JPS61227326A - Gas insulated gear - Google Patents

Gas insulated gear

Info

Publication number
JPS61227326A
JPS61227326A JP60066967A JP6696785A JPS61227326A JP S61227326 A JPS61227326 A JP S61227326A JP 60066967 A JP60066967 A JP 60066967A JP 6696785 A JP6696785 A JP 6696785A JP S61227326 A JPS61227326 A JP S61227326A
Authority
JP
Japan
Prior art keywords
metal container
electric field
gas
voltage conductor
insulated switchgear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60066967A
Other languages
Japanese (ja)
Inventor
澄川 俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60066967A priority Critical patent/JPS61227326A/en
Publication of JPS61227326A publication Critical patent/JPS61227326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガス絶縁開閉装置にかかり、特に絶縁性能の向
上を図ったガス絶縁開閉装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a gas insulated switchgear, and particularly to a gas insulated switchgear with improved insulation performance.

〔発明の技術的背景〕[Technical background of the invention]

変電設備・開閉設備の縮小化・低騒音化・耐汚損性向上
会保守の簡易化・美観の向上を目的としてガス絶縁開閉
装置(以後GISと称する)が用いられる様になり、そ
の普及には著しいものがある。
Gas insulated switchgear (hereinafter referred to as GIS) has come into use for the purpose of downsizing, reducing noise, and improving stain resistance of substation equipment and switchgear equipment. Gas insulated switchgear (hereinafter referred to as GIS) has been used to simplify maintenance and improve aesthetic appearance. There are some notable ones.

そして、近年、500kV級変電所の都心部導入計画の
具体化に伴い、各種解析技術および蓄積された基礎試験
データを駆使した合理的設計によるGISの一層の縮小
化が検討される様になった。
In recent years, with plans to introduce 500kV class substations in urban areas taking shape, further downsizing of GIS through rational design that makes full use of various analysis techniques and accumulated basic test data has begun to be considered. .

GISの各構成機器の寸法を決定する大きな要因として
は絶縁性能・通電性能・機械的強度等があるが機器の寸
法を決定するうえで最も支配的なのは絶縁性能である。
The major factors that determine the dimensions of each component of a GIS include insulation performance, current carrying performance, mechanical strength, etc., but insulation performance is the most dominant factor in determining the dimensions of equipment.

従来、機器の絶縁設計は雷インパルス耐電圧値(以後L
IWLと称する)を基準として行なわれる。なお、L 
IWLは各定格電圧別に規定されており国内においては
電気学会電気規格調査会標準規格(以後JECと称する
)に定められている。
Conventionally, the insulation design of equipment has been based on the lightning impulse withstand voltage value (hereinafter referred to as L).
(referred to as IWL). In addition, L
IWL is specified for each rated voltage, and in Japan it is specified by the Institute of Electrical Engineers of Japan Electrical Standards Committee Standards (hereinafter referred to as JEC).

従って、計画に当ってはJECに定められたL IWL
がGISの高電圧導体に印加された際に、GIS@器内
各部における電界値が許容値EC以下となるように機器
の各部寸法が決定される。許容値ECは通常次式により
与えられる。
Therefore, when planning, please follow the L IWL specified by JEC.
The dimensions of each part of the device are determined so that when GIS is applied to the high voltage conductor of the GIS, the electric field value in each part of the GIS@device is below the allowable value EC. The allowable value EC is usually given by the following equation.

EC=Esa  ・(1−3(n ・k−・・・・・(
1)ここにEsaは雷インパルスに対するSFsF2ガ
ス縁ガス)の50%破壊電界であり、また、kは定数で
ある。50%破壊電界とは破壊電界の確率分布の中心値
であるoEsnは、例えば、S57電気学会全国大会シ
ンポジウムs’ti−i子種を参照するとEsaはSF
sガス圧力(絶対圧)の関数として Es 11−63P+25 (kV/a)”” (2)
で与えられている。但し、Pはガス圧である。
EC=Esa ・(1-3(n ・k−・・・・(
1) where Esa is the 50% breakdown electric field of SFsF2 gas edge gas) for the lightning impulse, and k is a constant. What is the 50% breakdown electric field? oEsn is the center value of the probability distribution of the breakdown electric field.
s As a function of gas pressure (absolute pressure) Es 11-63P+25 (kV/a)"" (2)
It is given in However, P is gas pressure.

