JPS6122674Y2 - - Google Patents

Info

Publication number
JPS6122674Y2
JPS6122674Y2 JP13803681U JP13803681U JPS6122674Y2 JP S6122674 Y2 JPS6122674 Y2 JP S6122674Y2 JP 13803681 U JP13803681 U JP 13803681U JP 13803681 U JP13803681 U JP 13803681U JP S6122674 Y2 JPS6122674 Y2 JP S6122674Y2
Authority
JP
Japan
Prior art keywords
hot air
mill
main body
passage
inclined plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13803681U
Other languages
Japanese (ja)
Other versions
JPS5843953U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13803681U priority Critical patent/JPS5843953U/en
Publication of JPS5843953U publication Critical patent/JPS5843953U/en
Application granted granted Critical
Publication of JPS6122674Y2 publication Critical patent/JPS6122674Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crushing And Grinding (AREA)
  • Disintegrating Or Milling (AREA)

Description

【考案の詳細な説明】 本考案は石炭、セメント原料などを粉砕、乾
燥、分級する堅型乾式ミルに応用できるローラミ
ルに関するものである。 一般に石炭や石灰石などを粉砕、乾燥、分級す
る堅型乾式ミルにおいては、粉砕物の搬送、乾燥
用としてミル底部よりミル内部へ複数個の熱風通
路を通じて熱風が送られるが、同複数個の熱風通
路間には普通風量のバラツキがあるものである。 従来の堅型ミルの構造を第1図〜第3図につい
て説明すると、石炭やセメント原料などの被粉砕
物11は、供給管1より回転しているテーブル2
に供給され、テーブル2とローラ3との間に噛込
まれる。この時に荷重装置4によりローラ3にか
けられた粉砕荷重により、被粉砕物11は粉砕さ
れる。粉砕された粉砕物12は回転テーブル2の
遠心力により、テーブル2の外方へ飛ばされる。 一方粉砕物12の搬送と乾燥を目的とする熱風
13は、ミルの側壁に取付けられた1〜2個の熱
風ダクト5よりミル底部6に入り、熱風入口部7
よりミル内部8に入る。この熱風入口部7は傾斜
板17により複数個の熱風通路19に仕切られて
いる。 前述のテーブル2の外へ飛ばされた粉砕物12
は、熱風の気流に乗つて乾燥されながら上昇し、
セパレータ9に入る。そして粉砕物12はセパレ
ータ9内で微粒物14と粗粒物15とに分離さ
れ、前者は出口管10より製品として出て行き、
後者は再びテーブル2へ戻り、再粉砕される。 熱風入口部7の形状としては、全周に入口部が
ある形式(第2図)や、数個所に入口部がある形
式(第4図では3ケ所)とがある。熱風入口部7
は更に傾斜板17により細分割され、複数個の熱
風通路19となつている(第3図)。 また熱風ダクト5の取付位置としては、片サイ
ド方式(第2図、第4図)、センター方式(第5
図)、両サイド方式(第6図)などがあり、ロー
ラ本数としては3本、或いは2本、4本(図示せ
ず)などがある。一方熱風ダクト5より供給され
た熱風は、ミル底部6内を旋回しながら、熱風入
口部7の傾斜板17間の熱風通路19を通つてミ
ル内部8へ入る。 従来熱風入口部7内の傾斜板17は第3図の如
く全く同一形状のものを取付けていたに過ぎず、
その為に次の様な欠点が生じていた。先ず第8図
の計測例に示す通り、各熱風通路19毎にかなり
の熱風量のバラツキが生じ、ミルの粉砕性、乾燥
性、分級性に悪影響を及ぼしていた。 また前記バラツキ対策として、従来はミル底部
高さ18(第1図)を大きくしてミル底部容積を
増大させる、所謂ミル底部にタンク効果を持たせ
る対策を行なつていた。 しかし前記の対策を行なつた場合には、 ミルの高さが高くなる。 コストが高くなる。 回転主軸16が長くなり、結果として主軸に
作用する曲げモーメントが増大する。その為に
回転主軸16の径を大きくするなどの強度上の
余分な対策が必要となり、コスト高となる。 などの欠点があつた。 本考案は前記従来の欠点を解消するために提案
されたもので、垂直駆動軸周りに回転するテーブ
ルと、同テーブルの上面に押圧されつつ回転し、
前記テーブル上に供給された被粉砕物を粉砕する
複数のローラと、これらテーブルとローラとを収
納する略円筒状の本体と、同本体内の前記テーブ
ルの下方のミル底部を構成する前記本体の側面に
連通された少なくとも1本以上の熱風ダクトと、
前記テーブルの外周と本体との間隙に配置され複
数の熱風通路を構成する傾斜板とを有するローラ
ミルにおいて、前記熱風通路を構成する傾斜板に
同通路の開口比を前記熱風ダクトに近いもの程小
さくする抵抗体を取り付けたことにより、ミル底
部高さを低くしても、各熱風通路の熱風量のバラ
ツキを低減することでき、かつミルのコスト低減
とミルの性能向上を計ることができるローラミル
を提供せんとするものである。 以下本考案の実施例を図面について説明する
と、第9図は第1図のX〜X断面図に相当する本
考案の実施例を示し、第1図の符号をそのまま用
いると、垂直駆動軸周りに回転しているテーブル
2と同テーブル2上面に押圧されつつ回転し、前
記テーブル2と共に被粉砕物11を粉砕する複数
のローラ3とを備えた堅型乾式ミルにおいて、前
記テーブル2下方のミル底部6と前記テーブル2
上方のミル内部8とを結ぶ複数個の熱風通路19
に、熱風流量の不均衝を緩和する抵抗体20を設
けてなるものである。 さて第9図〜第12図に構造を示している様
に、抵抗体20として円管を用い、また流れを円
滑にする為に案内板21を円管に取付けている。
円管の径は第8図の実測値に従つて風量の大きい
熱風入口部程、大きいものを取付けた。具体的に
は第9図において熱風の前流側より、熱風入口部
7,Aには23mm、7,Bには13mmの円管を第10
図、第11図に示す様に取付けた。なお、熱風入
口部7,Cには何も取付けなかつた。 この様にそれぞれの熱風入口部に大きさの異な
る円管を挿入することにより、熱風通路に絞り効
果が生じ、熱風入口部の風量のバラツキを低減す
ることが可能となる。 次に本考案を適用した場合の実験結果例を第1
3図及び第1表に示す。実験例1は熱風入口部7
及びミル底部高さ18とも従来通りであり、この
時は風量の最大偏差(バラツキ)は25%であつ
た。 実験例2は熱風入口部7は従来通りの形状で、
ミル底部高さ18を2/3に低減した場合であり、
この時は風量の最大偏差は32%であつた。実験例
2が実験例1よりバラツキが大きかつたのは、ミ
ル底部高さ18を低減したことによりミル底部6
の容積が減少し、所謂タンク効果が減少した為で
ある。 実験例3はミル底部高さ18を2/3に低減し、
第9図〜第12図に示した本考案の実施例を適用
した場合であり、取付けた抵抗体20は前述した
通りの管径である。この時はミル底部高さ18を
2/3に低傾したにもかかわらず、風量の最大偏差
は7%に低減しており、本考案効果の大きさを示
している。 以上の実験例としては、サイド式熱風ダクト、
3個の熱風入口部を有するミルについて述べた
が、センター式熱風ダクトや、全周に熱風入口部
がある他の型式でも、本考案を適用した場合に全
く同様の効果が得られた。 また抵抗体20の形状としては円管以外にも三
角柱やオリフイスを用いて試験を行なつたが、い
づれも同様の効果が得られ、摩耗や取付けの容易
さなどを考慮して、適切な形状を選定することが
できる。 【表】
