JP60070379A 1985-04-03 1985-04-03 Apparatus for indicating measuring position of radiation thermometer Pending JPS61228320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60070379A JPS61228320A (en) 1985-04-03 1985-04-03 Apparatus for indicating measuring position of radiation thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60070379A JPS61228320A (en) 1985-04-03 1985-04-03 Apparatus for indicating measuring position of radiation thermometer

Publications (1)

Publication Number Publication Date
JPS61228320A true JPS61228320A (en) 1986-10-11

Family

ID=13429746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60070379A Pending JPS61228320A (en) 1985-04-03 1985-04-03 Apparatus for indicating measuring position of radiation thermometer

Country Status (1)

Country Link
JP (1) JPS61228320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613483A1 (en) * 1987-03-30 1988-10-07 Testoterm Messtechnik Gmbh Co DEVICE FOR MARKING A SPOT FOR MEASUREMENTS IN CONNECTION WITH A RADIATION MEASURING DEVICE
JPH0361825A (en) * 1989-07-31 1991-03-18 Nireco Corp Measurement position indicator of radiation thermometer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2613483A1 (en) * 1987-03-30 1988-10-07 Testoterm Messtechnik Gmbh Co DEVICE FOR MARKING A SPOT FOR MEASUREMENTS IN CONNECTION WITH A RADIATION MEASURING DEVICE
JPS63255630A (en) * 1987-03-30 1988-10-21 テストターム・メステヒニーク・ゲー・エム・ベー・ハー・ウント・コンパニー Radiation measuring device
JPH0361825A (en) * 1989-07-31 1991-03-18 Nireco Corp Measurement position indicator of radiation thermometer

Similar Documents

Publication Publication Date Title
US4067030A (en) Camera focussing aid
US6280082B1 (en) Projector and a measuring device provided with the same
US4407272A (en) Endoscope system with means for detecting auxiliary apparatuses
JPS6232411A (en) Auto-focus unit for reflecting microscope
US4835561A (en) Focus detecting device for camera
KR20030010537A (en) Device for the picture providing and spectroscopic diagnosis of tissue
US4834526A (en) Eye fundus camera having automatic exposure control means
US6512887B2 (en) Flash lamps for underwater photography provided with target light and control methods and devices therefor
US9696477B2 (en) Light source system
JP3126595U (en) Illuminated short-distance photographing device and illuminated optical amplification device
JPH0656465B2 (en) Automatic flash device for backlit cameras
JP7310856B2 (en) Lighting device and imaging device
JPS61228320A (en) Apparatus for indicating measuring position of radiation thermometer
US20140346377A1 (en) Radiation thermometer
EP0038045B1 (en) Camera with macro-photographic system
JP3379820B2 (en) TV camera device for skin diagnosis
JP4585998B2 (en) Illumination device and imaging device
US2642518A (en) Dual light source for cameras
US4474441A (en) Method and apparatus for controlling exposure by selective use of blocking visible filter
JP5544771B2 (en) Lighting device
KR940003104B1 (en) Device for preventing red-eye
JPH06313851A (en) Light source device for endoscope
JPH0361825A (en) Measurement position indicator of radiation thermometer
FR2649806A1 (en) DEVICE FOR SIGNALING THE STATE OF TWO FLASHES IN A CAMERA VIEWFINDER
JP4115201B2 (en) Sight meter