JPS6122667A - Photoelectrical converting element arrey for hybrid integrated light sensor - Google Patents

Photoelectrical converting element arrey for hybrid integrated light sensor

Info

Publication number
JPS6122667A
JPS6122667A JP59120411A JP12041184A JPS6122667A JP S6122667 A JPS6122667 A JP S6122667A JP 59120411 A JP59120411 A JP 59120411A JP 12041184 A JP12041184 A JP 12041184A JP S6122667 A JPS6122667 A JP S6122667A
Authority
JP
Japan
Prior art keywords
layer
individual electrode
photoelectric conversion
transparent conductive
photoelectrical converting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59120411A
Other languages
Japanese (ja)
Inventor
Yuji Kajiwara
梶原 勇次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59120411A priority Critical patent/JPS6122667A/en
Publication of JPS6122667A publication Critical patent/JPS6122667A/en
Priority to US07/008,108 priority patent/US4698495A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the photoelectric property and uniformity by eliminating dark current owing to cracks of the barrier layer generating at the difference part in the level or defective parts such as pin holes, by a method wherein the difference part in the level of photoelectrical converting material just under an individual electrode, which composes the light receiving part, is removed. CONSTITUTION:A transparent conductive layer 23 which is composed of SnO2, ITO etc. and a common electrode layer 22 of Cr are formed in order on a transparent base plate 21 made of glass, and these layers are patternized to the required dimensions. Furthermore, photoelectrical converting material 24, for instance, amorphous silicon is grown so as to cover the layers 23, 23, and an individual electrode 25 is formed on this, and the basic construction of a photoelectrical converting element is made. Subsequently, an insulating body layer 28 is painted and hardened on the photoelectrical converting material 24. Still more, there is an opening part 29 of the layer 28 on the individual electrode 25 and an individual electrode wiring 27 is deposited and patternized on the layer 28, and the individual electrode 25 and a driving circuit is connected through the opening part 29.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光電変換素子アレイに関し、特に透明基板の下
方から受光し、原稿幅と読取υ幅とが1対1に対応する
密着読取シに適した大面積の混成集積化光セ/す用光電
変換素子アレイに関するO(従来技術とその問題点) 最近、ファクシミリ送信機等の読取シブバイスとしてI
Cセンサと称されるMOSやCCUの一次元アレイに代
シ、原稿幅と光電変換素子アレイ幅とt1対1で対応さ
せた密着形イメージセンサが実用化されつ−)ある0縮
小結像系の光路とその微妙な調整を必聚とせず装置の小
屋化に有利で経済性に優るからである。轟然ICセンナ
と同様に。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a photoelectric conversion element array, and particularly to a close-contact reading system that receives light from below a transparent substrate and has a one-to-one correspondence between the document width and the reading width υ. Related to photoelectric conversion element arrays suitable for large-area hybrid integrated optical sensors (prior art and their problems) Recently, I
Instead of a one-dimensional array of MOS or CCU called a C sensor, a contact image sensor in which the document width and the photoelectric conversion element array width correspond on a t1:1 basis is being put into practical use. This is because the optical path and its delicate adjustment are not necessary, and it is advantageous for building the device in a shed and is superior in economical efficiency. Same as Roaring IC Senna.

その性能は安定で全長にわたり均一で高感度であること
が要求される0 このような密着形イメージセンサとして、例えば板本、
奥村らによル、画像電子学会第76回研究会(昭和58
年11月21日、83−04−1)で発表された「高速
アモルファスシリコン密着形イメージセンサ」は第1図
に示した如く、独特な素子構造で優れた性能を実現して
いる。
Its performance is required to be stable, uniform over its entire length, and highly sensitive.
Okumura et al., 76th Research Meeting of the Institute of Image Electronics Engineers (Showa 58)
The ``high-speed amorphous silicon contact type image sensor'' announced in November 21, 2013, 83-04-1) has a unique device structure and achieves excellent performance, as shown in Figure 1.

