JPS61228136A - Method of controlling elasticity of buffer material - Google Patents

Method of controlling elasticity of buffer material

Info

Publication number
JPS61228136A
JPS61228136A JP6954885A JP6954885A JPS61228136A JP S61228136 A JPS61228136 A JP S61228136A JP 6954885 A JP6954885 A JP 6954885A JP 6954885 A JP6954885 A JP 6954885A JP S61228136 A JPS61228136 A JP S61228136A
Authority
JP
Japan
Prior art keywords
synthetic resin
buffer material
conductive bars
elasticity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6954885A
Other languages
Japanese (ja)
Inventor
Hideaki Hari
播 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON FLEX KOGYO KK
Original Assignee
NIPPON FLEX KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON FLEX KOGYO KK filed Critical NIPPON FLEX KOGYO KK
Priority to JP6954885A priority Critical patent/JPS61228136A/en
Publication of JPS61228136A publication Critical patent/JPS61228136A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/371Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by inserts or auxiliary extension or exterior elements, e.g. for rigidification

Abstract

PURPOSE:To prevent an effect of absorbing impact and/or vibration from worsening, by providing conductive bars to be embedded in a buffer material, using synthetic resin as the base material, and electrifying said conductive bars so as to increase a temperature of the buffer material. CONSTITUTION:A buffer material 1 provides in its base body 2 of synthetic resin one or plural number of conductive bars 3, as necessary, to be embedded penetratively running over the whole length of the buffer material 1 and parallelly lining providing a space so that the conductive bars are disclosed in both end surfaces of the buffer material. If an electric current is conducted to flow in the conductive bars 3, the buffer material, enabling its elasticity to be suitably changed because the conductive bars generate heat increasing a temperature of the base body 2 of synthetic resin, can prevent the elasticity from deteriorating.

Description

【発明の詳細な説明】 く技術的分野〉 本発明は被支持体を弾性的に支持して衝撃や振動を吸収
する緩衝体において、該緩衝体が環境温度の低下により
生じる弾性の劣化を阻止復元するように制御する方法に
関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a shock absorber that elastically supports a supported body and absorbs shocks and vibrations. Concerning how to control the restoration.

〈技術的背景〉 合成樹脂や合成ゴムを母体として成型された緩衝体は古
くから広く般用されており、世常一般には補強材を埋設
又は充填した合成樹脂或いは合成樹脂単独の多種形状に
成型されたものが各分野に多様に用いられている。更に
最近は板ばねに詔いても、繊維織布積層体に合成樹脂を
含浸硬化させた、いわゆるF’RP板ばねや充填材で補
強されたものが採用されている。
<Technical Background> Cushioning bodies molded using synthetic resin or synthetic rubber as a matrix have been widely used for a long time, and are commonly molded into various shapes of synthetic resin with embedded or filled reinforcing material or synthetic resin alone. The developed materials are used in various fields. Furthermore, recently, even when it comes to leaf springs, so-called F'RP leaf springs, which are made by impregnating and hardening synthetic resin into a fiber woven laminate, and those reinforced with fillers have been adopted.

〈問題点〉 通常、緩衝体の母材となる合成樹脂は、その使用温度範
囲が250℃乃至−50℃位いの狭い範囲のものが多く
用いられており、FRP板ばねや補強材入りの緩衝体で
も可使温度範囲は大差はない。ところが、合成樹脂の緩
衝体は前記温度範囲内においても、母体となっている合
成樹脂の性質上、強度、硬度、剛性や弾性は大きく変化
する欠点がある。すなわち、上限温度の高温近くになる
と、強度、剛性や弾性が大きく低下しいわゆる1ばねの
へたり現象”が生じ易く、下限温度の低温近くになると
強度や剛性が異常に高(なると共に弾性は減少する傾向
がある。
<Problem> Normally, the synthetic resin that serves as the base material for the shock absorber has a narrow operating temperature range of about 250°C to -50°C, and is not used for FRP leaf springs or reinforced materials. There is not much difference in the usable temperature range even with buffers. However, synthetic resin shock absorbers have the drawback that even within the above temperature range, the strength, hardness, rigidity, and elasticity vary greatly due to the properties of the synthetic resin that is the base material. In other words, when the temperature gets close to the upper limit temperature, the strength, rigidity, and elasticity decrease greatly, and the so-called "one spring fatigue phenomenon" tends to occur, and when the temperature gets close to the lower limit temperature, the strength and rigidity become abnormally high (and the elasticity decreases). There is a tendency to decrease.

