JPS6122565Y2 - - Google Patents

Info

Publication number
JPS6122565Y2
JPS6122565Y2 JP5467481U JP5467481U JPS6122565Y2 JP S6122565 Y2 JPS6122565 Y2 JP S6122565Y2 JP 5467481 U JP5467481 U JP 5467481U JP 5467481 U JP5467481 U JP 5467481U JP S6122565 Y2 JPS6122565 Y2 JP S6122565Y2
Authority
JP
Japan
Prior art keywords
pressure
cuff band
output
value
cuff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5467481U
Other languages
Japanese (ja)
Other versions
JPS57169303U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5467481U priority Critical patent/JPS6122565Y2/ja
Publication of JPS57169303U publication Critical patent/JPS57169303U/ja
Application granted granted Critical
Publication of JPS6122565Y2 publication Critical patent/JPS6122565Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【考案の詳細な説明】 本考案は自動デジタル血圧計のような血圧計に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a blood pressure monitor, such as an automatic digital blood pressure monitor.

従来、自動デジタル血圧計のような血圧計で電
動加圧ポンプのような加圧手段を装置に内臓した
ものにあつては、被測定者の腕に巻かれるカフ帯
と加圧手段との間にはゴム管のような管体を通じ
て加圧するようになつていた。そのため管体の空
気抵抗が特に加圧時等では無視できず、カフ帯の
内圧と圧力検知手段の検知圧力との間に圧力差が
大きくなり、その結果加圧停止時にカフ帯の内圧
と圧力検知手段に加わる圧力とが平衝をとるた
め、圧力検知手段の検知圧力がやや低下する傾向
があつた。このため表示器の表示を見ていると一
度上がつた圧力が加圧停止時に降下し使用者にと
つて気に掛かるという欠点があつた。また手動で
加圧制御するものにあつては通常の最高血圧値よ
り30〜40mmHg圧力が高くなるまで加圧して測定
する方法がとられているが、前述の降下する圧力
分を考慮する必要が生じ加圧停止のタイミングが
とりにくかつた。
Conventionally, in blood pressure monitors such as automatic digital blood pressure monitors that have a built-in pressurizing means such as an electric pressure pump, there is a gap between the cuff band wrapped around the arm of the person being measured and the pressurizing means. In the past, pressure was applied through a tubular body like a rubber tube. Therefore, the air resistance of the tube cannot be ignored, especially when pressurizing, and the pressure difference becomes large between the internal pressure of the cuff band and the pressure detected by the pressure detection means, and as a result, when pressurization is stopped, the internal pressure of the cuff band and the pressure Since the pressure applied to the detection means was balanced, the detected pressure of the pressure detection means tended to decrease slightly. For this reason, when looking at the display on the display, the pressure once increased drops when pressurization is stopped, which is a problem for the user. In addition, in the case of manual pressurization control, the method is to pressurize and measure until the pressure is 30 to 40 mmHg higher than the normal systolic blood pressure value, but it is necessary to take into account the aforementioned pressure drop. This made it difficult to determine the timing to stop pressurization.

そのためカフ帯から圧力検知手段までの加圧時
の空気抵抗と等しくなるような小孔を設けた板を
圧力検知手段の入口に設け加圧時の圧力を抑える
ようにして上述の欠点の解消を図つたものが提案
されたが、上述の小孔の径が小さく目詰まり等の
心配があつた。
Therefore, a plate with small holes equal to the air resistance during pressurization from the cuff band to the pressure detection means was installed at the entrance of the pressure detection means to suppress the pressure during pressurization, thereby eliminating the above-mentioned drawbacks. A similar method was proposed, but the diameter of the small holes was small and there were concerns about clogging.

本考案は上述の欠点に鑑みて為されたもので、
その目的とするところはカフ帯の内圧と等しい表
示が行なえる血圧計を提供するにある。
This invention was created in view of the above-mentioned drawbacks.
The purpose is to provide a blood pressure monitor that can display the same value as the internal pressure of the cuff band.

