JPS61226622A - Deciding device for color with gloss - Google Patents

Deciding device for color with gloss

Info

Publication number
JPS61226622A
JPS61226622A JP60068082A JP6808285A JPS61226622A JP S61226622 A JPS61226622 A JP S61226622A JP 60068082 A JP60068082 A JP 60068082A JP 6808285 A JP6808285 A JP 6808285A JP S61226622 A JPS61226622 A JP S61226622A
Authority
JP
Japan
Prior art keywords
sensor
light
color
measured
sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60068082A
Other languages
Japanese (ja)
Other versions
JPH067069B2 (en
Inventor
Kazuo Yamaha
和夫 山羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60068082A priority Critical patent/JPH067069B2/en
Publication of JPS61226622A publication Critical patent/JPS61226622A/en
Publication of JPH067069B2 publication Critical patent/JPH067069B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To execute easily the color decision of the glossy substance which can not be executed by the conventional method by connecting the arithmetic unit to operate the color wave length of the measured substance based upon the output of the sensor. CONSTITUTION:On a measured substance 1, a light source part 2, an irradiating part 3 and a photodetecting part 4 are arranged, installed so that the light between those respective parts can be projected respectively by a certain constant angle, and a cover 5 is provided so that a disturbance light can not be made incident on the measuring point of the measured substance. On the other hand, in the photodetecting part 4, a sensor 12 is provided, this is connected to an external arithmetic unit 13 and the sensor 12 is constituted by arranging three photodetecting sensors 21-23 on the straight line. Out of three sensors, the sensor 21 at the central part is a color sensor, the sensors 22 and 23 at both edges are a visual light sensor having the sensitivity at the visual light. A color wave length lambdan is obtained by the operation in the arithmetic unit 13 based upon the output of the sensor 12.

Description

【発明の詳細な説明】 [産業上の利用分野] 一般に、光沢とは物体表面へ入射される光の正反射量の
大小および正反射像の鮮明さをいうが、本発明は、この
うち、正反射量の大小についてのみ考慮した色判定装置
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] Generally, gloss refers to the amount of specular reflection of light incident on the surface of an object and the sharpness of the specular reflection image. The present invention relates to a color determination device that considers only the magnitude of the amount of specular reflection.

[従来の技術] 一般に光沢のある物体は全反射を起す、第8図Aはその
態様を示すもので、通常は鏡面反射といわれ、入射され
た光束φ、が映像をつくるような反射を呈する。
[Prior Art] Generally, a shiny object causes total internal reflection, and Figure 8A shows this mode.It is usually called specular reflection, and the incident light beam φ exhibits a reflection that creates an image. .

一方、物体に光沢がなくなると、第8図Bに示すように
、拡散反射を起すようになり、反射光束φ、すなわち受
光側の受光面での光量が減少する。
On the other hand, when the object loses its luster, diffuse reflection occurs as shown in FIG. 8B, and the reflected light flux φ, that is, the amount of light on the light-receiving surface on the light-receiving side decreases.

この拡散反射の場合には、法線NPからの角度θ、′(
=θ、)にある反射中心線APの方向では映像をつくら
ない、また、金属を始め各種の対象物体では、入射光源
の波長によって分光反射率がかわる。
In the case of this diffuse reflection, the angle θ,′(
An image is not created in the direction of the reflection center line AP, which is at θ, ).Furthermore, the spectral reflectance of various target objects, including metals, changes depending on the wavelength of the incident light source.

従って、第8図の場合における入射光束φ、反! 射光束φ5は、実際には波長によって変化する値φ11
.φ5、として表わされ、光沢度の一般的評価法である
鏡面反射率ρ、も正確には、下式のようになる。
Therefore, the incident light flux φ in the case of FIG. The emitted light flux φ5 is actually a value φ11 that changes depending on the wavelength.
.. The specular reflectance ρ, which is expressed as φ5 and is a general evaluation method of glossiness, is also exactly as shown in the following equation.