[Detailed Description of the Invention] The present invention relates to a roller mill that can be applied to a vertical dry mill for pulverizing, drying, and classifying coal, cement raw materials, etc. In general, in a vertical dry mill that crushes, dries, and classifies coal, limestone, etc., hot air is sent from the bottom of the mill into the inside of the mill through multiple hot air passages for conveying and drying the pulverized material. There is usually variation in air volume between aisles. The structure of a conventional vertical mill will be explained with reference to FIGS. 1 to 3. Materials to be crushed 11 such as coal or cement raw materials are transported from a supply pipe 1 to a rotating table 2.
and is caught between the table 2 and the roller 3. At this time, the object to be crushed 11 is crushed by the crushing load applied to the roller 3 by the loading device 4. The crushed material 12 is blown out of the rotary table 2 by the centrifugal force of the rotary table 2. On the other hand, hot air 13 for the purpose of transporting and drying the pulverized material 12 enters the mill bottom 6 through one or two hot air ducts 5 attached to the side wall of the mill, and enters the hot air inlet 7.
Enter the inside of the mill 8. This hot air inlet section 7 is partitioned into a plurality of hot air passages 19 by an inclined plate 17. Crushed material 12 thrown out of the aforementioned table 2
rises while being dried on the hot air currents,
Enter separator 9. The pulverized material 12 is separated into fine particles 14 and coarse particles 15 in the separator 9, and the former exits as a product from the outlet pipe 10.
The latter returns to table 2 and is re-ground. As for the shape of the hot air inlet section 7, there are two types: one in which there are inlet sections all around the circumference (FIG. 2), and one in which there are inlet sections at several locations (three locations in FIG. 4). Hot air inlet section 7
is further subdivided by an inclined plate 17 to form a plurality of hot air passages 19 (FIG. 3). The hot air duct 5 can be installed at one side (Figs. 2 and 4) or at the center (in the 5th position).
(Fig. 6) and both-side type (Fig. 6), and the number of rollers may be three, two, or four (not shown). On the other hand, the hot air supplied from the hot air duct 5 enters the mill interior 8 through the hot air passage 19 between the inclined plates 17 of the hot air inlet 7 while swirling inside the mill bottom 6. Conventionally, the inclined plate 17 in the hot air inlet section 7 has been installed with exactly the same shape as shown in Fig. 3.
This resulted in the following drawbacks. First, as shown in the measurement example of FIG. 8, considerable variation occurred in the amount of hot air in each hot air passage 19, which adversely affected the grinding performance, drying performance, and classification performance of the mill. In addition, as a countermeasure against the above-mentioned variations, conventional measures have been taken to increase the mill bottom height 18 (FIG. 1) to increase the mill bottom volume, so to speak, to give the mill bottom a tank effect. However, if the above measures are taken, the height of the mill will increase. Cost increases. The rotating main shaft 16 becomes longer, and as a result, the bending moment acting on the main shaft increases. Therefore, extra measures for strength, such as increasing the diameter of the rotating main shaft 16, are required, which increases costs. There were drawbacks such as: The present invention was proposed to solve the above-mentioned conventional drawbacks, and includes a table that rotates around a vertical drive shaft, a table that rotates while being pressed against the top surface of the table,