そのために寒冷地では合成樹脂の緩衝体や板ばねは弾性
が減少し、硬くなって衝撃や振動を吸収する能力が衰退
し、支障が起きる。
As a result, in cold regions, synthetic resin shock absorbers and leaf springs lose their elasticity and become hard, reducing their ability to absorb shocks and vibrations, causing problems.

〈発明の目的〉 本発明は合成樹脂を母体とする緩衝体に、電気抵抗の大
きな電導体を全長にわたって埋込ませ、寒冷時には電導
体に通電してこれを発熱させ、合成樹脂の母体を加温し
て弾性を変化させて適当な弾性にさせ、衝撃や振動の吸
収効果の低下を防止するようにしたものである。
<Purpose of the Invention> The present invention embeds a conductor with high electrical resistance over its entire length in a buffer body made of synthetic resin, and when it is cold, electricity is applied to the conductor to generate heat, thereby heating the synthetic resin matrix. The material is heated to change its elasticity to an appropriate level of elasticity, thereby preventing the impact and vibration absorption effect from decreasing.

〈実施例〉 本発明を図面によって説明すると、第1図の緩衝体は一
例として板体を図示するが、緩衝体■は合成樹脂の母体
■に電導体(3)を緩衝体(1)の全長にわたり貫走し
て両端面に露呈するように、必要に応じて一本乃至複数
本を並列に間隙を設けて並べるようにして埋設したもの
である。
<Example> To explain the present invention with reference to drawings, the buffer body in FIG. 1 is illustrated as a plate as an example, but the buffer body (1) is a synthetic resin matrix (2) with an electric conductor (3) attached to the buffer body (1). If necessary, one or more rods are buried in parallel with gaps provided so that they run through the entire length and are exposed on both end faces.

電導体(3)は電流を通すと電気抵抗が大きいために発
熱して温度が上昇する性質を持つ材質でなっており、例
えばニクロム線や炭素繊維材或いはガラス繊維材や電導
性合成樹脂材料等が使用できる。
The conductor (3) is made of a material that generates heat and raises the temperature due to its large electrical resistance when current is passed through it, such as nichrome wire, carbon fiber material, glass fiber material, conductive synthetic resin material, etc. can be used.

ニクロム線は発熱量が大きく、高温となりすぎて合成樹
脂の母体(2)を溶融する恐れが大きいので通電量を加
減する必要がある。繊維材は撚体、紐体、織布体等とし
、緩衝体(1)の用途に応じて形状を変えて埋設するこ
とができる。炭素繊維やガラス繊維はそれ自体が補強材
として埋設されるものであるが、別種の補強材と併用し
てもなんら支障はない。
The nichrome wire generates a large amount of heat, and there is a great possibility that the temperature will become too high and melt the synthetic resin matrix (2), so it is necessary to adjust the amount of current applied. The fibrous material can be a twisted body, a string body, a woven fabric body, etc., and can be buried in different shapes depending on the purpose of the cushioning body (1). Although carbon fibers and glass fibers themselves are buried as reinforcing materials, there is no problem when they are used in combination with other types of reinforcing materials.

電導体(jを埋込んだ板状の緩衝体(1)は例えば車両
等に板ばねとして使用されるが、第2図の様に単体か或
いは複数枚を重ねて車両に懸架さ必要に応じてスイッチ
(7)を入れて通電すると電導体(3)は発熱し、合成
樹脂の母体(2)を加温し良好な弾性を持つ温度に上昇
する。通電は電導体(3)の材質、構成に応じて、電流
、電圧を調整できるようにしておけば希望する弾性範囲
が持続できる。
The plate-shaped shock absorber (1) with an embedded electrical conductor (j) is used, for example, as a leaf spring in a vehicle, etc., but as shown in Figure 2, it can be suspended on a vehicle singly or in multiple layers as needed. When the switch (7) is turned on and energized, the conductor (3) generates heat, which warms the synthetic resin matrix (2) and raises the temperature to a point where it has good elasticity. If the current and voltage can be adjusted according to the configuration, the desired elastic range can be maintained.