以下本考案を実施例によつて説明する。第1図
は一実施例の回路ブロツク図、第2図は本考案の
原理説明図である。1はカフ帯で、このカフ帯1
は管体2を通じて加圧手段3の電動加圧ポンプか
ら加圧空気が送られるようになつている。加圧手
段3は電動加圧ポンプ、緩速排気弁、急速排気弁
等からなるものである。4は管体を通じてカフ帯
1に連通されたダイヤフラムで、カフ帯1の内圧
(カフ圧)を検出して差動トランス5のコアを駆
動するようになつている。差動トランス5は1次
側に発振回路6の発振出力が印加されるようにな
つており、コアの変位に応じてその2次出力たる
電圧信号を変化させるものである。7は整流回路
で、この整流回路7は前記差動トランス5の2次
出力を整流するものである。8は整流回路7の整
流出力のリツプルの下限値を保持するための保持
回路で、整流出力に対して逆方向のダイオード9
と抵抗10と、この抵抗10を通じて電源+Vに
より充電されるコンデンサ11とからなり、整流
回路7とA/D変換回路12との間に接続されて
いる。この保持回路8の動作役割は以下の通りで
ある。即ちカフ帯1を上腕aに巻き付け、加圧手
段3の電動加圧ポンプにより加圧空気を送ると、
その発生圧力は第2図のイ曲線のように脈動を持
ちながら全体の圧力を上昇させていく。これに比
べてカフ帯1内の圧力は管体2の抵抗等によつて
やや遅れて同図ロ曲線のように上昇する。一方加
圧手段3側で管体2′に接続されているダイヤフ
ラム4の変位量に応じた整流回路7の整流出力を
例えばそのままA/D変換等を行なつてデジタル
表示を行なうと、その脈動の平均値(同図のハ曲
線)で示されることになり、従つて加圧停止と同
時に出力低下が起り表示値が下がるという問題が
ある。ここで脈動の下限値を結ぶ線と、カフ帯1
内の圧力の上昇とがほぼ等しいことが第2図から
明らかになる。つまり加圧手段3はゴム管のよう
な管体2を介してカフ帯1に接続されているた
め、加圧手段3の圧力が(カフ帯1の圧力+管体
2の流路抵抗)に打ち勝つて初めてカフ帯1へ空
気が流れ込み、そのうちカフ帯1の圧力が上昇す
るという時間遅れがあるため、加圧手段3の圧力
が低く落ち着く時、つまり第2図のイ曲線で示す
脈動の下限値の圧力がほぼカフ帯1の圧力と考え
てよい。これより圧力が上り始めてもカフ帯1内
の圧力は遅れて上つていく。ここで第2図のハ曲
線とロ曲線との差が流路抵抗による圧力に等しい
考えられ、ロ曲線とイ曲線の下限値との差は実際
には図示するより小さなものである。而して脈動
に対応した整流出力のリツプル分の下限値を保持
出力する保持回路8は上記のカフ帯1内の圧力上
昇とほぼ等しい出力を発生させることができるの
である。しかして、ダイヤフラム4、差動トラン
ス5、発振回路6、整流回路7、保持回路8によ
り圧力検知手段が構成されている。12はA/D
変換器で、このA/D変換器12は保持回路8の
出力をデジタル信号に変換するためのもので、そ
のデジタル出力をマイクロコンピユータ等からな
る論理回路13に入力しており、論理回路13は
装置全体の動作制御を行なうためのもので、例え
ばA/D変換器12からデータをプログラムに沿
つて演算するとともにコロトコフ音検出器15の
出力に基いて最高血圧値、最低血圧値を読みとつ
て、これらの血圧値を記憶保持して表示器14で
デジタル表示させたり、或いは圧力検知手段から
得られるカフ帯1の圧力データに基いて加圧手段
3を制御したりするものである。
The present invention will be explained below with reference to examples. FIG. 1 is a circuit block diagram of one embodiment, and FIG. 2 is a diagram explaining the principle of the present invention. 1 is the cuff belt, this cuff belt 1
Pressurized air is sent through the tube body 2 from an electric pressurizing pump of the pressurizing means 3. The pressurizing means 3 consists of an electric pressurizing pump, a slow exhaust valve, a rapid exhaust valve, etc. A diaphragm 4 communicates with the cuff band 1 through a tube, and is designed to detect the internal pressure of the cuff band 1 (cuff pressure) and drive the core of the differential transformer 5. The oscillation output of the oscillation circuit 6 is applied to the primary side of the differential transformer 5, and the voltage signal serving as the secondary output thereof is changed in accordance with the displacement of the core. 7 is a rectifier circuit, and this rectifier circuit 7 rectifies the secondary output of the differential transformer 5. 8 is a holding circuit for holding the lower limit value of the ripple of the rectified output of the rectifier circuit 7, and a diode 9 in the opposite direction to the rectified output
, a resistor 10 , and a capacitor 11 charged by the power supply +V through the resistor 10 , and is connected between the rectifier circuit 7 and the A/D conversion circuit 12 . The operational role of this holding circuit 8 is as follows. That is, when the cuff band 1 is wrapped around the upper arm a and pressurized air is sent by the electric pressurizing pump of the pressurizing means 3,
The generated pressure increases the overall pressure while having pulsations as shown by curve A in Figure 2. Compared to this, the pressure within the cuff band 1 rises with a slight delay due to the resistance of the tube body 2, etc., as shown by the curve shown in FIG. On the other hand, if the rectified output of the rectifier circuit 7 corresponding to the displacement amount of the diaphragm 4 connected to the tube body 2' on the pressurizing means 3 side is directly A/D converted and displayed digitally, the pulsation Therefore, there is a problem that the output decreases at the same time as the pressurization is stopped, and the displayed value decreases. Here, the line connecting the lower limit of pulsation and the cuff band 1
It is clear from FIG. 2 that the increase in pressure within In other words, since the pressurizing means 3 is connected to the cuff band 1 via the tube body 2 such as a rubber tube, the pressure of the pressurizing means 3 is equal to (pressure of the cuff band 1 + flow path resistance of the tube body 2). Air flows into the cuff band 1 only after the air overcomes the pressure, and there is a time lag in which the pressure in the cuff band 1 rises, so when the pressure in the pressurizing means 3 settles down to a low level, that is, the lower limit of the pulsation shown by curve A in Figure 2. The pressure of this value can be considered to be approximately the pressure of the cuff band 1. Even if the pressure starts to rise from this point, the pressure within the cuff band 1 will rise with a delay. Here, the difference between the C curve and the B curve in FIG. 2 is considered to be equal to the pressure due to the flow path resistance, and the difference between the lower limit value of the B curve and the B curve is actually smaller than shown in the figure. Thus, the holding circuit 8 which holds and outputs the lower limit value of the ripple portion of the rectified output corresponding to the pulsation can generate an output approximately equal to the pressure rise within the cuff band 1 described above. The diaphragm 4, the differential transformer 5, the oscillation circuit 6, the rectifier circuit 7, and the holding circuit 8 constitute a pressure detection means. 12 is A/D
This A/D converter 12 is a converter for converting the output of the holding circuit 8 into a digital signal, and the digital output is input to a logic circuit 13 consisting of a microcomputer etc. This is for controlling the operation of the entire device, for example, calculating data from the A/D converter 12 according to a program, and reading the systolic blood pressure value and diastolic blood pressure value based on the output of the Korotkoff sound detector 15. , these blood pressure values are stored and displayed digitally on the display 14, or the pressurizing means 3 is controlled based on the pressure data of the cuff band 1 obtained from the pressure detecting means.