次にσは破壊電界の確率分布が正規分布に従うとした時
の標準偏差であり、(1−3σ)を乗することの意味は
放電確率が0.14%となる電界、すなわち、まず放電
する恐れのない電界を算出することである。参考のため
にEsaと、標準偏差σ等の関係を第5図に示す。また
kは表面粗さ・面積効果や設計上の用度を考慮した場合
の係数である。1例としてガス圧力 4.5IC!I/1i−abs、σ−10%。
Next, σ is the standard deviation when it is assumed that the probability distribution of the breakdown electric field follows a normal distribution, and the meaning of multiplying by (1-3σ) is the electric field where the probability of discharge is 0.14%, that is, the discharge occurs first. The purpose is to calculate a fear-free electric field. For reference, the relationship between Esa, standard deviation σ, etc. is shown in FIG. Further, k is a coefficient when considering surface roughness/area effects and design considerations. As an example, gas pressure is 4.5 IC! I/1i-abs, σ-10%.

k−0,95とすると E c −205k V/c11・・・・・・(3)と
なる。ガス絶縁開閉装置の絶縁設計は一般にLI’WL
に対し各部の電界ストレスEuがECの値以下になる様
に行えば良いとされてきた。ところが、上記のL IW
Lにおける雷インパルスに対する許容電界値ECを基準
にして機器の設計をすると以下の様な問題点を生じる。
If k-0.95, then E c -205k V/c11 (3). The insulation design of gas insulated switchgear is generally LI'WL.
On the other hand, it has been considered that the electric field stress Eu in each part should be made equal to or less than the value of EC. However, the above L IW
If equipment is designed based on the permissible electric field value EC for lightning impulses at L, the following problems will occur.

つまりそれは、インパルス比(LIWL/常規対地運転
電圧)(以後ACworkと称する)が小さい電圧クラ
ス(例えば500kV級における500号′しなる絶縁
階級ではLIWL15501Vに対しACwo rkは
318kVrmsrありインパルス比は(1550/3
18)−4,87であり、この値は66kV級における
インパルス比9.19 (350/38.1)に対して
約半分になっている)に於いてはLIWLに対して各部
の電界値をEC以下にするように設計するとインパルス
比が小さい為に逆に運転電界(以後[:workと称す
る)が高くなる。そして、GISに於いて接地された金
属容器内面に機器の組立て段階にて発生・残留した金属
異物等がEWOrkによる電気力により浮上し、金属異
物の材(、大きさとEWOrkの強さによっては高電圧
導体と金属容器との間を往復運転することが知られてい
る。このように金属異物が往復運動をしている最中で、
特に高電圧導体に接近した瞬間に、高電圧導体に落雷、
系統の故障、しゃ断器。
In other words, in a voltage class (for example, insulation class 500' in the 500kV class) where the impulse ratio (LIWL/normal ground operating voltage) (hereinafter referred to as ACwork) is small, the ACwork is 318kVrmsr for LIWL 15501V, and the impulse ratio is (1550/ 3
18) -4,87, and this value is about half of the impulse ratio of 9.19 (350/38.1) in the 66kV class), the electric field value of each part for LIWL is If it is designed to be less than EC, the impulse ratio will be small, so the operating electric field (hereinafter referred to as [:work) will conversely become high. In the GIS, metal foreign objects that were generated or remained on the inner surface of the grounded metal container during the equipment assembly stage are floated to the surface by the electric force generated by EWOrk. It is known that there is a reciprocating operation between the voltage conductor and the metal container.During this reciprocating movement of the metal foreign object,
Lightning strikes a high-voltage conductor, especially at the moment it approaches the high-voltage conductor.
System failure, breaker.