さらに、(1)式において、実際に計測される受光素子
にはスペクトル感度が存在するため、その項を代入する
と、 が成立する。ここで、Sのは受光素子の持つスペクトル
感度である。λl、λ2は受光素子の波長域を示す。
Furthermore, in equation (1), since there is a spectral sensitivity in the light-receiving element that is actually measured, by substituting that term, the following holds true. Here, S is the spectral sensitivity of the light receiving element. λl and λ2 indicate the wavelength range of the light receiving element.

また、光沢度の計測の定義について説明すると、光沢度
の計測手法には、鏡面光沢度Gsと対比光沢度Gcがあ
り、ここで考慮する鏡面光沢度Gsは、屈折率1.58
7のガラス表面(完全反射面)からの鏡面反射率をφ 
とすると下式で求められる。
Also, to explain the definition of gloss measurement, gloss measurement methods include specular gloss Gs and contrast gloss Gc, and the specular gloss Gs considered here has a refractive index of 1.58.
The specular reflectance from the glass surface (perfectly reflective surface) of No. 7 is φ
Then, it can be obtained by the following formula.

ρ−5 さらに、(2)式との関係でGs(θ)を求めると。ρ-5 Furthermore, if Gs(θ) is found in relation to equation (2).

となる、(4)式において、φozえは屈折率1.58
7のガラス表面からの反射光束を、θは入射角、反射角
を示す。
In equation (4), φoze has a refractive index of 1.58.
In the reflected light flux from the glass surface of No. 7, θ indicates the incident angle and the reflection angle.

このような光沢面についての色の検出を行う場合、その
光沢の影響によって受光素子に入る光量が変化するため
、正確な色の判定を行うことができない。
When detecting the color of such a glossy surface, the amount of light entering the light receiving element changes due to the influence of the gloss, making it impossible to accurately determine the color.

例えば、パン工場におけるパンの焼成工程での焼は具合
は、一般に色により判定されるが、この色をみるときに
、パンにオイル等を塗って焼くこと等から生じるつやが
あり、正確な色が判定できない、これに対処するには、
摺りガラスを介して色をみる等の方法が考えられるが、
この方法ではこまかい焼は具合を判定できない。
For example, the degree of baking in the baking process of bread in a bread factory is generally judged by its color, but when looking at this color, it is important to note that the gloss that results from coating the bread with oil, etc. cannot be determined.To deal with this,
One possible method is to see the color through ground glass, but
With this method, it is not possible to judge the condition of Komakaiyaki.

また、つやのある塗料の検定等にも同様な問題がある。A similar problem also exists in the inspection of glossy paints.

[発明が解決しようとする問題点] 本発明は、対象物体の光沢を計測し、かつ光沢の影響に
よる受光素子の受光面での光量を、検知して、この検知
量から物体色を判定できるようにした簡易型の色判定装
置を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention can measure the gloss of a target object, detect the amount of light on the light receiving surface of a light receiving element due to the influence of the gloss, and determine the color of the object from this detected amount. The present invention aims to provide a simple color determination device as described above.

[問題点を解決するための手段] 上述した問題点を解決するため、本発明の色判定装置は
、被測定物体上に配置する光源部と、照射部と、受光部
とを、光学的に隔離すると同時に、被測定物体の測定点
に外乱光が入射しない覆いによって被覆し、上記光源部
に設けた光源からの光をスリット及び投射部を通して平
行光にした後に被測定物体上に投射すると共に、その反
射方向に設けた受光部のセンサによって受光可能に構成
し、上記センサには、カラーセンサと可視光センサとを
並設し、これらのセンサに、その出力に基づいて被測定
物体の色波長を演算する演算装置を接続することによっ
て構成される。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the color determination device of the present invention optically separates a light source section, an irradiation section, and a light receiving section arranged on an object to be measured. At the same time as isolating the measurement point of the object to be measured, the measuring point of the object to be measured is covered with a cover that prevents disturbance light from entering, and the light from the light source provided in the light source section is converted into parallel light through a slit and a projection section, and then projected onto the object to be measured. A color sensor and a visible light sensor are installed in parallel to the sensor, and these sensors are configured to detect the color of the object to be measured based on their outputs. It is constructed by connecting an arithmetic device that calculates the wavelength.