しかして第1図図示のように上腕aにカフ帯1
を巻きつけ、この後電源スイツチ及び測定押釦ス
イツチを順次オンし、測定押釦スイツチのオンに
より出力信号を生じさせ、リセツトパルスを発生
させる。そして論理回路13は加圧手段3の電動
加圧ポンプを駆動させ、カフ帯1に加圧空気を送
り込むのである。カフ帯1の圧力上昇に併つてダ
イヤフラム4が変位し、この変位量は差動トラン
スの出力変化となり、更にその整流出力の変化と
なつて第1図のA点に現われる。保持回路8にお
いては電源+Vより抵抗10を通してコンデンサ
11が充電されようとするが、コンデンサ11の
B点の電位は、A点に現われる整流出力がリツプ
ルの下限値に下がるとコンデンサ11の電荷のダ
イオード9を介して放電されてA点の電位と等し
くなる。一方A点の電圧はその後リツプルの上限
値へ向つて上昇することになるが第3図に示すよ
うにB点の電位はコンデンサ11が抵抗10を通
じて充電されるため緩やかに上昇することになつ
て、次のリツプルの下限値に対応する電圧までの
上昇カーブはほぼ第2図のハ曲線で示すカフ帯1
内の圧力カーブと等しくなる。もし上昇が多すぎ
ても次のリツプルの下限値で放電させられほぼ目
的のカフ圧力の上昇と等しい保持出力が得られる
ことになる。従つて表示器14の圧力の更新表示
はカフ帯1内の圧力を正確に示す。前記カフ帯1
の内圧の上昇が開始されたカフ帯1において、こ
の初期の加圧空気送入はカフ圧が例えば120〜130
mmHg程度になるように設定されているものであ
つて、カフ圧が圧力検知手段の出力に基づいて論
理回路13でカフ圧が上記120〜130mmHgに達し
たことが検出されると、この論理回路13の出力
により電動加圧ポンプの駆動が停止される。一方
電動加圧ポンプの駆動停止と共にコロトコフ音の
検出判別を行ない、コロトコフ音の検出があれば
加圧ポンプの駆動を再び行なう。ここでコロトコ
フ音の検出判別はカフ帯1において採集された血
圧信号がコロトコフ音検出器15で電気信号に変
換され、論理回路13で認識判別が行なわれる。
しかして上述の再加圧駆動を間欠的にコロトコフ
音の検出が無くなるまで行なう。カフ帯1が十分
に加圧されて動脈bが完全に閉塞されると、コロ
トコフ音の検出がなくなり、ここで論理回路13
の働らきにより、加圧手段3の緩速排気弁が開駆
動され、カフ帯1内の空気圧が例えば2〜3mm
Hg/sec程度の速度で徐々に排気されてカフ帯1
の圧力は徐々に減圧されている。そして減圧開始
からの最初のコロトコフ音が検出判別されると、
論理回路13はそのタイミングでA/D変換器に
よりA/D変換した圧力値を記憶保持し、その圧
力値を表示器14において最高血圧値として表示
する。そして更に減圧が継続されて最後のコロト
コフ音の検出判別がなされる。そのタイミングで
A/D変換器12によりA/D変換した圧力値を
記憶保持し、その圧力値を最低血圧値として表示
器14で表示するものである。そして論理回路1
3は血圧測定終了として判定して加圧手段3の急
速排気弁を開動作させ、カフ帯1の圧力を急激に
減少させ、その圧力が略0mmHgになつた時点で
全動作を終了するのである。尚表示器14の表示
機能は圧力の更新を刻々と表示する機能と、最
低、最高血圧値を夫々保持表示する機能を有する
ものである。また圧力を降下させて測定する場
合、保持回路8の出力は常に下つた圧力そのもの
を示すため正確である。つまり通常市販されてい
る小型ダイヤフラムモータポンプでは脈動幅10〜
15mmHgあつたが本考案では平均的には5〜8mm
Hg位で正確になつた。つまり脈動の平均(ハ曲
線)と脈動(イ曲線)の下限値を結ぶ線との差5
〜8mmHgが正確になつた分となる。また圧力計
として使用した場合、静圧を測定する限りにおい
ては正確な測定ができる。
However, as shown in Figure 1, the cuff band 1 is attached to the upper arm a.
After that, the power switch and the measurement pushbutton switch are turned on in sequence, and when the measurement pushbutton switch is turned on, an output signal is generated and a reset pulse is generated. The logic circuit 13 then drives the electric pressurizing pump of the pressurizing means 3 to feed pressurized air into the cuff band 1. As the pressure in the cuff band 1 increases, the diaphragm 4 is displaced, and this amount of displacement results in a change in the output of the differential transformer, which in turn appears at point A in FIG. 1 as a change in the rectified output. In the holding circuit 8, the capacitor 11 is about to be charged from the power supply +V through the resistor 10, but when the rectified output appearing at the point A falls to the lower limit of the ripple, the potential at the point B of the capacitor 11 changes to the diode of the charge of the capacitor 11. 9 and becomes equal to the potential at point A. On the other hand, the voltage at point A will then rise towards the upper limit of ripple, but as shown in Figure 3, the potential at point B will rise slowly because capacitor 11 is charged through resistor 10. , the rising curve to the voltage corresponding to the lower limit of the next ripple is approximately at cuff band 1 shown by curve C in Figure 2.
