JPS61225650A - Solvent analysis - Google Patents

Solvent analysis

Info

Publication number
JPS61225650A
JPS61225650A JP6614785A JP6614785A JPS61225650A JP S61225650 A JPS61225650 A JP S61225650A JP 6614785 A JP6614785 A JP 6614785A JP 6614785 A JP6614785 A JP 6614785A JP S61225650 A JPS61225650 A JP S61225650A
Authority
JP
Japan
Prior art keywords
column
carrier
stationary phase
phase liquid
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6614785A
Other languages
Japanese (ja)
Inventor
Takeyuki Tanaka
丈之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP6614785A priority Critical patent/JPS61225650A/en
Publication of JPS61225650A publication Critical patent/JPS61225650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To achieve a higher identification accuracy, by employing a connected column which has columns respectively packed with particulate material having polyethylene glycol with the average molecular weight of 6,000 and having a dimethylsiloxane polymer with 25% thereof substituted by a phenyl group adsorbed on respective carriers as stationary liquid arranged on the sample injection side and on the sample detection side thereof respectively to be connected in series. CONSTITUTION:This method employs a connected column in which a column packed with particulate material having polyethylene glycol with the average molecular weight of 6,000 adsorbed on a carrier as stationary liquid is arranged on the sample injection side and a column packed with particulate material having particulate material a dimethylsiloxane polymer with 25% thereof substituted by a phenyl group adsorbed on a carrier as stationary liquid on the sample detection side thereof to be connected in series. The carrier herein used is appropriately those made of cerrite, especially diatomaceous earth. The stationary liquids are diluted by an organic solvent to be added to a carrier and allowed to dry until the organic solvent is scattered, where the amount thereof attached to the carrier is preferably about 20wt%. The column temperature shall be about 120-150 deg.C while the flow rate of a carrier gas about 40-60ml/min and the use of helium gas is appropriate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、異種のカラムを直列に連結した連結カラムを
使用するガスクロマトグラフによる溶剤の分析方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for analyzing solvents by gas chromatography using a connected column in which columns of different types are connected in series.

〔従来の技術〕[Conventional technology]

従来、塗料に用いられる単一溶剤、混合溶剤及びこれら
の溶剤混合物をガスクロマトグラフにより分析するに当
っては、固定相液体として平均分子量6000のポリエ
チレングリコール(以下PEGと略す)を担体に吸着さ
せた粒体を充填したカラムをガスクロマトグラフにとり
つけ、或いは25%をフェニル基で置換したジメチルシ
ロキサン重合体(以下DCと略す)を担体に@着させた
粒体を充填したカラムをガスクロマトグラフに取りつけ
て分析が行なわれ、何れのカラムを使用するかは、単−
溶剤又は混合溶剤や溶剤混合物の構成溶剤成分の極性に
よって適宜選択使用されている。
Conventionally, when analyzing single solvents, mixed solvents, and mixtures of these solvents used in paints by gas chromatography, polyethylene glycol (hereinafter abbreviated as PEG) with an average molecular weight of 6000 was adsorbed onto a carrier as a stationary phase liquid. Attach a column packed with granules to a gas chromatograph, or attach a column packed with granules with a carrier coated with a dimethylsiloxane polymer (hereinafter abbreviated as DC) in which 25% of the particles are substituted with phenyl groups to a gas chromatograph. When an analysis is performed, it is simply a matter of which column to use.
They are appropriately selected and used depending on the polarity of the solvent, mixed solvent, and constituent solvent components of the solvent mixture.

然るに最近に至って、塗料が多様化し、使用する溶剤の
種類も多くなり、その極性も幅広くなってきた。
However, recently, paints have become more diverse, the types of solvents used have increased, and their polarities have become wider.