〈他の実施例〉 又、別に衝撃吸収や振動遮断用として用いられる緩衝体
は、板状、柱状、中空状等多種形状のものが使われてい
るが、第3図(a)に示す様に緩衝体(1)の合成樹脂
の母体(2)に撚糸状の電導体(3)を埋設したり、第
3図(b)の様に織布体の電導体(3)を縦長に全長に
わたり埋込むようにしたり、第3図(c)の様に電導体
(3)を被覆したコイルスプリング(8)を埋込むよう
にしてもよく、両端部に電線を連結すると前記第2図で
説明したような弾性の制御ができる。
<Other Examples> Additionally, shock absorbers used for shock absorption and vibration isolation have various shapes such as plate, columnar, and hollow shapes, but the one shown in Figure 3(a) A twisted conductor (3) is embedded in the synthetic resin base (2) of the buffer (1), or a woven conductor (3) is placed vertically over the entire length as shown in Figure 3(b). It is also possible to embed a coil spring (8) coated with a conductor (3) as shown in Fig. 3(c), and to connect an electric wire to both ends, as explained in Fig. It is possible to control elasticity like this.

緩衝体(1)及び電導体の形状は図示されたものに限定
されるものでないことは云うまでもない。
It goes without saying that the shapes of the buffer (1) and the conductor are not limited to those shown in the drawings.

本発明の緩衝体に通電してその弾性を変化させる方法は
試験の結果、一定の試料においてB = −0,013
t + 5.5   但しE−曲げ弾性率(XIO3k
gf層) を−試料片温度(C) の関係式が成立し、弾性変化の効果があることが判明し
た。
As a result of tests, the method of changing the elasticity of the buffer body by applying electricity to it according to the present invention showed that B = -0,013 in a certain sample.
t + 5.5 However, E-flexural modulus (XIO3k
gf layer) - sample piece temperature (C) was established, and it was found that there was an effect of elastic change.

試験条件 緩衝体組成  ナイロン66に炭素繊維織布を埋込試験
片の形状  平板状 〃 大きさ   巾20mX長さ200mx厚さ1.5
■〃 抵抗値  1.90(室温) 試験方法  支点間距離   48.3 mクロスヘッ
ドスピード 26mメー 試験片状態 絶乾状態 両端部に電導性合成樹脂塗料塗布 も5翫 試験結果 →t (jillc) 本発明は電導体を埋設或いは補強材とした合成樹脂の緩
衝体の電導体に、通電してこれを発熱させて合成樹脂の
母体を加温し、樹脂本体の温度変化によって弾性が変化
する性質を利用して緩衝体を良好な弾性を得るようにし
たので、環境温度の変化による合成樹脂製緩衝体の衝撃
や振動を吸収する効果が変化することを解消できる。
Test conditions Buffer composition Carbon fiber woven fabric embedded in nylon 66 Shape of test piece Flat plate Size Width 20m x Length 200m x Thickness 1.5
■〃 Resistance value 1.90 (room temperature) Test method Distance between fulcrums 48.3 m Crosshead speed 26 m Test piece condition Absolutely dry condition Conductive synthetic resin paint applied to both ends 5-pole test result → t (JILLC) Book The invention is to apply electricity to the electrical conductor of a synthetic resin buffer body with an electrical conductor embedded or as a reinforcing material to generate heat to warm the synthetic resin matrix, thereby improving the elasticity of the resin body by changing its elasticity depending on the temperature change of the resin body. Since the cushioning body is made to have good elasticity, it is possible to eliminate changes in the impact and vibration absorbing effect of the synthetic resin cushioning body due to changes in environmental temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の一部切欠斜視図、第2図は使用
状態を示す説明図、第3図は他の実施例の一部切欠斜視
図である。 1・・・・・・・・・・・・・・・緩衝体2・・・・・
・・・・・・・・・・合成樹脂の母体3・・・・・・・
・・・・・・・・電導体特許請求人  日本フレックス
工業株式会社代表者 寺 浦  嘉一部
FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a state of use, and FIG. 3 is a partially cutaway perspective view of another embodiment. 1...Buffer 2...
......Synthetic resin matrix 3...
・・・・・・・・・Conductor patent claimant: Nippon Flex Industry Co., Ltd. Representative Yoshikazu Teraura