is equal to the pressure curve within. Even if the rise is too large, discharge will occur at the lower limit of the next ripple, and a holding output approximately equal to the desired rise in cuff pressure will be obtained. The updated pressure display on the display 14 therefore accurately indicates the pressure within the cuff 1. Said cuff band 1
In the cuff band 1, where the internal pressure of
mmHg, and when the logic circuit 13 detects that the cuff pressure has reached the above 120 to 130 mmHg based on the output of the pressure detection means, the logic circuit 13 The drive of the electric pressure pump is stopped by the output of 13. On the other hand, when the drive of the electric pressure pump is stopped, detection and determination of Korotkoff sound is performed, and if Korotkoff sound is detected, the drive of the pressure pump is restarted. Here, in the detection and determination of Korotkoff sounds, a blood pressure signal collected at the cuff band 1 is converted into an electrical signal by the Korotkoff sound detector 15, and recognition and determination is performed by the logic circuit 13.
The above-described repressurization drive is then performed intermittently until the Korotkoff sound is no longer detected. When the cuff band 1 is sufficiently pressurized and the artery b is completely occluded, the Korotkoff sound is no longer detected, and the logic circuit 13
As a result, the slow exhaust valve of the pressurizing means 3 is driven to open, and the air pressure in the cuff band 1 is reduced to, for example, 2 to 3 mm.
Cuff band 1 is gradually exhausted at a rate of about Hg/sec.
pressure is gradually being reduced. When the first Korotkoff sound from the start of decompression is detected and determined,
The logic circuit 13 stores and holds the pressure value A/D converted by the A/D converter at that timing, and displays the pressure value on the display 14 as the systolic blood pressure value. Then, the pressure reduction continues and the final Korotkoff sound is detected and determined. The pressure value A/D converted by the A/D converter 12 at that timing is stored and held, and the pressure value is displayed on the display 14 as the diastolic blood pressure value. and logic circuit 1
Step 3 determines that the blood pressure measurement has been completed, opens the rapid exhaust valve of the pressurizing means 3, rapidly reduces the pressure in the cuff band 1, and ends the entire operation when the pressure reaches approximately 0 mmHg. . The display function of the display 14 is to display updates of the pressure every moment, and to hold and display the minimum and systolic blood pressure values, respectively. Furthermore, when measuring the pressure by decreasing it, the output of the holding circuit 8 is accurate because it always indicates the decreased pressure itself. In other words, with small diaphragm motor pumps normally available on the market, the pulsation width is 10~
15mmHg, but in this invention the average is 5-8mm
It became accurate at Hg level. In other words, the difference between the average pulsation (curve C) and the line connecting the lower limit of the pulsation (curve A) is 5.
~8mmHg is the correct amount. Also, when used as a pressure gauge, accurate measurements can be made as long as static pressure is measured.