新路器の開閉により発生したサージ等の電圧が加わった
場合には、この異物の周辺の電界が異物の存在により著
しく上昇し金属異物〜高電圧導体間の放電を契機として
、高電圧導体〜接地された金属容器間の絶縁破壊を招き
、地絡事故を引起して系統の円滑な運用を防げる事態を
生ずる。
When a voltage such as a surge generated by opening and closing a new circuit device is applied, the electric field around this foreign object increases significantly due to the presence of the foreign object, and the discharge between the metal foreign object and the high voltage conductor is triggered, causing the high voltage conductor to This can lead to insulation breakdown between grounded metal containers, causing a ground fault and preventing smooth operation of the system.

〔発明の目的〕[Purpose of the invention]

本発明は上記の事情に鑑みてなされたものでその目的と
するところは金属容器内部に残留した異物の挙動を抑制
し、ガス絶縁開閉装置の種々のサージ電圧が印加された
場合の絶縁性能の向上を図り、高信頼性化を図ったガス
絶縁開閉装置を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to suppress the behavior of foreign matter remaining inside a metal container, and to improve the insulation performance of gas-insulated switchgear when various surge voltages are applied. The object of the present invention is to provide a gas-insulated switchgear with improved reliability.

〔発明の概要〕[Summary of the invention]

すなわち、上記目的を達成するため、本発明は高電圧導
体を絶縁性ガスとともに接地金属容器内に絶縁保持して
なるガス絶縁開閉装置において、前記高電圧導体に系統
の常規対地電圧が印加された際の前記接地金属容器内表
面における電界値が10kV/cm以下となるように前
記高電圧導体との距離を設定したことを特徴とする。ま
た、前記電界値が10kV/a1以上となる場合には、
前記接地金属容器内表面の電界値が10kV/m以上と
なる領域に絶縁層を形成することを特徴とする。
That is, in order to achieve the above object, the present invention provides a gas-insulated switchgear in which a high-voltage conductor is insulated and held in a grounded metal container together with an insulating gas, in which the normal ground voltage of the system is applied to the high-voltage conductor. The distance from the high voltage conductor is set so that the electric field value at the inner surface of the grounded metal container is 10 kV/cm or less. Further, when the electric field value is 10 kV/a1 or more,
The method is characterized in that an insulating layer is formed in a region where the electric field value on the inner surface of the grounded metal container is 10 kV/m or more.

すなわち、接地金属容器内の残留異物が電界により移動
する電界値の強度は10kV/a1以上であることに着
目し、接地金属容器内の電界値強度が10kV/cs+
を超えないようにすることによって、絶縁性能の向上を
図るものである。
That is, focusing on the fact that the electric field strength at which the residual foreign matter in the grounded metal container moves due to the electric field is 10 kV/a1 or more, the electric field strength in the grounded metal container is 10 kV/cs+.
The purpose is to improve insulation performance by ensuring that the temperature does not exceed .

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を以下に図面を参照して説明する。第1
図(a)は第1図(b)に示すような接地された金属容
器10の中心に高電圧導体11を配置した同軸円筒単相
母線において、任意の一定金属容器内径φlに対して、
高電圧導体外径をφn変化さ童た場合における、高電圧
導体にL IWLを印加した場合の前記高電圧導体表面
の電界E1と高電圧導体に常規対地電圧を印加した場合
の金属容器内面の電界E2とを計算した結果である。こ
の関係は絶縁段160号から500号L/しまでの各定
格GISの従来の単相母線の絶縁設計にあてはまる。
Embodiments of the present invention will be described below with reference to the drawings. 1st
Figure (a) shows a coaxial cylindrical single-phase busbar in which a high voltage conductor 11 is arranged at the center of a grounded metal container 10 as shown in FIG.
When the outer diameter of the high voltage conductor is changed by φn, the electric field E1 on the surface of the high voltage conductor when LIWL is applied to the high voltage conductor and the inner surface of the metal container when the normal ground voltage is applied to the high voltage conductor. This is the result of calculating the electric field E2. This relationship applies to the conventional single-phase bus insulation design for each rated GIS from insulation stage No. 160 to No. 500 L/S.