a plurality of rollers for pulverizing the material to be pulverized supplied onto the table; a generally cylindrical main body housing the table and the rollers; and a main body constituting a mill bottom below the table within the main body. at least one or more hot air ducts communicating with the side,
In a roller mill having an inclined plate disposed in a gap between the outer periphery of the table and the main body and forming a plurality of hot air passages, the inclined plate forming the hot air passages has a smaller opening ratio of the passages as they are closer to the hot air duct. By installing a resistor that reduces the height of the mill bottom, it is possible to reduce the variation in the amount of hot air in each hot air passage, and to reduce the cost of the mill and improve the performance of the roller mill. This is what we intend to provide. Below, an embodiment of the present invention will be explained with reference to the drawings. Fig. 9 shows an embodiment of the present invention corresponding to the sectional view from X to X in Fig. 1, and if the symbols in Fig. 1 are used as they are, In a vertical dry mill, the mill is equipped with a table 2 that rotates, and a plurality of rollers 3 that rotate while being pressed against the upper surface of the table 2 and crush the material to be crushed 11 together with the table 2. Bottom part 6 and said table 2
A plurality of hot air passages 19 connecting the upper mill interior 8
In addition, a resistor 20 is provided to alleviate the imbalance in the hot air flow rate. Now, as the structure is shown in FIGS. 9 to 12, a circular tube is used as the resistor 20, and a guide plate 21 is attached to the circular tube to smooth the flow.
The diameter of the circular pipe was set to be larger at the hot air inlet where the air volume was larger, according to the actual measurements shown in Figure 8. Specifically, in Fig. 9, from the upstream side of the hot air, a 23 mm circular tube is installed at the hot air inlet section 7, A, and a 13 mm circular tube is installed at the 10th hot air inlet section 7, B.
It was installed as shown in Fig. 11. Note that nothing was attached to the hot air inlet section 7,C. By inserting circular tubes of different sizes into the respective hot air inlets in this way, a throttling effect is produced in the hot air passage, making it possible to reduce variations in the air volume at the hot air inlets. Next, the first example of experimental results when this invention is applied is shown.
It is shown in Figure 3 and Table 1. Experimental example 1 is the hot air inlet section 7.
Both the mill bottom height 18 were the same as before, and the maximum deviation (dispersion) in air volume was 25% at this time. In Experimental Example 2, the hot air inlet section 7 had the same shape as before.
This is the case when the mill bottom height 18 is reduced to 2/3,
At this time, the maximum deviation in air volume was 32%. The reason why the variation in Experimental Example 2 was larger than that in Experimental Example 1 was because the mill bottom height 18 was reduced.
This is because the volume of the tank has decreased, and the so-called tank effect has decreased. Experimental example 3 reduces the mill bottom height 18 to 2/3,
This is a case where the embodiment of the present invention shown in FIGS. 9 to 12 is applied, and the attached resistor 20 has the pipe diameter as described above. At this time, the mill bottom height is 18.