本考案はカフ帯に連通されたダイヤフラムと、
このダイヤフラムの変位量を電圧信号に変換する
差動トランスと、この差動トランスの電圧信号を
整流する整流回路と、この整流回路の整流出力の
リツプル成分の下限値を保持出力する保持回路と
からなる圧力検知手段を有し、前記保持出力に基
いて表示器で圧力値を表示させるようにしたの
で、加圧する際表示器で表示される圧力値はカフ
帯内の圧力の実効値となり、その結果加圧終了時
における表示圧力値の低下がなく、使用者に安心
感を与えることができるものであり、また実効値
を表示できるからダイヤフラムの入口を小さくす
る必要がなくそのため目づまりが生ずるという問
題もないという効果を奏する。
The present invention includes a diaphragm connected to the cuff band,
A differential transformer that converts the amount of displacement of this diaphragm into a voltage signal, a rectifier circuit that rectifies the voltage signal of this differential transformer, and a holding circuit that holds and outputs the lower limit value of the ripple component of the rectified output of this rectifier circuit. Since the pressure detection means is configured to display the pressure value on the display based on the holding output, the pressure value displayed on the display when pressurizing is the effective value of the pressure inside the cuff band, and the pressure value is displayed on the display when pressurizing. As a result, there is no drop in the displayed pressure value at the end of pressurization, giving the user a sense of security.Also, since the effective value can be displayed, there is no need to make the inlet of the diaphragm smaller, which eliminates the problem of clogging. The effect is that there is no such thing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例の回路ブロツク図、
第2図は同上の原理説明図、第3図は同上の動作
説明図であり、1はカフ帯、4はダイヤフラム、
5は差動トランス、7は整流回路、8は保持回
路、14は表示器である。
FIG. 1 is a circuit block diagram of an embodiment of the present invention.
Fig. 2 is an explanatory diagram of the same principle as above, and Fig. 3 is an explanatory diagram of the same operation as above, where 1 is a cuff band, 4 is a diaphragm,
5 is a differential transformer, 7 is a rectifier circuit, 8 is a holding circuit, and 14 is a display device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] カフ帯に連通されたダイヤフラムと、このダイ
ヤフラムの変位量を電圧信号に変換する差動トラ
ンスと、この差動トランスの電圧信号を整流する
整流回路と、この整流回路の整流出力のリツプル
成分の下限値を保持出力する保持回路とからなる
圧力検知手段を有し、前記保持出力に基いて表示
器で血圧値を表示させるようにして成ることを特
徴とする血圧計。
A diaphragm connected to the cuff band, a differential transformer that converts the amount of displacement of this diaphragm into a voltage signal, a rectifier circuit that rectifies the voltage signal of this differential transformer, and the lower limit of the ripple component of the rectified output of this rectifier circuit. 1. A blood pressure monitor comprising a pressure sensing means comprising a holding circuit that holds and outputs a value, and a blood pressure value is displayed on a display based on the held output.
JP5467481U 1981-04-15 1981-04-15 Expired JPS6122565Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5467481U JPS6122565Y2 (en) 1981-04-15 1981-04-15