図かられかるように、Elは高電圧導体外径φnの増加
とともに低下してゆくがφi/φn−e(但し、eは自
然対数の底−2,71828−・・)で最小となった後
、再び上昇してゆく。またEtは高電圧導体外径φnの
増加とともに上昇してゆく、従って第3図の如<Elの
グラフは高電圧導体表面における許容電界値Ecと2ケ
所で交わり、E!≦ECであるためにはφ1≦φn≦φ
3でなければならないことがわかる。Etに関しては工
業上GIS内で発生、残留し得る可能性のある金属が接
地された金属容器の底に存在すると想定し、後述するよ
うにこの金属異物が起立、浮上、高電圧導体と金属容器
間を横断する電界値から金属容器内面の許容電界値Et
を決めることができる。
As can be seen from the figure, El decreases as the high voltage conductor outer diameter φn increases, but reaches its minimum at φi/φn-e (where e is the base of the natural logarithm -2,71828-...) After that, it rises again. Furthermore, Et increases as the high voltage conductor outer diameter φn increases. Therefore, as shown in FIG. 3, the graph of <El intersects the allowable electric field value Ec on the surface of the high voltage conductor at two places, and E! For ≦EC, φ1≦φn≦φ
It turns out that it has to be 3. Regarding Et, it is assumed that metals that may be generated or remain in industrial GIS are present at the bottom of a grounded metal container, and as described below, this metal foreign material may rise, float, or touch the high voltage conductor and the metal container. The allowable electric field value Et on the inner surface of the metal container is determined from the electric field value crossing between
can be determined.

このEtのグラフは金属容器内面の許容電界値Etと1
ケ所で交わり、E2≦Etであるためにはφn≦φ2で
なければならない。一般的なGISにおいてはφ1≦φ
2≦φ3であるため、機器としての絶縁性能の低下を防
ぐためには高電圧導体外径はφ1≦φn≦φ2であるこ
とが要求される。
This graph of Et shows the allowable electric field value Et on the inner surface of the metal container and 1
They intersect at two places, and in order for E2≦Et to hold, φn≦φ2 must hold. In general GIS, φ1≦φ
Since 2≦φ3, the outer diameter of the high voltage conductor is required to satisfy φ1≦φn≦φ2 in order to prevent the insulation performance of the device from deteriorating.

具体的な例をあげて、さらに詳細に説明する。This will be explained in more detail by giving a specific example.

500kV級の機器を考えLIWL  1550kV 
 ACwork55015−318kVとしてφn−5
00,600,700゜ 8001mに対して第1図と同様な計算をした結果を第
2図(a) 1.:示す。(第2図(b)は第1図(b
’)と同一の図である。)高電圧導体表面の許容電界は
発明の技術的背景で触れた様に205kV/cmとする
。また、金属容器内面の許容電界は次の様に考える。 
EPRI論文tnvestegatpon  of  
high−volt’age  particle−1
nitiataed  breakdown  l n
  SFaによると、GISの金属容器中に金属異物が
存在する場合、金属容器内面の電界強度が6kVrms
/cmを超えると異物は起立し、12kVrms/1:
lIを超えると浮上・走行を開始すると解釈できる。
Considering 500kV class equipment, LIWL 1550kV
ACwork55015-318kV as φn-5
Figure 2 (a) shows the results of calculations similar to those in Figure 1 for 00,600,700°8001m. :show. (Figure 2(b) is similar to Figure 1(b)
') is the same figure. ) The allowable electric field on the surface of the high voltage conductor is 205 kV/cm as mentioned in the technical background of the invention. Also, consider the allowable electric field inside the metal container as follows.
EPRI paper tnbestegatpon of
high-volt'age particle-1
nitiataed breakdown l n
According to SFa, if a metal foreign object exists in a GIS metal container, the electric field strength on the inner surface of the metal container will be 6 kVrms.
/cm, foreign matter will stand up, 12kVrms/1:
It can be interpreted that when it exceeds lI, it starts to float and run.