[作 用] 光源部から被測定物体上に光を照射し、可視光センサ及
びカラーセンサによってその反射光の受光を行うと、予
めそれらの校正を行っておくことにより、各センサ出力
に基づく演算装置での演算によって、被測定物体の色判
定を行うことが可能である。この場合に、覆いによって
被測定物体上の測定点に外乱光が入射しないようにして
いるので、特に明るい光源を用いることなく、簡単で安
価な装置により色判定を行うことができる。
[Operation] When light is irradiated from the light source onto the object to be measured and the reflected light is received by the visible light sensor and color sensor, calculations based on the outputs of each sensor can be performed by calibrating them in advance. It is possible to determine the color of the object to be measured through calculations performed by the device. In this case, since the cover prevents disturbance light from entering the measurement point on the object to be measured, color determination can be performed using a simple and inexpensive device without using a particularly bright light source.

[実施例] 第1図は本発明の色判定装置の実施例を示している。こ
の色判定装置においては、被測定物体1上に光源部2、
照射部3、受光部4が配設され、それらの各部間の光が
それぞれあ菰一定の角度をもって投射するように設置さ
れ、被測定物体lの測定点に外乱光が入射しないように
覆い5が設けられている。
[Embodiment] FIG. 1 shows an embodiment of the color determination device of the present invention. In this color determination device, a light source section 2 is placed on an object to be measured 1;
An irradiating section 3 and a light receiving section 4 are provided, and the light between these sections is installed so as to project at a certain angle, and a cover 5 is provided to prevent disturbance light from entering the measuring point of the object to be measured l. is provided.

上記各部2,3.4はそれぞれスリット7、シェルタ8
によって光学的に隔離されている。スリット7の位置は
、照射部3に設けたレンズ9の焦点にくるように設定さ
れており、スリット自体は縦長のスリット形状をしてい
る。また、レンズ8は物体lへの入射光線を平行光線に
する役目があるが、さらに偏光を防止するための偏光防
止フィルタ10を設けている。一方、受光部4において
は。
Each of the above parts 2, 3.4 has a slit 7 and a shelter 8, respectively.
optically isolated by The position of the slit 7 is set to be at the focal point of the lens 9 provided in the irradiation section 3, and the slit itself has a vertically long slit shape. Further, the lens 8 has the role of collimating the light beam incident on the object 1, but an anti-polarization filter 10 is further provided to prevent polarization. On the other hand, in the light receiving section 4.

センサ12を設け、これを外部の演算装置113に接続
している。
A sensor 12 is provided and connected to an external arithmetic device 113.

なお、レンズ径は、センサ12の大きさ比合わせて可能
な限り小さく設計することにより、センサ12の精度が
向上できる。偏光防止フィルタ10は、必ずしも必要で
はないが、光エネルギを物体の照射面に直線上に照射さ
せる働きを持つ、さらに、覆い5と物体1の間にはクッ
ション14を設け、物体を傷つけないようにすると同時
に、外来光を遮断するための措置がとられている。
Note that the accuracy of the sensor 12 can be improved by designing the lens diameter to be as small as possible in accordance with the size ratio of the sensor 12. The anti-polarization filter 10 has the function of irradiating light energy in a straight line onto the irradiation surface of the object, although it is not always necessary.Furthermore, a cushion 14 is provided between the cover 5 and the object 1 to prevent damage to the object. At the same time, measures are being taken to block external light.