Despite the tilt being as low as 2/3, the maximum deviation in air volume was reduced to 7%, demonstrating the great effect of the present invention. Examples of the above experiments include side-type hot air ducts,
Although a mill having three hot air inlets has been described, the same effect was obtained when the present invention was applied to a center type hot air duct or other types having hot air inlets around the entire circumference. In addition to the circular tube, tests were also conducted using a triangular prism and an orifice as the shape of the resistor 20, but the same effect was obtained with both. can be selected. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の堅型乾式ミルの縦断面図、第2
図は第1図のX〜X断面図、第3図は第2図のY
〜Y断面図、第4図、第5図及び第6図は第2図
と異なる構造を示す第1図のX〜X断面図、第7
図は第8図のA,B,Cの計測位置を示す説明
図、第8図は風量のバラツキ実測例を示す線図、
第9図は第1図のX〜X断面に相当する部分の本
考案の実施例を示すローラミルの断面図、第10
図は第9図のZ〜Z断面図、第11図は第9図の
W〜W断面図、第12図は第9図のV〜V断面
図、第13図は従来と本考案における熱風入口部
の位置と風量比との関係を示す線図である。 図の主要部分の説明、2……テーブル、3……
ローラ、6……ミル底部、7……熱風入口部、8
……ミル内部、11……被粉砕物、19……熱風
通路、20……抵抗体。
Figure 1 is a vertical cross-sectional view of a conventional rigid dry mill;
The figure is a sectional view from X to X in Figure 1, and Figure 3 is a cross-sectional view from Y in Figure 2.
~Y cross-sectional view, Figures 4, 5, and 6 are X-X cross-sectional views of Figure 1 showing structures different from Figure 2, and Figure 7.
The figure is an explanatory diagram showing the measurement positions of A, B, and C in Figure 8. Figure 8 is a diagram showing an example of actual measurement of variation in air volume.
FIG. 9 is a cross-sectional view of a roller mill showing an embodiment of the present invention in a portion corresponding to the section X to X in FIG.
The figure is a sectional view from Z to Z in Fig. 9, Fig. 11 is a sectional view from W to W in Fig. 9, Fig. 12 is a sectional view from V to V in Fig. 9, and Fig. 13 is a sectional view of hot air in the conventional and present invention FIG. 3 is a diagram showing the relationship between the position of the inlet and the air volume ratio. Explanation of the main parts of the diagram, 2...Table, 3...
Roller, 6... Mill bottom, 7... Hot air inlet, 8
... Inside the mill, 11 ... Material to be crushed, 19 ... Hot air passage, 20 ... Resistor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 垂直駆動軸周りに回転するテーブルと、同テー
ブルの上面に押圧されつつ回転し、前記テーブル
上に供給された被粉砕物を粉砕する複数のローラ
と、これらテーブルとローラとを収納する略円筒
状の本体と、同本体内の前記テーブルの下方のミ
ル底部を構成する前記本体の側面に連通された少
なくとも1本以上の熱風ダクトと、前記テーブル
の外周と本体との間隙に配置され複数の熱風通路
を構成する傾斜板とを有するローラミルにおい
て、前記熱風通路を構成する傾斜板に同通路の開
口比を前記熱風ダクトに近いもの程小さくする抵
抗体を取り付けたことを特徴とするローラミル。
A table that rotates around a vertical drive shaft, a plurality of rollers that rotate while being pressed against the top surface of the table and crush materials to be crushed that are supplied onto the table, and a generally cylindrical shape that accommodates these tables and rollers. a main body, at least one hot air duct communicating with the side surface of the main body constituting the mill bottom below the table in the main body, and a plurality of hot air ducts arranged in a gap between the outer periphery of the table and the main body. A roller mill having an inclined plate constituting a passage, characterized in that a resistor is attached to the inclined plate constituting the hot air passage to reduce the opening ratio of the passage as it is closer to the hot air duct.
JP13803681U 1981-09-17 1981-09-17 Laura Mill Granted JPS5843953U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13803681U JPS5843953U (en) 1981-09-17 1981-09-17 Laura Mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13803681U JPS5843953U (en) 1981-09-17 1981-09-17 Laura Mill