また、この値はガス圧力にはほとんど依存しない。従っ
て、金属容器内面の電界をほぼ10kVrmS/aR程
度に抑制すれば金属容器内の異物は起立するにとどまり
、浮上・走行には至らず、サージ電圧が加わった場合の
絶縁性能低下はほとんど無いと考えられる。そのため、
Etはほぼ10kVrms/cmとする。金属容器の内
径φがφ1−700mの場合について考えて見るとEl
<ECとなる金属容器内の高電圧導体外径φnの範囲は
63sくφo <525麿となる。
Moreover, this value is almost independent of gas pressure. Therefore, if the electric field on the inner surface of the metal container is suppressed to about 10 kVrmS/aR, the foreign objects inside the metal container will only stand up, but will not levitate or travel, and there will be almost no deterioration in insulation performance when a surge voltage is applied. Conceivable. Therefore,
Et is approximately 10 kVrms/cm. Considering the case where the inner diameter φ of the metal container is φ1-700m, El
The range of the outer diameter φn of the high voltage conductor in the metal container where <EC is 63 seconds and φo <525 mm.

これに対し、ACWOrk印加時にEt<Etとなるφ
nの範囲はφn<284amとなる。従って、絶縁性能
上、問題の無い高電圧導体外径φnの範囲は63麿くφ
n<284厘の範囲であることがわかる。従って、上記
のt!囲において、定格N流時の温度上昇、支持絶縁物
のサイズ等を併せて考え、高電圧導体外径φnを決定す
れば良い。
On the other hand, when ACWOrk is applied, φ becomes Et<Et.
The range of n is φn<284am. Therefore, in terms of insulation performance, the range of high voltage conductor outer diameter φn that does not cause problems is 63 mm.
It can be seen that n<284 rin. Therefore, the above t! The outer diameter φn of the high voltage conductor may be determined by considering the temperature rise at the rated N current, the size of the supporting insulator, etc.

また、金属容器内径φs −500nVの場合について
考えてみると、Er <ECとなるφnの範囲は86j
Il<φn<304amとなる。これに対しACWOr
k印加時にE2<Etとなるφnの範囲はφn<140
麿である。従って絶縁性能上問題の無いφnの範囲は8
6履くφn<140履であることがわかる。
Also, considering the case where the inner diameter of the metal container is φs -500nV, the range of φn where Er < EC is 86j
Il<φn<304am. On the other hand, ACWOr
The range of φn where E2<Et when k is applied is φn<140
It's Maro. Therefore, the range of φn that does not cause problems in terms of insulation performance is 8
It can be seen that 6 shoes are φn<140 shoes.

以上述べた様に、El<ECおよびE2<Etの両方の
条件を満たす様な範囲内でφ1.φnの組合わせを選べ
ば絶縁性能上、不安の無い優れたガス絶縁開閉装置を提
供できる。
As stated above, φ1. By selecting a combination of φn, it is possible to provide an excellent gas insulated switchgear with no worries in terms of insulation performance.

次に、種々の研究により金属容器の内面に絶縁性被膜を
設けた場合に金属容器表面に存在する金属異物の起立電
界、浮上・走行電界が被膜が無い場合よりも高くなるこ
とが明らかにされた。これは、絶縁被膜のために金属容
器−金属異物という電荷の移動のメカニズムが抑制され
る為である。
Next, various studies have revealed that when an insulating coating is provided on the inner surface of a metal container, the electric field for standing up, floating, and traveling electric fields for metallic foreign objects on the surface of the metal container becomes higher than when no coating is provided. Ta. This is because the insulating coating suppresses the mechanism of charge transfer between the metal container and the metal foreign object.

従って、絶縁性被膜を設けたことにより、仮に。Therefore, by providing an insulating film, temporarily.