この状態で物体lに光源15からの光を照射した場合、
物体1上にはスリット形状に比例して光が縦長形状に照
射される。仮に、シェルタ8が照射部3と受光部4との
間において物体表面に垂直に設置されているとすると、
物体が完全反射面であるときには、その光路はθ、=θ
、′になり、θ、′の方向に放射エネルギが集中する。
When the object l is irradiated with light from the light source 15 in this state,
Light is emitted onto the object 1 in a vertically elongated manner in proportion to the shape of the slit. Assuming that the shelter 8 is installed perpendicularly to the object surface between the irradiating section 3 and the light receiving section 4,
When the object is a perfectly reflective surface, the optical path is θ, = θ
,', and the radiant energy is concentrated in the direction of θ,'.

次に、上記センサ12の構成について説明する。Next, the configuration of the sensor 12 will be explained.

第2図Aに示すセンサ12は直線上に三つの受光センナ
21,22.23を配置することにより構成されている
。この三つのセンサのうち、中心部にあるセンサ21が
カラーセンサであり、両端のセンサ22゜23は可視光
に感度を有する可視光センナである。
The sensor 12 shown in FIG. 2A is constructed by arranging three light receiving sensors 21, 22, and 23 on a straight line. Among these three sensors, the sensor 21 located at the center is a color sensor, and the sensors 22 and 23 at both ends are visible light sensors sensitive to visible light.

もし、カラーセンサ21がR,B、G分解形カラーセン
サの場合は、このように直線上に配置す゛るよりも、第
2図Bのように中心に可視光センサ24のまわりに赤、
青、緑のカラーセンサ25.28.27を配置するのが
よい、当然それに伴って第1図のスリット形状も変わる
ことになる。
If the color sensor 21 is an R, B, G separation type color sensor, rather than arranging it in a straight line like this, red, red, and red lights are placed around the visible light sensor 24 in the center as shown in Figure 2B.
It is preferable to arrange blue and green color sensors 25, 28, and 27, and naturally the shape of the slit in FIG. 1 will change accordingly.

第2図A、Bに示すセンサの大きな違いは、可視光セン
サが1つか2つの違いである。双方とも光量を計測する
のであるが、第2図Aでは1対の可視光センサ出力の平
均値を光量とする。もし、ラフな計測でよいのなら、第
2図Aの可視光センサは同図Bのように1個でも当然計
測できる。以下、ここでは第2図Aのセンサを用いる場
合についてのみ説明を進める。
The major difference between the sensors shown in FIGS. 2A and 2B is that they include one or two visible light sensors. Both measure the amount of light, but in FIG. 2A, the average value of the outputs of a pair of visible light sensors is taken as the amount of light. If a rough measurement is acceptable, it is natural that the visible light sensor shown in FIG. 2A can be used as a single visible light sensor as shown in FIG. 2B. Hereinafter, only the case where the sensor shown in FIG. 2A is used will be described.

計測に際しては、センサの校正を行うため、物体に屈折
率1.587のガラスを用いる。一般にはこのようなガ
ラスを常備しておくのがメンテナンス等の問題から困難
であるので1分光反射率が既知である白色面で代用する
のがよい、以下、それを標帛白色面と記す、第1図の装
置で標準白色面をみせた場合、センサ12の出力のうち
可視光センサ22.23の出力には、 に関与するエネルギが出力される。この可視光センサの
分光特性が、第3図に示す如く、矩形状を旦する理想的
な特性を持つものと仮定すると、二つの可視光センサ出
力がほぼカラーセンサ上の光量であるとみなすことがで
きる。さらに、カラーセンサ21は白色となるように基
準電圧値を定める。第2図Bの場合には、R,B、Gの
全てのカラーセンサ出力を等しくするように調整を行う
ことになる。これらの校正を行ったのち、以下に説明す
る計測に入る。
During measurement, glass with a refractive index of 1.587 is used as the object in order to calibrate the sensor. Generally, it is difficult to keep such glass on hand due to maintenance issues, so it is better to use a white surface with a known 1-spectral reflectance as a substitute.Hereinafter, this will be referred to as the standard white surface. When a standard white surface is displayed using the apparatus shown in FIG. 1, the outputs of the visible light sensors 22 and 23 of the outputs of the sensor 12 output energy related to . Assuming that the spectral characteristics of this visible light sensor have ideal characteristics that form a rectangular shape as shown in Figure 3, the outputs of the two visible light sensors can be considered to be approximately the amount of light on the color sensor. I can do it. Furthermore, the reference voltage value is determined so that the color sensor 21 becomes white. In the case of FIG. 2B, adjustments are made so that all R, B, and G color sensor outputs are made equal. After performing these calibrations, the measurement described below begins.