溶剤の分析において、まず必要なことは、混合溶剤や溶
jlJ混合物に含まれている溶剤成分をそれぞれ分離す
ることである。そのような分離方法として、同一種類の
固定相液体を担体に吸着させた粒体を充填した複数のカ
ラムを直列に連結して力ラム自体の長さを長くする方法
(以下第1法という)、2種以上の固定相液体を混合し
これを担体に吸着させた粒体を充填して新しい性質をも
ったカラムをつくる方法(以下第2法という)、カラム
の温度を変えながら分析を行う方法(以下第3法という
)、キャリヤーガス流量を変えながら分析を行う方法(
以下第4法という)等がある。
In the analysis of solvents, the first thing that is required is to separate the solvent components contained in the mixed solvent or solution mixture. One such separation method is to connect in series multiple columns packed with particles in which the same type of stationary phase liquid is adsorbed onto a carrier to increase the length of the force ram itself (hereinafter referred to as the first method). , A method in which a column with new properties is created by mixing two or more types of stationary phase liquids and filling them with particles that are adsorbed onto a carrier (hereinafter referred to as the second method), and analysis is performed while changing the temperature of the column. method (hereinafter referred to as the third method), a method in which analysis is performed while changing the carrier gas flow rate (
(hereinafter referred to as the 4th Law), etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の第1法や第2法により混合溶剤や溶剤混合物の分
析を行なうと、一つの溶剤成分から一つのピークが現れ
るのが普通であるが、溶剤成分の種類が増加するに従っ
て完全に分離されず、数種の溶剤成分が一つのピークと
なって現れ、溶剤の同定精度に問題が残った。
When mixed solvents or solvent mixtures are analyzed using methods 1 and 2 above, it is common for one peak to appear from one solvent component, but as the types of solvent components increase, they are not completely separated. First, several types of solvent components appeared as one peak, and a problem remained in the accuracy of solvent identification.

特に第2法は第1法に比べ、カラムの作製に熟練を要す
る外、分析操作も煩雑である。又上記第3法、第4法は
、第1法や第2法による溶剤の同定精度に比べ精度が極
めて小さい。今固定相液体としてPEGを用い、9種の
単一溶剤を混合した試料につき、第1法を適用して同定
精度を検討したところ、6つの独立したピークの出現す
る確率は100%であったのに対し、7つの独立したピ
ークの出現する確率は50%に低下し、[)Cを用い同
様の試験を行った結果、4つの独立したピークの出現す
る確率は100%でありながら、5つの独立したピーク
の出現する確率は38%と急速に低下する。
In particular, compared to the first method, the second method not only requires more skill in preparing the column, but also requires more complicated analysis operations. Further, the accuracy of the third method and the fourth method is extremely low compared to the solvent identification accuracy of the first method and the second method. When we examined the identification accuracy by applying the first method to a sample containing 9 types of single solvents using PEG as the stationary phase liquid, we found that the probability of 6 independent peaks appearing was 100%. On the other hand, the probability that seven independent peaks will appear has decreased to 50%, and as a result of conducting a similar test using [)C, the probability that four independent peaks will appear is 100%, but 5 The probability that two independent peaks will appear decreases rapidly to 38%.

又第2法即ちPEGとDCを等全混合し、これを固定相
液体として上記同様9種の単一溶剤を混合した試料につ
き同定精度を検討したところ、5つの独立したピークの
出現する確率は100%であったが、6つの独立したピ
ークの出現する確率は30%と、数種の単一溶剤が分離
されず、溶剤の種類を同定することは困難な状態であっ
た。
In addition, when examining the identification accuracy of the second method, which is a sample in which PEG and DC are mixed equally, and this is used as the stationary phase liquid, and nine types of single solvents are mixed as above, the probability that five independent peaks will appear is as follows. However, the probability of six independent peaks appearing was 30%, meaning that several types of single solvents were not separated, making it difficult to identify the type of solvent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、種々研究の結果、異なった固定相液体をそ
れぞれ担体に付着させた粒体を充填した2本のカラムを
直列に連結することによって、多数の溶剤成分を含む溶
剤の分析′I#度が向上することを見い出し、本発明を
完成するに至ったものである。
As a result of various studies, the present inventors have discovered that analysis of solvents containing a large number of solvent components can be carried out by connecting in series two columns filled with particles each having a different stationary phase liquid attached to a carrier. It was discovered that the # degree was improved, and the present invention was completed.