絶縁性透明基板11上に遮光層12.5i01 絶縁層
18.ITO透8A導電層13、アモルファスシリコン
層14、個別電極15等を順に形成した構造である。遮
光層12と個別電極15間での絶縁性を高め感光領域以
外での漏洩電流発生を妨げている。
A light shielding layer 12.5i01 and an insulating layer 18.5i01 are formed on the insulating transparent substrate 11. This is a structure in which an ITO transparent 8A conductive layer 13, an amorphous silicon layer 14, individual electrodes 15, etc. are formed in this order. The insulation between the light shielding layer 12 and the individual electrodes 15 is enhanced to prevent leakage current from occurring outside the photosensitive area.

この種の光電変換素子の電気信号の値は通常1O−6A
以下の非常に小さい値である0しかしながら最下層の遮
光層】2、あるいは透明導電層130段差が大きい時、
この段差部分での光電変換材14のバリア層に亀裂が入
ったシ膜中にピンホールが発生したシする欠陥部16で
1画像光10に関係なく電気信号が流れ素子欠陥になシ
易い。このため遮光層12および透明導電層13の膜厚
が制限され、充分な遮光性、および抵抗値が得られなか
った0まだ受光部以外の相対している電極面積が大きい
ため絶縁層18を介在させて感度はらつきを低減してい
るが、アモルファスシリコン層14を形成する前に多層
の薄膜を形成しなければならないことは、表面汚染がと
もない作業性、生産性が悪くなシ、製造技術が複雑とな
るので、低価格化が困難であるという欠点があった〇 (発明の目的) 本発明はこのような従来の欠点を除去せしめて、光電特
性、均一性を改善し実用に供し得るようにした混成集積
化光センサ用光電変換素子アレイを提供することにある
〇 (本発明の構成) 本発明の混成集積化光センサ用光電変換素子アレイは、
−面から光を受光する絶縁性透明基板と、この基板の他
面上に形成された透明導電層と、この透明溝iii;層
上に形成された共通電極層と、この共通電極層と前記透
明導電層とを覆うように形成された光電変換材膜と、と
の光電材膜上の前記透明溝′ItNIと相対して配置さ
れ、各々が分離独立して形成された複数の個別電極と、
この個別電極上の一部に開口部が設けられ、少なくとも
前記光電変換材膜上に形成された絶縁体層と、この絶縁
体層上に配置され、且つ前記個別電極と前記開口部を介
して接続される個別電極配線部とを含み構成される。
The value of the electrical signal of this type of photoelectric conversion element is usually 1O-6A.
The following very small value is 0; however, the lowest light-shielding layer] 2, or when the transparent conductive layer 130 level difference is large,
At this defective portion 16 where the barrier layer of the photoelectric conversion material 14 is cracked and a pinhole is generated in the film at this stepped portion, an electric signal flows regardless of the single image light 10, which is likely to cause a device defect. For this reason, the film thicknesses of the light-shielding layer 12 and the transparent conductive layer 13 were limited, and sufficient light-shielding properties and resistance values could not be obtained.Since the area of the electrodes facing each other other than the light-receiving part was still large, the insulating layer 18 was interposed. However, the need to form a multilayer thin film before forming the amorphous silicon layer 14 results in poor workability and productivity due to surface contamination, and also requires poor manufacturing technology. The disadvantage is that it is difficult to reduce the price because of the complexity. (Objective of the Invention) The present invention eliminates these conventional disadvantages and improves the photoelectric characteristics and uniformity so that it can be put to practical use. An object of the present invention is to provide a photoelectric conversion element array for a hybrid integrated optical sensor that has the following features:
- an insulating transparent substrate that receives light from a surface, a transparent conductive layer formed on the other surface of this substrate, a common electrode layer formed on this transparent groove iii; a photoelectric conversion material film formed to cover the transparent conductive layer; and a plurality of individual electrodes each formed separately and independently, and arranged facing the transparent groove 'ItNI on the photoelectric material film of the photoelectric conversion material film. ,
An opening is provided in a part of the individual electrode, and at least an insulating layer formed on the photoelectric conversion material film is arranged on the insulating layer and is connected to the individual electrode through the opening. and an individual electrode wiring section to be connected.