Claims (1)

【特許請求の範囲】[Claims] 合成樹脂成型品の母体内に電導体が全長に互り貫走する
ように埋設されている緩衝体において、電導体に電流を
通してこれを発熱させ、それによって合成樹脂母体を加
温することによって弾性を変化させる緩衝体の弾性制御
方法。
In a buffer body in which electrical conductors are embedded in a matrix of a synthetic resin molded product so that they run through the entire length, electric current is passed through the electrical conductors to generate heat, thereby heating the synthetic resin matrix, thereby improving elasticity. A method for controlling the elasticity of a buffer that changes the
JP6954885A 1985-04-02 1985-04-02 Method of controlling elasticity of buffer material Pending JPS61228136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6954885A JPS61228136A (en) 1985-04-02 1985-04-02 Method of controlling elasticity of buffer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6954885A JPS61228136A (en) 1985-04-02 1985-04-02 Method of controlling elasticity of buffer material

Publications (1)

Publication Number Publication Date
JPS61228136A true JPS61228136A (en) 1986-10-11

Family

ID=13405881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6954885A Pending JPS61228136A (en) 1985-04-02 1985-04-02 Method of controlling elasticity of buffer material

Country Status (1)

Country Link
JP (1) JPS61228136A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372929A (en) * 1986-09-16 1988-04-02 Shinko Electric Co Ltd Vibration isolating rubber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425313A (en) * 1977-07-28 1979-02-26 Toyota Motor Corp Method and device for controlling temperature of engine mounting rubber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425313A (en) * 1977-07-28 1979-02-26 Toyota Motor Corp Method and device for controlling temperature of engine mounting rubber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6372929A (en) * 1986-09-16 1988-04-02 Shinko Electric Co Ltd Vibration isolating rubber

Similar Documents

Publication Publication Date Title
JPS5940101B2 (en) energy absorber
McGee et al. Combining rules for predicting the thermoelastic properties of particulate filled polymers, polymers, polyblends, and foams
EP0772958B1 (en) Internally damped circuit articles
WO2009053946A2 (en) Structures with adaptive stiffness and damping integrating shear thickening fluids
US6461455B1 (en) Method of producing a hybrid leaf spring
Davies et al. Fatigue behaviour of acrylic matrix composites: influence of seawater
Al-khafaji et al. Preparation and modelling of composite materials (polyester-alumina) as implant in human body
Hashin Composite materials with viscoelastic interphase: creep and relaxation
JPS61228136A (en) Method of controlling elasticity of buffer material
Guan et al. Shape memory polyurethane‐based electrospun yarns for thermo‐responsive actuation
US20070108867A1 (en) Active suspension component
Çallıoğlu et al. Impact behavior of particles filled‐glass/polyester composite plates
Asp et al. Prediction of failure initiation in polypropylene with glass beads
Adams The dynamic longitudinal shear modulus and damping of carbon fibres
Wang et al. Influences of dispersion types and area densities of chopped fiber‐based interfacial reinforcements on mechanical properties of sandwich structures
Masghouni et al. Quasistatic and dynamic mechanical characterization of a woven carbon fiber–zinc oxide nanowires–epoxy composite
US2918271A (en) Twisted spring elements
Hussain et al. Investigation of mechanical properties of auxetic woven polymer composite material: Untersuchung der mechanischen Eigenschaften von auxetisch gewebten Polymer‐Verbundwerkstoffen
JPH11511836A (en) Hollow structure article filled with damping material
US3158256A (en) Feeder and spring with inherent damping
Baz et al. Optimal vibration control of NiTiNOL-reinforced composites
D’Silva et al. Design of a modified leaf spring with an integrated damping system for added comfort and longer life
Yuan et al. Modeling the dynamic response of the fiber/matrix interphase in continuous fiber composite materials
US20230391156A1 (en) Spring device
Fisher et al. Some fatigue properties of steel wire-reinforced epoxy resin composites