即ち、本発明は、ガスクロマトグラフで溶剤を分析する
方法において、固定相液体として平均分子量6000の
ポリエチレングリコールを担体に付着させた粒体を充填
したカラムを試料注入側に、固定相液体として25%を
フェニル基で置換したジメチルシロキサン重合体を担体
に吸着させた粒体を充填したカラムを検出側に直列に連
結した連結カラムを用いる溶剤分析方法である。
That is, the present invention provides a method for analyzing a solvent using a gas chromatograph, in which a column filled with particles of polyethylene glycol having an average molecular weight of 6,000 attached to a carrier is placed on the sample injection side as a stationary phase liquid, and 25% of the stationary phase liquid is used as a stationary phase liquid. This is a solvent analysis method that uses a connected column in which a column filled with particles of dimethylsiloxane polymer substituted with phenyl groups adsorbed onto a carrier is connected in series to the detection side.

ここに使用される担体としてはセライトを原料としたも
の、特に珪藻土が適当である。そして前記固定相液体は
有機溶剤を加えて稀釈し担体に添加し、有機溶剤が飛散
するまで撹拌しながら常温で充分乾燥し、担体に対する
付IIを15〜25Ifi%好ましくは20垂量%とす
る。
As the carrier used here, one made from celite, especially diatomaceous earth, is suitable. Then, the stationary phase liquid is diluted with an organic solvent, added to the carrier, and thoroughly dried at room temperature while stirring until the organic solvent is scattered, and the amount of Attachment II to the carrier is 15 to 25 Ifi%, preferably 20% by weight. .

又カラムの温度は120〜150℃キャリヤーガス流量
は40−/分〜60d/分程度とすると適当でキャリヤ
ーガスとしては公知のキャリヤーガスが広く使用される
がヘリウムガスの使用が適当である。
The temperature of the column is suitably 120 DEG -150 DEG C., and the carrier gas flow rate is about 40 DEG/min - 60 d/min. As the carrier gas, known carrier gases are widely used, but helium gas is suitably used.

尚本発明において分析の対象とされる溶剤は、多数溶剤
成分を含有する溶剤である。
The solvent to be analyzed in the present invention is a solvent containing multiple solvent components.

〔実 施 例〕〔Example〕

次に、実施例、比較例によって、本発明を更に詳細に説
明する。
Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1及び比較例1〜5 第2ブチルアルコール、メチルエチルケトン、酢酸エチ
ル、メチルイソブチルケトン、酢酸第2ブチル、エチレ
ングリコールモノエチルエーテル、エチレングリコール
モツプチルエーテル、エチレングリコールモノエチルエ
ーテルアセテート、シクロヘキサノンの9種の単一溶剤
を等重量で混合して試料を作った。
Example 1 and Comparative Examples 1 to 5 9 of sec-butyl alcohol, methyl ethyl ketone, ethyl acetate, methyl isobutyl ketone, sec-butyl acetate, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoethyl ether acetate, cyclohexanone Samples were prepared by mixing equal weights of different single solvents.

カラ・ムの構成は次の通りで、2個の連結カラムの場合
試料注入側から検出側へ向けての連結順序を示している
。又使用する固定相液体としては、PEG6000とし
て市販されている平均分子量6000のポリエチレング
リコール、DC550として市販されているパーキンエ
ルマー社製の25%をフェニル基で置換したジメチルシ
口キサン重合体を使用した。
The structure of the column is as follows, and in the case of two connected columns, the connection order from the sample injection side to the detection side is shown. The stationary phase liquid used was a polyethylene glycol having an average molecular weight of 6000, commercially available as PEG6000, and a dimethylcyxane polymer with 25% of phenyl groups substituted, commercially available as DC550, manufactured by PerkinElmer.

実施例1 固定相液体がPEG6000からなるカラム
に、DC550からなるカラムを連結したもの。
Example 1 A column made of DC550 was connected to a column whose stationary phase liquid was made of PEG6000.