第4図に、標準白色面(実線)及び任意の被測定物体(
破線)についての二つの可視光センサ22.23の平均
値出力を示す、被測定物体に光沢があればある程、破線
の高さBはAに近づく、逆に、光沢がなくなると、物体
照射装面で拡散反射を起すようになり、受光面での光量
が減少し、破線の高さBは小さくなる。この比が(4)
式とほぼ同値となる。即ち4 したがって、可視光センサ出力値を使って第1図の演算
装置13において(6)式の演算をさせ、その結果から
被測定物体の大まかな光沢度を求めることができる。
Figure 4 shows a standard white surface (solid line) and an arbitrary measured object (
The more glossy the object to be measured, the closer the height B of the dashed line is to A. Conversely, when the object is no longer shiny, the object irradiation Diffuse reflection occurs on the wearing surface, the amount of light on the light receiving surface decreases, and the height B of the broken line becomes smaller. This ratio is (4)
It has almost the same value as Eq. That is, 4. Therefore, using the output value of the visible light sensor, the arithmetic unit 13 of FIG. 1 calculates the equation (6), and from the result, the rough glossiness of the object to be measured can be determined.

次に、上記(6)式中の比を使用して、色の判別を行う
方法について説明する。
Next, a method for determining colors using the ratio in equation (6) above will be described.

色の判別に際しては、カラーセンサ21の出力があらか
じめ・単色光の分光特性測定装置により分っている(第
5図)ものとし、その値からセンサの出力を補正するこ
とになる。また、同時に可視光センサ22,23の単色
光の分光特性測定装置による分光特性が算出できるので
、その値も演算装置13に記憶しておく。
When determining a color, it is assumed that the output of the color sensor 21 is known in advance by a monochromatic light spectral characteristic measuring device (FIG. 5), and the output of the sensor is corrected from that value. Furthermore, since the spectral characteristics of the visible light sensors 22 and 23 can be calculated by the spectral characteristics measurement device for monochromatic light at the same time, the values are also stored in the calculation device 13.

第6図において、実線は単色光の分光特性測定装置によ
る分光特性(高さαの)、破線は任意の被測定物体をみ
せたときの計測値を示す、任意の物体をみせたときのカ
ラーセンサ21の出力をXとし、この出力Xに対し、第
6図のセンサ出力からβ (8)と同様にして算出された値G(−X100)のα 逆数を乗じた値をXnとすると、第5図のグラフにおい
てそのときのXnに対応する波長λnが求める色波長と
なる。
In Figure 6, the solid line shows the spectral characteristics (at height α) measured by a monochromatic light spectral characteristic measuring device, and the broken line shows the measured value when an arbitrary object to be measured is shown.The color when an arbitrary object is shown. Let the output of the sensor 21 be X, and let Xn be the value obtained by multiplying this output In the graph of FIG. 5, the wavelength λn corresponding to Xn at that time becomes the desired color wavelength.

この色波長^nは、センサー2の出力に基づき、演算装
置13における演算によって求められるものである。
This color wavelength ^n is determined by calculation in the calculation device 13 based on the output of the sensor 2.

次に、第2図Bに示す三色分離形カラーセンサの場合に
ついて説明する。この場合は、単色光の分光特性測定装
置による校正は行わなくてもよい。
Next, the case of the three-color separable color sensor shown in FIG. 2B will be described. In this case, there is no need to perform calibration using a monochromatic light spectral characteristic measuring device.

それは、標準白色面を見せたときの出力比が、赤、青、
緑のセンサについてそれぞれR,B、Gであるとすると
That is, when the standard white surface is shown, the output ratio is red, blue,
Assume that the green sensors are R, B, and G, respectively.