(本発明の概要) 本発明によれば、光電変換素子全構成する部分の個別電
極下の光電変換材膜および透明導電層各層には段差が全
くなく、段差は個別電極の相対しない部分に有るだけで
ある0従来この段差が受光部にあるため、段差部分で発
生していた光電変換材のバリア層に亀裂が入ったシピン
ホールによって素子欠陥となっていた問題が解消され、
従って光信号に関係なく電気信号が発生したシすること
が無くなる〇万一光電変換材の段差部分にそのような欠
陥が発生しても、受光部よシ充分距離があるだめ素子の
電気特性に影響を与えることは無く、共通電極の抵抗値
が高くて読取多速度が遅くなる問題が無くなるよう充分
透明導電層の膜厚を大きくできる。また光電変換素子ア
レイの一素子を決めるのは個別電極だけの寸法(面積)
で1、従来構造のような遮光層を設置して受光部を決め
る必要がない。従って構造が簡単となシ低価格化が実現
される。
(Summary of the present invention) According to the present invention, there is no step at all in the photoelectric conversion material film and each layer of the transparent conductive layer under the individual electrodes of the entire component of the photoelectric conversion element, and the step is in the portions of the individual electrodes that do not face each other. 0 Conventionally, since this step was located in the light receiving area, the problem of device defects caused by pinholes, which were caused by cracks in the barrier layer of the photoelectric conversion material that occurred at the step, was resolved.
Therefore, there is no possibility that an electrical signal will be generated regardless of the optical signal. Even if such a defect occurs in the step part of the photoelectric conversion material, there is a sufficient distance from the light receiving part so that the electrical characteristics of the element will not be affected. The thickness of the transparent conductive layer can be made sufficiently large to eliminate the problem of slow reading speed due to the high resistance value of the common electrode. Also, the size (area) of the individual electrodes alone determines one element of the photoelectric conversion element array.
1. There is no need to install a light-shielding layer to determine the light-receiving area as in the conventional structure. Therefore, the structure is simple and the cost can be reduced.

(実施例) 以下、本発明の実施例について図面を参照して詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第2図は本発明の一実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the present invention.

ガラスからなる透明基板21の上に、 8n02. I
TO等からなる数100x厚の透明導電層23およびC
rの共通電極層22を順に形成し所要寸法にノく   
・ターン化する0さらにこの透明導電層23および共通
電極層22を覆う如く光電変換材24例えばアモルファ
スシリコンを1〜2μm厚成長させ、この上に各々独立
分離した個別電極25を形成し光電変換素子の基本構造
を作る。例えば8素子/r11m程度の分解能の一次元
光電変換素子アレイであれば0.1mm角の寸法とした
C r、 N i Cr 、 Al、 T a等の導体
電極である。次にこの個別電極25上を含み前記光電変
換材24上に絶縁体層28例えば樹脂絶縁層を塗布硬化
させる。この樹脂は絶縁性が良く、電気化学的に安定な
程良い口筒1佃別電極25−ヒにはこの樹脂の開口部2
9を有している0さらにこの絶縁体層28上ic A4
 Cr−Auのような個別電極配線27が蒸着パターン
化され、開口部29を介し各々の個別電極25と、図示
していないが外付けあるいはガラス基板21上に実装さ
れた駆動回路とを接続する。
8n02. on the transparent substrate 21 made of glass. I
A transparent conductive layer 23 of several hundred times thickness made of TO etc. and C
Form r common electrode layers 22 in order and cut them to the required dimensions.
Further, a photoelectric conversion material 24 such as amorphous silicon is grown to a thickness of 1 to 2 μm so as to cover the transparent conductive layer 23 and the common electrode layer 22, and individual electrodes 25 each separated independently are formed on this to form a photoelectric conversion element. Create the basic structure. For example, in the case of a one-dimensional photoelectric conversion element array with a resolution of about 8 elements/r11 m, conductive electrodes such as Cr, NiCr, Al, Ta, etc. are used with dimensions of 0.1 mm square. Next, an insulating layer 28, such as a resin insulating layer, is applied and cured on the photoelectric conversion material 24, including on the individual electrodes 25. This resin has good insulation and is electrochemically stable.
9 and 0 further on this insulator layer 28 IC A4
Individual electrode wiring 27 such as Cr-Au is patterned by vapor deposition, and connects each individual electrode 25 through an opening 29 to a drive circuit (not shown) externally attached or mounted on the glass substrate 21. .