比較例1 固定相液体がDC550からなるカラムを2
個連結したもの。
Comparative Example 1 Two columns in which the stationary phase liquid was DC550 were used.
A concatenation of individual pieces.

比較例2 固定相液体が[)C550からなるカラムに
PEG6000からなるカラムを連結したもの(実施例
1を逆にしたもの)。
Comparative Example 2 A column in which the stationary phase liquid was made of [)C550 was connected to a column made of PEG6000 (Example 1 was reversed).

比較例3 固定相液体がPEG6000からなるカラム
を2個連結したもの。
Comparative Example 3 Two columns in which the stationary phase liquid was PEG6000 were connected.

比較例4 固定相液体がPEG6000とDC550と
を等量混合したものからなるカラム2個を連結したもの
Comparative Example 4 Two columns were connected in which the stationary phase liquid was a mixture of equal amounts of PEG6000 and DC550.

比較例5 固定相液体がDC550からなるカラムを1
個用いたもの。
Comparative Example 5 One column in which the stationary phase liquid was DC550 was
Personally used.

比較例6 固定相液体がPEG6000からなるカラム
を1個用いたもの。
Comparative Example 6 One column in which the stationary phase liquid was PEG6000 was used.

比較例7 固定相液体がPEG6000とDC550と
を等最混合したものからなるカラムを1個用いたもの。
Comparative Example 7 One column was used in which the stationary phase liquid was an equal mixture of PEG6000 and DC550.

これらのカラムを用い、下記の測定条件でガスクロマト
グラフで分析を行った。
Using these columns, gas chromatograph analysis was performed under the following measurement conditions.

測定条件 装置:株式会社島津製作所製、GO−4APT型検出器
温度:250℃ カラム温度:120℃、150℃ 試料注入部温度: 200℃ キャリヤーガス:ヘリウム キャリヤーガス流ffi: 40戚/分、60d/分試
料注入蟻:3− カラムサイズ:3M径X3m長さ/本 固定相液体を吸着させる担体:珪藻±(商品名セライト
545 ジョンスマンビル社製)固定相液体を担体に吸
着させた粒体のカラム1個中への充填1:8!IF 固定相液体を担体に吸着させた粒体の粒度:60〜80
メツシユ 固定相液体の担体に対する吸着1: 20重量%得られ
たスペクトルから、独立したピークの数を求め、累積法
によってカラムの違いによる効果を解析した。
Measurement conditions Equipment: Shimadzu Corporation, GO-4APT type detector Temperature: 250°C Column temperature: 120°C, 150°C Sample injection part temperature: 200°C Carrier gas: Helium carrier gas flow ffi: 40 relatives/min, 60 d /min Sample injection time: 3- Column size: 3M diameter x 3m length/Carrier for adsorbing this stationary phase liquid: Diatom ± (trade name: Celite 545 manufactured by Johns Manville) Particles in which the stationary phase liquid is adsorbed on a carrier Packing into one column 1:8! IF Particle size of particles with stationary phase liquid adsorbed on carrier: 60-80
Adsorption of mesh stationary phase liquid onto carrier 1: 20% by weight From the obtained spectrum, the number of independent peaks was determined, and the effect of different columns was analyzed by the cumulative method.

その結果独立したピークの数の出現する確率(%)は、
第1表のように示される。
As a result, the probability (%) of the number of independent peaks appearing is:
It is shown in Table 1.

鉤記9種の単一溶剤のうち、ピークが接近し互いに重な
り合う溶剤は、カラム温度、キャリヤーガス流量、カラ
ム種類によって異なっている。従って、カラム温度、キ
ャリヤーガス流量が変動しても多くのピークを出現する
ことのできるカラムを選択することが必要となる。
Among the nine types of single solvents, the solvents whose peaks approach and overlap each other differ depending on the column temperature, carrier gas flow rate, and column type. Therefore, it is necessary to select a column that can produce many peaks even when the column temperature and carrier gas flow rate vary.