Etが20%上昇するとすれば 1:work−12kV/cIIまで許容できることに
なる。つまりφi=700mの場合であればφく328
履となり、導体寸法の選択の幅が広がる。これは機器設
計上の利点となり得る。
If Et increases by 20%, it will be allowable up to 1:work-12kV/cII. In other words, if φi=700m, φ is 328
This expands the range of conductor size selection. This can be an advantage in equipment design.

また、第3図に示す様なガス絶縁開閉器20では極間あ
るいは対地の電界緩和のために可動接触子23及び固定
接触子21にシールド22が設けられているが、金属容
器26の内面において、上記シールドと対向する部分(
図中に符号Aを付して示した部分)は絶縁距離が短いた
め電界は高くなってしまう。この様な構成の機器におい
てはAの領域の部分にのみ絶縁被膜を設けることで機器
としての絶縁性能を向上させることが可能である。
Furthermore, in the gas insulated switch 20 as shown in FIG. , the part facing the above shield (
In the part indicated by the symbol A in the figure), the electric field becomes high because the insulation distance is short. In a device having such a configuration, it is possible to improve the insulation performance of the device by providing an insulating coating only in the region A.

さらに、金属異物は金属容器の底面に存在するのである
から絶縁性被膜は第ぎ図に示す様に金属容器31の中心
軸を通るほぼ水平な面よりも下側の部分の8の領域にの
み設ければ十分である。また下側90@の範囲Cでも効
果をあげることが期待できる。また、必要に応じて使い
分は組み合せをすることにより開閉装置のシステム設計
の合理化が可能になる。例えば、当初電流定格11で設
計された機器が系統容量の変更等で電流定格12(12
>11>に増容量する必要が生じた際等で現状のままで
は増容量した電流定格I2は通電不能の場合の処置とい
て次のようなことが考えられる。すなわち、一般的に経
済性を考慮して金属容器はそのまま流用し、高電圧導体
の径を太くして対処する方法である。この時、導体径が
太くなったことにより、金属容器表面の電界Ewo r
kがEtを超えてしまう場合に金属容器内面に絶縁性被
膜を設け、これによって、金属異物の挙動を抑制し、絶
縁性能の低下を防止することができる。
Furthermore, since the metal foreign matter exists on the bottom surface of the metal container, the insulating coating is applied only to the region 8 below the approximately horizontal plane passing through the central axis of the metal container 31, as shown in FIG. It is sufficient if it is provided. Further, it can be expected that the effect will be achieved even in the lower range C of 90@. Furthermore, by combining the parts to be used as necessary, it becomes possible to rationalize the system design of the switchgear. For example, equipment originally designed with a current rating of 11 may be changed to a current rating of 12 (12
When it becomes necessary to increase the capacity to >11> and the increased current rating I2 cannot be energized as it is, the following measures can be taken. In other words, the general approach is to use the metal container as is and increase the diameter of the high voltage conductor in consideration of economic efficiency. At this time, due to the increased conductor diameter, the electric field on the surface of the metal container
When k exceeds Et, an insulating coating is provided on the inner surface of the metal container, thereby suppressing the behavior of metal foreign matter and preventing a decrease in insulation performance.

尚、絶縁線被膜の形成手法として絶縁性塗料を塗布する
方法、または絶縁性フィルムを貼りつける方法等が考え
る。塗料を塗布する場合、金属素地を完全に露出させな
い様に絶縁塗膜厚さはほぼ30μm以上とすることが望
ましい。
As a method for forming the insulating wire coating, a method of applying an insulating paint or a method of pasting an insulating film can be considered. When applying a paint, it is desirable that the thickness of the insulating paint film be approximately 30 μm or more so as not to completely expose the metal base.

このように本発明は高電圧導体を絶縁性ガスとともに接
地金属容器内に絶縁保持してなるガス絶縁開閉装置にお
いて、前記高電圧導体に系統の常規対地電圧が印加され
た際の前記接地金属容器内表面における電界値が10k
V/ca+以下となるように前記高電圧導体との距離を
設定したものであり、また、前記電界値が10kV/c
m以上となる場合には、前記接地金属容器内表面の電界
値が10kV/cm以上となる領域に絶縁層を形成する
ようにしたものである。
As described above, the present invention provides a gas-insulated switchgear in which a high-voltage conductor is insulated and held in a grounded metal container together with an insulating gas, and in which a high-voltage conductor is insulated and held in a grounded metal container. The electric field value at the inner surface is 10k
The distance to the high voltage conductor is set so that the voltage is V/ca+ or less, and the electric field value is 10 kV/c.
m or more, an insulating layer is formed in a region where the electric field value on the inner surface of the grounded metal container is 10 kV/cm or more.