(発明の効果) このような構造の光電変換素子アレイは、受光部を構成
する個別電極25直下の光電変換材24には段差部分が
無く、通常この光電変換材24中の段差部分に発生する
バリア層の亀裂やピンホール等の欠陥部26による暗電
流の増加がほとんど無くなる。共通電極層22の端部に
存在する段差は、この感光領域となる基本素子部分から
遠く離れておシ、万一前述のような欠陥部26が発生し
てあっても基本素子の性能に影響することがない。
(Effects of the Invention) In the photoelectric conversion element array having such a structure, there is no step portion in the photoelectric conversion material 24 directly under the individual electrode 25 constituting the light receiving section, and there is no stepped portion in the photoelectric conversion material 24 that normally occurs in the step portion. An increase in dark current due to defects 26 such as cracks and pinholes in the barrier layer is almost eliminated. The step existing at the end of the common electrode layer 22 is far away from the basic element part that becomes the photosensitive area, and even if a defective part 26 as described above occurs, it will not affect the performance of the basic element. There's nothing to do.

さらに個別電極配線27部の下には、樹脂絶縁層28が
設置され、従来とかく共通電極と個別電極間の基本素子
を構成する部分以外の所で絶縁不良をおこし漏洩電流を
発生していたのに対し、ここでは必要に応じて20μm
厚程度0膜厚にすることも可能であり、充分な絶縁性を
確保することができる。従って、画像光10によって発
生した光電流は個別電極25と共通電極となる透明導電
層23間部分を流れ、87Nを劣化させていた暗電流は
極めて減少し、s/N+格段に大きくできる0あわせて
感度も暗電流の影響を受けないので実質的な高感度が計
られ、またその均一化も計れるようになる。しかも共通
電極層22で余分な画像光全遮光する効果もあシ、また
通常透明導電層23は反射光を少なくするため極めて薄
くするが、この共通電極層22で抵抗値金工けることが
できるため、分解能、読取多速度等の性能向上が計られ
る。
Furthermore, a resin insulating layer 28 is installed under the individual electrode wiring 27, which conventionally causes insulation failure in areas other than the part that constitutes the basic element between the common electrode and the individual electrode, causing leakage current. On the other hand, here it is 20 μm as necessary.
It is also possible to reduce the thickness to about 0, and sufficient insulation can be ensured. Therefore, the photocurrent generated by the image light 10 flows between the individual electrodes 25 and the transparent conductive layer 23 serving as the common electrode, and the dark current that had been deteriorating the 87N is extremely reduced, making it possible to significantly increase the s/N+. Since the sensitivity is not affected by dark current, substantially high sensitivity can be measured, and the sensitivity can also be made uniform. Moreover, the common electrode layer 22 has the effect of completely blocking excess image light, and the transparent conductive layer 23 is usually made extremely thin to reduce reflected light, but the common electrode layer 22 can be used to increase the resistance value. , resolution, reading speed, etc. are improved.

また、従来工程のように8iQ2絶縁層の多大工数を必
要とする膜形成工程が不要となシ、とくに光電変換材を
形成する前の膜面汚染が少なくなる。
Further, there is no need for a film formation process that requires a large number of man-hours for the 8iQ2 insulating layer as in the conventional process, and in particular, film surface contamination before forming the photoelectric conversion material is reduced.