以下余白 第1表 第1表から明らかなように、本発明の実施例1は、カラ
ム温度、キャリヤーガス流量が変っても、9!Iの単一
溶剤の溶剤混合物を9つに分離できる確率は50%であ
り、悪くとも8つ以上に分離できることを示しており、
比較例1〜7に比べて、はるかに分離能力がよいことが
わかる。
As is clear from Table 1 in Table 1 below, in Example 1 of the present invention, even if the column temperature and carrier gas flow rate were changed, 9! The probability that a solvent mixture of a single solvent I can be separated into 9 parts is 50%, indicating that at worst it can be separated into 8 or more parts,
It can be seen that the separation ability is much better than that of Comparative Examples 1 to 7.

実施例2及び比較例8〜10 プロピルアルコール、イソブチルアルコール、イソブチ
ルアルコール、第2ブチルアルコール、ベンゼン、トル
エン、ヘプタン、ジエチルケトン、メチルイソブチルケ
トン、メチルエチルケトン、メチルプロピルケトン、酢
酸エチル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチ
ルの15種の単一溶剤を用いた。
Example 2 and Comparative Examples 8 to 10 Propyl alcohol, isobutyl alcohol, isobutyl alcohol, sec-butyl alcohol, benzene, toluene, heptane, diethyl ketone, methyl isobutyl ketone, methyl ethyl ketone, methyl propyl ketone, ethyl acetate, butyl acetate, isobutyl acetate , sec-butyl acetate were used.

カラムの構成は次の通りで、2個の連結カラムの場合試
料注入側から検出側へ向けての連結順序を示している。
The structure of the column is as follows, and in the case of two connected columns, the connection order from the sample injection side to the detection side is shown.

又使用された固定相液体は実施例1及び比較例1〜7の
場合と同じである。
The stationary phase liquid used was the same as in Example 1 and Comparative Examples 1-7.

実施例2 固定相液体がPEG6000からなるカラム
にDC550からなるカラムを連結したもの。
Example 2 A column in which the stationary phase liquid was made of PEG6000 was connected to a column made of DC550.

比較例8 固定相液体がDC550からなるカラムにP
EG6000からなるカラムを連結したもの。
Comparative Example 8 The stationary phase liquid was P on a column consisting of DC550.
A combination of columns made of EG6000.

比較例9 固定相液体がDC550からなるカラムを1
個用いたもの。
Comparative Example 9 One column in which the stationary phase liquid was DC550 was
Personally used.

比較例10 固定相液体がPEG6000からなるカラ
ムを1個用いたもの。
Comparative Example 10 One column in which the stationary phase liquid was made of PEG6000 was used.

これらのカラムを用い、前記実施例1、比較例1〜7で
行ったと同一の測定条件でガスクロマトグラフで分析を
行った。得られた絶対保持容量を第2表に示す。
Using these columns, gas chromatograph analysis was performed under the same measurement conditions as in Example 1 and Comparative Examples 1 to 7. The absolute retention capacities obtained are shown in Table 2.

以下余白 第2表 ここに絶対保持容量とは試料を注入したときから個々の
ピークが現われる迄の時間(保持容量)から試料に含ま
れる空気が出るまでの時間を差引いた値であって、絶対
保持容量の拡がりの大きい程各単−溶剤間の絶対保持容
量の差が大きくなることを示す。従って、溶剤の分離能
力がよいことを示す。
Table 2 in the margin below Absolute retention capacity is the value obtained by subtracting the time from the time the sample is injected until individual peaks appear (retention capacity) to the time it takes for air contained in the sample to come out. It is shown that the larger the spread of the holding capacity, the larger the difference in the absolute holding capacity between each single solvent. Therefore, it shows that the solvent separation ability is good.

絶対保持容量を特性値として、統計解析を行ない、試験
法の優劣の判定法として一般に多く使われている統計解
析法の一手法であるエスエヌ比を求めたところ、次のよ
うになった。
Statistical analysis was performed using the absolute retention capacity as a characteristic value, and the S/N ratio, which is a statistical analysis method commonly used to judge the superiority of test methods, was determined as follows.