すなわち、接地金属容器内の残留異物が電界により移動
する電界値の強度は10kV/cIR以上であることに
着目し、接地金属容器内の電界値強度が10kV/cI
Rを超えないようにしたものであり、これによって、接
地金属容器内の異、、l物が浮上したり移動したりする
のを防止できるので絶縁性能の著しい向上を図ることが
出来る。
In other words, focusing on the fact that the electric field strength at which the residual foreign matter inside the grounded metal container moves due to the electric field is 10 kV/cIR or more, the electric field strength inside the grounded metal container is 10 kV/cI.
This makes it possible to prevent foreign objects inside the grounded metal container from floating or moving, thereby significantly improving insulation performance.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように本発明によれば万一その内部に金
属異物が存在していても絶縁性能の低下を生じない絶縁
性能・信頼性に優れたガス絶縁開閉装置を提供すること
ができる。
As described in detail above, according to the present invention, it is possible to provide a gas insulated switchgear with excellent insulation performance and reliability, which does not cause a decrease in insulation performance even if metal foreign matter is present inside the switchgear. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明をするための図、第2図は
具体例を説明するための図、第3図、第4図は本発明の
別の実施例を説明するための図、第5図は雷インパルス
のSFsガス破壊電界の確率分布図である。 10.26.31・・・金属容器、 11.25.32・・・高電圧導体、21・・・固定接
触子、22・・・シールド、23・・・可動接触子、2
4・・・絶縁スペーサ。 出願人代理人  弁理士 鈴圧式彦 (b) (mm) 第3図 第4図
FIG. 1 is a diagram for explaining the present invention in detail, FIG. 2 is a diagram for explaining a specific example, and FIGS. 3 and 4 are diagrams for explaining another embodiment of the present invention. , FIG. 5 is a probability distribution diagram of the SFs gas breakdown electric field of lightning impulse. 10.26.31... Metal container, 11.25.32... High voltage conductor, 21... Fixed contact, 22... Shield, 23... Movable contact, 2
4...Insulating spacer. Applicant's agent Patent attorney Shikihiko Suzushi (b) (mm) Figure 3 Figure 4

Claims (5)