この種の光電変換素子アレイは例えばA4判、A3判長
となシ全素子が数tooo個になっても、唯一個の素子
欠陥も許容されない。このような混成VLSIにおいて
は本発明による素子構造は非常に有効で、作業性、生産
性ともに秀れた低価格、高信頼の光電変換素子プレイを
得ることができる〇尚、本実施例においては個別電極2
5に直接コンタクトされる個別電極配線27は、駆動回
路等が実装される電極と同一材料で同時にパターン化し
たが、これに限定されることは無く、例えば、駆動回路
等が実装される電極は絶叫層28を形成する前に独立し
て形成しておき、個別電極配線27によりて個別電極2
5と接続する方法でも良い。
In this type of photoelectric conversion element array, even if the total number of elements is several too many, such as A4 size or A3 size, even a single element defect is not tolerated. In such a hybrid VLSI, the device structure according to the present invention is very effective, and it is possible to obtain a low-cost, highly reliable photoelectric conversion device with excellent workability and productivity. Individual electrode 2
Although the individual electrode wiring 27 that is in direct contact with the electrode 5 is patterned at the same time using the same material as the electrode on which the drive circuit etc. are mounted, the pattern is not limited to this. For example, the electrode on which the drive circuit etc. is mounted is Before forming the screaming layer 28, it is formed independently, and the individual electrode 2 is formed by the individual electrode wiring 27.
A method of connecting with 5 may also be used.

これはAj?等を蒸着してパターン化したシあるいは導
体ペーストをスクリーン印刷によって配線することによ
シ容易に接続することができる。このような構造によれ
ば、微細パターン化される各部配線がそれぞれ機能別に
分割されて構成されることになシ、それぞれを最適条件
で製作し、独立して検査もできるようになるため生産性
の点で有利となる〇 また、本実施例では透明導電層23および共通電極層2
2を基板210片側に端子部を設置する構造としたが、
個別電極配線27を左右軸対称に配置し、前記共通電極
の端子部は、個別電極25の軸方向に設置する構造でも
良い。共通電極層22の厚み社基本素子構造を変えるこ
となく、充分厚くできるのでその抵抗値が問題とはなら
ないからである。これによってさらに高解像度化が容易
にできるようになる口 本発明による光電変換素子アレイを、例えばファクシミ
リ装置の読取シブバイスに用いれば縮小光学系を不要と
した長尺化した密着形イメージセンサが低価格、高感度
で、且つ高信頼で得られるようになる。
Is this Aj? The connection can be easily made by wiring by screen printing a patterned conductive paste or conductive paste formed by vapor deposition. According to such a structure, the wiring of each part to be finely patterned is divided into parts according to their functions, but each part can be manufactured under optimal conditions and inspected independently, which increases productivity. This is advantageous in terms of 〇 Also, in this embodiment, the transparent conductive layer 23 and the common electrode layer 2
2 has a structure in which the terminal part is installed on one side of the board 210,
The individual electrode wiring 27 may be arranged symmetrically with respect to the left and right axes, and the terminal portion of the common electrode may be arranged in the axial direction of the individual electrode 25. This is because the thickness of the common electrode layer 22 can be made sufficiently thick without changing the basic element structure, so its resistance value is not a problem. This makes it easier to achieve higher resolution.If the photoelectric conversion element array according to the present invention is used, for example, in a reading vice of a facsimile machine, a long contact type image sensor that does not require a reduction optical system can be produced at a low cost. , can be obtained with high sensitivity and high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1雫は従来の光電変換素子アレイの概略断面図、第2
図は本発明の一実施例の概略断面図であるO 図において、 10・・・画像光、11・21・・・ガラス基板、12
・・・遮光層、13・23・・・透明導電層、14・・
・アモルファスシリコン[,15・25・・・個別電極
、16・26・・・欠陥部、18・・・8 i 02絶
縁膜、22・・・共通電極層、24・・・光電変換材膜
、27−・・個別電極配線、28・・・絶縁層、29・
・・開口部をそれぞれ示す。
The first drop is a schematic cross-sectional view of a conventional photoelectric conversion element array;
The figure is a schematic sectional view of one embodiment of the present invention. In the figure, 10... image light, 11, 21... glass substrate, 12
...Light shielding layer, 13.23...Transparent conductive layer, 14...
・Amorphous silicon [,15・25...Individual electrode, 16・26...Defect part, 18...8 i 02 insulating film, 22...Common electrode layer, 24...Photoelectric conversion material film, 27-...Individual electrode wiring, 28...Insulating layer, 29-
...Indicates each opening.