実施例2  エスエヌ比−37,7却::db比較例8
  エスエヌ比=25.2±:::db比較例9  エ
スエヌ比=29.2±2・7db3.8 比較例10 エスエヌ比=32.g+z・7db−3,
8 以上のエスエヌ比から分析精度の定量的比較を求めると
、次のことがわかる。
Example 2 SN ratio -37.7::db Comparative example 8
SN ratio = 25.2±:::db Comparative example 9 SN ratio = 29.2 ± 2.7 db3.8 Comparative example 10 SN ratio = 32. g+z・7db-3,
8 A quantitative comparison of analysis accuracy is obtained from the above S/N ratios, and the following is found.

即ち、実施例2の分離能力は比較例8の分離能力に対し
て約13倍の分離能力があり、比較例9の分離能力に対
して約7倍の分離能力があり、比較例10の分離能力に
対し′て約3倍の分離能力があることがわかる。
That is, the separation capacity of Example 2 was about 13 times that of Comparative Example 8, about 7 times that of Comparative Example 9, and about 7 times that of Comparative Example 10. It can be seen that the separation capacity is about three times that of the previous capacity.

実施例3及び比較例11 塗料において蒸留範囲に幅のある留分を持った石油系混
合溶剤を使用することが多い。この混合溶剤の中には数
多くの成分が含まれており、構成する溶剤成分の種類も
メーカーの相違によるだけでなく生産ロットによっても
異なることがある。
Example 3 and Comparative Example 11 Petroleum-based mixed solvents having a wide range of distillation ranges are often used in paints. This mixed solvent contains many components, and the types of constituent solvent components may differ not only depending on the manufacturer but also depending on the production lot.

これらの石油系混合溶剤を使用した塗料、シンナーの分
析において、精度の優れた分析を行なうためには、ピー
クの重なりを少なくしピークの数を多くすることが絶対
に必要である。
In the analysis of paints and thinners using these petroleum-based mixed solvents, it is absolutely necessary to reduce the overlap of peaks and increase the number of peaks in order to perform analysis with excellent accuracy.

今、実施例2、比較例8〜10の結果を参照し且つ比較
例10に用いられたPEG6000を使用したカラムは
現在最も広く使用されているカラムでもあるので、実施
例3として固定相液体がPEG6000からなるカラム
にDC550からなるカラムを連結したものを用い、又
比較例11として固定相液体がPEG6000からなる
1個のカラムを用い、7種の石油系混合溶剤につき下記
測定条件で分析を行なった結果、第1図乃至第14図に
示すガスクロマトグラフィーを得た。
Now, referring to the results of Example 2 and Comparative Examples 8 to 10, and since the column using PEG6000 used in Comparative Example 10 is currently the most widely used column, as Example 3, the stationary phase liquid was Using a column made of PEG6000 connected to a column made of DC550, and as Comparative Example 11, using one column whose stationary phase liquid was made of PEG6000, seven types of petroleum-based mixed solvents were analyzed under the following measurement conditions. As a result, gas chromatographs shown in FIGS. 1 to 14 were obtained.

混合溶剤 A:ゴム揮発油、共同石油株式会社製 B:中沸点芳香族石油ナフタ、スワゾール#310、 
丸善石油株式会社製 C:ミネラルスピリット、共同石油株式会社製D:脂肪
族系溶剤、MKソルベント、共同石油株式会社製 E:ガソリンW、共同石油株式会社製 F:高沸点芳香族石油ナツタ、ツルペッツ150エクソ
ン化学株式会社製 G:高沸点溶剤、ペガゾールAN−45、東燃石油化学
株式会社製 測定条件 カラム温度=150℃ キセリャーガス流量:40d/分 記録感度:実施例 3  647FLv比較例11  
128mV 記録速度:実施例 3  10闇/分 比較例11   20aaV/分 その他の測定条件は、実施例1、比較例1〜5と同様で
ある。
Mixed solvent A: Rubber volatile oil, manufactured by Kyodo Sekiyu Co., Ltd. B: Medium-boiling aromatic petroleum naphtha, Swasol #310,
Maruzen Sekiyu Co., Ltd. C: Mineral Spirit, Kyodo Sekiyu Co., Ltd. D: Aliphatic solvent, MK Solvent, Kyodo Sekiyu Co., Ltd. E: Gasoline W, Kyodo Sekiyu Co., Ltd. F: High-boiling aromatic oil Natsuta, Tsurpets 150 Exxon Chemical Co., Ltd. G: High boiling point solvent, Pegasol AN-45, Tonen Petrochemical Co., Ltd. Measurement conditions Column temperature = 150°C Kiselya gas flow rate: 40 d/min Recording sensitivity: Example 3 647 FLv Comparative Example 11
128 mV Recording speed: Example 3 10 darkness/min Comparative example 11 20 aaV/min Other measurement conditions are the same as in Example 1 and Comparative Examples 1 to 5.