Publications (2)

Publication Number Publication Date
JPS5843953U JPS5843953U (en) 1983-03-24
JPS6122674Y2 true JPS6122674Y2 (en) 1986-07-08

Family

ID=29931274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13803681U Granted JPS5843953U (en) 1981-09-17 1981-09-17 Laura Mill

Country Status (1)

Country Link
JP (1) JPS5843953U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719558Y2 (en) * 1989-12-15 1995-05-10 福廣 安高 Rotary hammer of crusher

Also Published As

Publication number Publication date
JPS5843953U (en) 1983-03-24

Similar Documents

Publication Publication Date Title
US4344538A (en) Cyclone separator with influent guide blade
US4597537A (en) Vertical mill
US3285523A (en) Comminuting apparatus
JP5358457B2 (en) Continuous dry pulverization operation method of vertical pulverizer and vertical pulverizer
GB1584390A (en) Apparatus for pulverising solid materials
US4228964A (en) Apparatus for processing cellulose insulation
JPS6122674Y2 (en)
US1756254A (en) Fluidizer and method of fluidizing
US2762572A (en) Apparatus for disintegrating and classifying dry materials
US7252253B2 (en) Bowl mill for a coal pulverizer with an air mill for primary entry of air
JPS6221326Y2 (en)
JPS60156570A (en) Sorter
JPS5949855A (en) Shaft type mill
US2644643A (en) Laminated-ring and multiple internal-roll mill
US4638953A (en) Classifier for comminution of pulverulent material by fluid energy
JP3336440B2 (en) Low pressure drop cyclone
JPS5851949Y2 (en) Cyclone separator with inlet guide vanes
JP2855211B2 (en) Vertical mill
JP2526226B2 (en) Air Swept Ball Mill
KR100203942B1 (en) A support structure device
US1859499A (en) Ball mill
JPH038455A (en) Pulverizing and classifying device
JPS6327984B2 (en)
JPS63214383A (en) Sorter
JPH0595650U (en) Vertical roller mill