R+B+G       ”°(7) y=  □                    
拳  ・  ・  (8)R+B+G R+B+G       ”°(9) を求めることにより、xy色度座標にR,B、G出力を
換算することができるからである。(6)式の演算を行
う際に、標準白色面により上記の値が等しくなる(0.
3)ようにセンサの出力調整を行うことによって1校正
を完了することができる。
R+B+G ”°(7) y= □
Fist ・ ・ (8) R+B+G R+B+G ”° (9) This is because the R, B, and G outputs can be converted into xy chromaticity coordinates by calculating. When calculating equation (6), A standard white surface makes the above values equal (0.
One calibration can be completed by adjusting the output of the sensor as shown in 3).

校正完了後、任意の物体を見せた場合の各カラーセンサ
の出力特性は、図7図の破線R,B。
After the calibration is completed, the output characteristics of each color sensor when an arbitrary object is shown are shown by broken lines R and B in FIG.

Gのようになる。この出力に(6)方式で得られたGs
のの逆数を乗すると、その値はR’、 B’、 G′と
なり、この値を下式に代入すると、真のx、y色度座標
が求められる。
It becomes like G. In this output, Gs obtained by method (6)
When multiplied by the reciprocal of , the values become R', B', and G', and by substituting these values into the formula below, the true x, y chromaticity coordinates can be found.

R′ R”+ B’+ G・      −−−(10)G′ y=−−・・・(11) R’+ B”+ G′ B′ 2“R・十B・十G・      −−−(12)以上
の装置は、光束を正確に計るものではなく、あくまでも
つやのある物体の色を簡易に計測する目的で開発された
ものである。
R'R"+B'+ G・ ---(10) G' y=--...(11) R'+ B"+ G'B'2"R・10B・10G・ --- -(12) The above devices are not designed to accurately measure luminous flux, but were developed for the purpose of simply measuring the color of glossy objects.

[発明の効果] 以上に詳述した本発明の色判定装置によれば。[Effect of the invention] According to the color determination device of the present invention detailed above.

簡易な装置により、従来の方法では不可能であった光沢
のある物体の色判定を簡易に行うことができる。
Using a simple device, it is possible to easily determine the color of a shiny object, which was impossible using conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の色判定装置の実施例を示す断面図、第
2図A、Bは上記色判定装置に用いるセンナの正面図、
第3図ないし第7図は本発明における演算装置の作用を
説明するための線図、第8図A、Bは一般的な光反射に
ついての説明図である。 1Φ・被測定物体、 2@・光源部、 3・・照射部、   4・・受光部、 5・・覆い、    7・拳スリット。 12・・センサ、   13・・演算装置、15・・光
源、 21、25〜27・・カラーセンサ、 22.23.24拳・可視光センサ。 第2図A 第2図B 第3図 第5図 第6図 第7図 第8図A   第8図B
FIG. 1 is a sectional view showing an embodiment of the color determination device of the present invention, FIGS. 2A and B are front views of a senna used in the color determination device,
3 to 7 are diagrams for explaining the operation of the arithmetic device according to the present invention, and FIGS. 8A and 8B are diagrams for explaining general light reflection. 1Φ・Object to be measured, 2@・Light source section, 3.. Irradiation section, 4.. Light receiving section, 5.. Cover, 7. Fist slit. 12...Sensor, 13...Arithmetic device, 15...Light source, 21, 25-27...Color sensor, 22.23.24 Fist/Visible light sensor. Figure 2A Figure 2B Figure 3Figure 5Figure 6Figure 7Figure 8A Figure 8B

Claims (1)