第1〜14図において、認められるピークの数を求めた
ところ、第3表のようになった。
When the number of peaks observed in FIGS. 1 to 14 was calculated, the results were as shown in Table 3.

第3表 第3表により明らかな通り、実施例3は、比較例11よ
りもピークの数が多いことを示してt、Xる。
Table 3 As is clear from Table 3, Example 3 has more peaks than Comparative Example 11.

そして実施例3で得られるピークが、混合溶剤に含まれ
る成分溶剤の全てを分離し示しているとは限らないが、
比較例11の2〜3倍のピークが得られており、このこ
とから実施例3は、比較例11よりも2〜3倍分析精度
が上ったことになる。
Although the peak obtained in Example 3 does not necessarily indicate all the component solvents contained in the mixed solvent,
Two to three times as many peaks as Comparative Example 11 were obtained, which means that Example 3 had two to three times higher analytical accuracy than Comparative Example 11.

〔発明の効果〕〔Effect of the invention〕

本発明は固定相液体としてPEG即ち平均分子1900
0のポリエチレングリコールを担体に吸着させた粒体を
充填したカラムを試料注入側に、固定相液体としてDC
即ち25%をフェニル基で置換したジメチルシロキサン
重合体を担体に吸着させた粒体を充填したカラムを検出
側に直列に連結した連結カラムを用いることにより、実
施例で明らかにしたように9種類の単一溶剤を混合した
試料について8つの独立したピークが出現する確率は1
00%、9つの独立したピークが出現する確率は50%
で、又15種類の単一溶剤を混合した試料の場合、PE
Gのみのカラムを1個用いた場合に比し約3倍、DCの
みのカラムを1個用いた場合に比し約7倍の分離能力が
認められ、更に蒸溜範囲に幅のある溜升を持つ石油系混
合溶剤の場合、PEGのみのカラムを1個用いた場合に
比し2〜3倍のピーク数を現出することから、容易に理
解されるように、試料溶剤成分の分離能力が極めて高く
、カラム温度、キャリヤーガス流量の変化に関係なく溶
剤成分の種類が増加しても成分に応じて独立したピーク
を多数現出し、成分溶剤の同定が容易となり同定精度が
向上して高い分析結果が得られるといった効果が認めら
れる。
The present invention uses PEG as a stationary phase liquid, i.e., an average molecular weight of 1900
A column packed with granules with 0% polyethylene glycol adsorbed onto a carrier was placed on the sample injection side, and DC was used as the stationary phase liquid.
In other words, by using a connected column in which a column filled with particles of dimethylsiloxane polymer with 25% phenyl group adsorption adsorbed on a carrier was connected in series to the detection side, nine types of dimethylsiloxane polymers, as clarified in the examples, were used. The probability that eight independent peaks will appear for a sample mixed with a single solvent is 1
00%, the probability of 9 independent peaks appearing is 50%
In addition, in the case of a sample containing a mixture of 15 types of single solvents, PE
The separation capacity was approximately 3 times that of using one G-only column, and about 7 times that of one DC-only column. In the case of petroleum-based mixed solvents, two to three times as many peaks appear as in the case of a single column containing only PEG, so it is easy to understand that the separation ability of sample solvent components is Even if the types of solvent components increase, regardless of changes in column temperature or carrier gas flow rate, many independent peaks will appear depending on the component, making it easier to identify component solvents and improving identification accuracy for high-quality analysis. The effect of obtaining results has been recognized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第14図は実施例3及び比較例11で実施し
た7種類の石油系各種混合溶剤A乃至Gについてのガス
クロマトグラフィーである。 特許出願人  日本油脂株式会社 代理人弁理士  大 野 克 躬 大  野  令  子 大野柳之輔 第2図 箒3図 第6図 第8図 第9図           第10図第11図 第12図 第13図 第14図 (公)
1 to 14 show gas chromatography of seven types of petroleum-based various mixed solvents A to G carried out in Example 3 and Comparative Example 11. Patent applicant: Nippon Oil & Fats Co., Ltd. Representative Patent Attorney Katsu Ohno Rei Ohno Figure 2 Broom 3 Figure 6 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 (public)