Claims (1)

【特許請求の範囲】[Claims]  一面から光を受光する絶縁性透明基板と、この基板の
他面上に形成された透明導電層と、この透明導電層上に
形成された共通電極層と、この共通電極層と前記透明導
電層とを覆うように形成された光電変換材膜と、この光
電変換材膜上の前記透明導電層と相対して配置され、各
々が分離独立して形成された複数の個別電極と、この個
別電極上の一部に開口部が設けられ、少なくとも前記光
電変換材膜上に形成された絶縁体層と、この絶縁体層上
に配置され且つ前記個別電極と前記開口部を介して接続
される個別配線部とを含む混成集積化光センサ用光電変
換素子アレイ。
an insulating transparent substrate that receives light from one side, a transparent conductive layer formed on the other side of this substrate, a common electrode layer formed on this transparent conductive layer, this common electrode layer and the transparent conductive layer. a photoelectric conversion material film formed to cover the photoelectric conversion material film, a plurality of individual electrodes each formed separately and independently and arranged facing the transparent conductive layer on the photoelectric conversion material film, and the individual electrodes. An opening is provided in a part of the top, and an insulating layer formed on at least the photoelectric conversion material film, and an individual electrode arranged on the insulating layer and connected to the individual electrode through the opening. A photoelectric conversion element array for a hybrid integrated optical sensor including a wiring section.
JP59120411A 1984-06-12 1984-06-12 Photoelectrical converting element arrey for hybrid integrated light sensor Pending JPS6122667A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59120411A JPS6122667A (en) 1984-06-12 1984-06-12 Photoelectrical converting element arrey for hybrid integrated light sensor
US07/008,108 US4698495A (en) 1984-06-12 1987-01-23 Amorphous silicon photo-sensor for a contact type image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59120411A JPS6122667A (en) 1984-06-12 1984-06-12 Photoelectrical converting element arrey for hybrid integrated light sensor

Publications (1)

Publication Number Publication Date
JPS6122667A true JPS6122667A (en) 1986-01-31

Family

ID=14785554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59120411A Pending JPS6122667A (en) 1984-06-12 1984-06-12 Photoelectrical converting element arrey for hybrid integrated light sensor

Country Status (1)

Country Link
JP (1) JPS6122667A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS5897862A (en) * 1981-12-08 1983-06-10 Nec Corp Close adhesion type image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS5897862A (en) * 1981-12-08 1983-06-10 Nec Corp Close adhesion type image sensor

Similar Documents

Publication Publication Date Title
US4288702A (en) Image pickup device having electrode matrix coupling
US4650984A (en) Photosensor array for treating image information
JPS5980964A (en) Photoelectric conversion element
US6157072A (en) Image sensor
JPH0193165A (en) Contact type image sensor
US4803375A (en) Image sensors and methods of manufacturing same including semiconductor layer over entire substrate surface
US4698495A (en) Amorphous silicon photo-sensor for a contact type image sensor
KR910000115B1 (en) Image sensor and the manufacturing method
JPS6122667A (en) Photoelectrical converting element arrey for hybrid integrated light sensor
JPS60263457A (en) Photoelectric conversion element array for hybrid integrated photosenser
EP0193304A2 (en) Image sensor manufacturing method
JPH0575087A (en) Image sensor
JPS617766A (en) Reader
JP2974151B2 (en) Contact sensor
JPS6317554A (en) Photoconductive device
JPH02132860A (en) Close contact type image sensor
JPS6037161A (en) Photoelectric conversion element
JPS58201357A (en) Thin film type photoelectric conversion element
JPH01179356A (en) Hybrid integrated photoelectric converter array
KR910005603B1 (en) Photo electric converter
JPS6130069A (en) Photosensor
JP2910227B2 (en) Manufacturing method of contact image sensor
JP2573342B2 (en) Light receiving element
JPS60134463A (en) Adhesion type image sensor and manufacture thereof
JPS60260149A (en) Manufacture of photoelectric conversion element array for hybrid integrated photosensor