【特許請求の範囲】[Claims] 1、被測定物体上に配置する光源部と、照射部と、受光
部とを、光学的に隔離すると同時に、被測定物体の測定
点に外乱光が入射しない覆いによって被覆し、上記光源
部に設けた光源からの光をスリット及び投射部を通して
平行光にした後に被測定物体上に投射すると共に、その
反射方向に設けた受光部のセンサによって受光可能に構
成し、上記センサには、カラーセンサと可視光センサと
を並設し、これらのセンサに、その出力に基づいて被測
定物体の色波長を演算する演算装置を接続したことを特
徴とする光沢を伴う色の判定装置。
1. Optically isolate the light source section, irradiation section, and light receiving section placed on the object to be measured, and at the same time cover the measurement point of the object to be measured with a cover that prevents disturbance light from entering. The light from the provided light source is made into parallel light through the slit and the projection section, and then projected onto the object to be measured, and the light can be received by a sensor in the light receiving section provided in the direction of reflection, and the sensor includes a color sensor. 1. A color determination device with gloss, characterized in that a visible light sensor and a visible light sensor are arranged in parallel, and a calculation device that calculates the color wavelength of an object to be measured based on the output of the sensor is connected to these sensors.
JP60068082A 1985-03-30 1985-03-30 Color determination device with gloss Expired - Lifetime JPH067069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60068082A JPH067069B2 (en) 1985-03-30 1985-03-30 Color determination device with gloss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60068082A JPH067069B2 (en) 1985-03-30 1985-03-30 Color determination device with gloss

Publications (2)

Publication Number Publication Date
JPS61226622A true JPS61226622A (en) 1986-10-08
JPH067069B2 JPH067069B2 (en) 1994-01-26

Family

ID=13363469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60068082A Expired - Lifetime JPH067069B2 (en) 1985-03-30 1985-03-30 Color determination device with gloss

Country Status (1)

Country Link
JP (1) JPH067069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212631U (en) * 1988-07-05 1990-01-26

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206836A (en) * 1981-06-16 1982-12-18 Omron Tateisi Electronics Co Color discriminating element
JPS59180441A (en) * 1983-03-31 1984-10-13 Kansai Paint Co Ltd Method and device for judging color tone of metallic painted film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206836A (en) * 1981-06-16 1982-12-18 Omron Tateisi Electronics Co Color discriminating element
JPS59180441A (en) * 1983-03-31 1984-10-13 Kansai Paint Co Ltd Method and device for judging color tone of metallic painted film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212631U (en) * 1988-07-05 1990-01-26

Also Published As

Publication number Publication date
JPH067069B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US7548317B2 (en) Apparatus and method for angular colorimetry
US4891509A (en) Device and method for determining displacement
US10408681B2 (en) Spectrocolorimetric device and spectral reflectance calculating method
US20200378887A1 (en) Multi-Angle Colorimeter
US7027165B2 (en) Method and device for surface evaluation
Zwinkels Colour-measuring instruments and their calibration
JP3933581B2 (en) Method and apparatus for surface evaluation
CN103492844A (en) Multi-angle colorimeter
CN105606220B (en) It is a kind of to optimize wavelength antidote and the spectrophotometric color measurement instrument using this method
JPS61226622A (en) Deciding device for color with gloss
US9347823B2 (en) Absolute measurement method and apparatus thereof for non-linear error
EP0378267B1 (en) Device for inspecting an interference filter for a projection television display tube
JP6683201B2 (en) Spectral colorimeter and conversion rule setting method
JPH08110297A (en) Device for detecting coloring of liquid
JPH05203495A (en) Color meter and color measuring method for color meter
Leloup et al. BRDF and gloss measurements
JPH0953988A (en) Apparatus for measuring coloring of liquid
RU2092789C1 (en) Device measuring surface roughness
JPS61233328A (en) Colorimetric color difference meter
JP6331986B2 (en) Optical property measuring device
Charrière et al. Comparison of specular gloss values from a spectrally resolved five-axis goniometer and a reference goniophotometer
RU130404U1 (en) PHOTOMETRIC SENSOR
JPH0420846A (en) Method and apparatus for measuring gloss
JPS6085339A (en) Hue selecting device of light emitting element
JPS6041731B2 (en) Constant photometry and colorimetry of measuring objects

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term