【特許請求の範囲】[Claims] (1)高電圧導体を絶縁性ガスとともに接地金属容器内
に絶縁保持してなるガス絶縁開閉装置において、前記高
電圧導体に系統の常規対地電圧が印加された際の前記接
地金属容器内表面における電界値が10kV/cm以下
となるように前記高電圧導体との距離を設定したことを
特徴とするガス絶縁開閉装置。
(1) In a gas-insulated switchgear in which a high-voltage conductor is insulated and held in a grounded metal container together with an insulating gas, the inner surface of the grounded metal container when the normal ground voltage of the system is applied to the high-voltage conductor. A gas insulated switchgear characterized in that a distance from the high voltage conductor is set so that an electric field value is 10 kV/cm or less.
(2)高電圧導体を絶縁性ガスとともに接地金属容器内
に絶縁保持してなるガス絶縁開閉装置において、前記高
電圧導体に系統の常規対地電圧が印加された際の前記接
地金属容器内表面における電界値が10kV/cmを超
える場合に前記接地金属容器の内面に絶縁層を形成した
ことを特徴とするガス絶縁開閉装置。
(2) In a gas-insulated switchgear in which a high-voltage conductor is insulated and held in a grounded metal container together with an insulating gas, the inner surface of the grounded metal container when the normal ground voltage of the system is applied to the high-voltage conductor. A gas insulated switchgear characterized in that an insulating layer is formed on the inner surface of the grounded metal container when an electric field value exceeds 10 kV/cm.
(3)絶縁層は接地金属容器内表面の電界値が10kV
/cmを超える領域に形成することを特徴とする特許請
求の範囲第2項記載のガス絶縁開閉装置。
(3) The insulating layer has an electric field value of 10 kV on the inner surface of the grounded metal container.
3. The gas insulated switchgear according to claim 2, wherein the gas insulated switchgear is formed in an area exceeding /cm.
(4)絶縁層はその厚みを30μm以上に設定すること
を特徴とする特許請求の範囲第2項記載のガス絶縁開閉
装置。
(4) The gas insulated switchgear according to claim 2, wherein the insulating layer has a thickness of 30 μm or more.
(5)絶縁層は接地金属容器内の中心軸線を通るほぼ水
平面位置より下方の領域に形成することを特徴とする特
許請求の範囲第2項記載のガス絶縁開閉装置。
(5) The gas insulated switchgear according to claim 2, wherein the insulating layer is formed in a region below a substantially horizontal plane passing through the central axis of the grounded metal container.
JP60066967A 1985-03-30 1985-03-30 Gas insulated gear Pending JPS61227326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60066967A JPS61227326A (en) 1985-03-30 1985-03-30 Gas insulated gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60066967A JPS61227326A (en) 1985-03-30 1985-03-30 Gas insulated gear

Publications (1)

Publication Number Publication Date
JPS61227326A true JPS61227326A (en) 1986-10-09

Family

ID=13331299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60066967A Pending JPS61227326A (en) 1985-03-30 1985-03-30 Gas insulated gear

Country Status (1)

Country Link
JP (1) JPS61227326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029068A (en) * 2006-07-19 2008-02-07 Somar Corp Power switchgear manufacturing method and power switchgear

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136811A (en) * 1979-04-12 1980-10-25 Mitsubishi Electric Corp Gas insulated electric device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136811A (en) * 1979-04-12 1980-10-25 Mitsubishi Electric Corp Gas insulated electric device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029068A (en) * 2006-07-19 2008-02-07 Somar Corp Power switchgear manufacturing method and power switchgear

Similar Documents

Publication Publication Date Title
US8450630B2 (en) Contact backing for a vacuum interrupter
US7781694B2 (en) Vacuum fault interrupter
Lee Protection zone for buildings against lighning strokes using transmission line protection practice
Sander et al. Conversion of AC multi-circuit lines to AC-DC hybrid lines with respect to the environmental impact
Moore et al. Voltage transient management for Alternating Current trains with vacuum circuit breakers
Barros et al. Controlled switching of series compensated transmission lines: Challenges and solutions
JPS61227326A (en) Gas insulated gear
JPH08149667A (en) Gas-insulated bus and gas-insulated switchgear
Lane et al. Switchgear Equipment for Tidd High-Voltage Test Lines
Wagner et al. Evaluation of surge suppression resistors in high-voltage circuit breakers
Rashkes et al. Very high frequency overvoltages at open air EHV substations during disconnect switch operations
Salceanu et al. Numerical Simulations and Experimental Tests for the Analysis of Capacitive Load Switching in Power Circuits
Spurck et al. A new multibreak interrupter for fast-clearing oil circuit breakers
Peterson et al. Protector tubes for power systems
Garrard High-voltage switchgear
JPH04285415A (en) Gas insulating switch
JPH0715813A (en) Gas insulated switching device
Rokunohe et al. Development of 72‐kV high‐pressure air‐insulated GIS with vacuum circuit breaker
Walldorf et al. Development of 1200-kV compressed-gas-insulated transmission and substation equipment in the United States
Ito High Voltage Equipment
Stephen et al. Insulation Coordination
Frink SF6 Magnetic-Puffer Circuit Breaker for 34.5 kV, 1500 MVA
JPH0591611A (en) Gas-insulated switchgear
SE512105C2 (en) switchgear Station
Clem et al. Proposed basic impulse insulation levels for high-voltage systems