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5467481U JPS6122565Y2 (en) 1981-04-15 1981-04-15

Publications (2)

Publication Number Publication Date
JPS57169303U JPS57169303U (en) 1982-10-25
JPS6122565Y2 true JPS6122565Y2 (en) 1986-07-07

Family

ID=29851257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5467481U Expired JPS6122565Y2 (en) 1981-04-15 1981-04-15

Country Status (1)

Country Link
JP (1) JPS6122565Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487756B2 (en) * 2015-04-09 2019-03-20 テルモ株式会社 Sphygmomanometer

Also Published As

Publication number Publication date
JPS57169303U (en) 1982-10-25

Similar Documents

Publication Publication Date Title
US4796184A (en) Automatic blood pressure measuring device and method
US4326536A (en) Sphygmomanometer
EP0764425A1 (en) Blood pressure measuring apparatus
EP0353315A1 (en) Method for measuring blood pressure and apparatus for automated blood pressure measuring
CN113520307B (en) Wearable equipment
EP0422512B1 (en) Electronic sphygmomanometer
US4870973A (en) Electronic blood pressure meter having means for detecting artifacts
CA1245326A (en) Method and apparatus for measuring circulatory function
JPH04279147A (en) Automatic sphygmomanometer
EP0456844A1 (en) Non-invasive automatic blood pressure measuring apparatus
EP0808604B1 (en) Electronic blood pressure meter
US4458690A (en) Blood pressure monitor
JPS6244222A (en) Electronic hemomanometer
JPS6122565Y2 (en)
JPH0467452B2 (en)
JPS61122840A (en) Method and apparatus for controlling cuff pressure
JPH05329113A (en) Electronic sphygmomanometer
JPH09201341A (en) Electronic hemodynamometer
JP2592513B2 (en) Blood pressure monitoring device
JPS61199835A (en) Electronic hemomanometer
JP3071305B2 (en) Electronic sphygmomanometer
JP3124623B2 (en) Electronic sphygmomanometer
JPS5937208Y2 (en) blood pressure measuring device
JPH046732Y2 (en)
JPH01155829A (en) Electronic hemomanometer