Claims (1)

【特許請求の範囲】[Claims] ガスクロマトグラフで溶剤を分析する方法において、固
定相液体として平均分子量6000のポリエチレングリ
コールを担体に吸着させた粒体を充填したカラムを試料
注入側に、固定相液体として25%をフェニル基で置換
したジメチルシロキサン重合体を担体に吸着させた粒体
を充填したカラムを検出側に直列に連結した連結カラム
を用いることを特徴とする多数溶剤成分を含有する溶剤
の分析方法。
In a method for analyzing solvents using gas chromatography, a column filled with particles of polyethylene glycol with an average molecular weight of 6000 adsorbed onto a carrier is used as the stationary phase liquid on the sample injection side, and 25% of the stationary phase liquid is substituted with phenyl groups. 1. A method for analyzing a solvent containing multiple solvent components, characterized by using a connected column in which a column packed with particles in which a dimethylsiloxane polymer is adsorbed onto a carrier is connected in series to the detection side.
JP6614785A 1985-03-29 1985-03-29 Solvent analysis Pending JPS61225650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6614785A JPS61225650A (en) 1985-03-29 1985-03-29 Solvent analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6614785A JPS61225650A (en) 1985-03-29 1985-03-29 Solvent analysis

Publications (1)

Publication Number Publication Date
JPS61225650A true JPS61225650A (en) 1986-10-07

Family

ID=13307459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6614785A Pending JPS61225650A (en) 1985-03-29 1985-03-29 Solvent analysis

Country Status (1)

Country Link
JP (1) JPS61225650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522898A (en) * 2013-05-02 2016-08-04 ダウ グローバル テクノロジーズ エルエルシー Analytical method for detecting fuel markers
JP2016524134A (en) * 2013-05-02 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Analytical method for detecting fuel markers using two gas chromatography channels, each equipped with two columns arranged in series

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522898A (en) * 2013-05-02 2016-08-04 ダウ グローバル テクノロジーズ エルエルシー Analytical method for detecting fuel markers
JP2016524134A (en) * 2013-05-02 2016-08-12 ダウ グローバル テクノロジーズ エルエルシー Analytical method for detecting fuel markers using two gas chromatography channels, each equipped with two columns arranged in series

Similar Documents

Publication Publication Date Title
Barth et al. Particle size analysis
Alfredson High-performance liquid chromatographic column switching techniques for rapid hydrocarbon group-type separations
Mori et al. Separation of styrene-methyl methacrylate random copolymers according to chemical composition and molecular size by liquid adsorption and size exclusion chromatography
Shi et al. Separation performance of the copolymer and homopolymer of aliphatic polycarbonate diols as the stationary phases for capillary gas chromatography
JPS61225650A (en) Solvent analysis
De Zeeuw et al. PoraPLOT Q: A porous layer open tubular column coated with styrene‐divinylbenzene copolymer
Shibusawa et al. Countercurrent chromatography of proteins with polyethylene glycol-dextran polymer phase systems using type-XLLL cross-axis coil planet centrifuge
Fetzer et al. Retention behavior of large polycyclic aromatics in bonded-phase high-performance liquid chromatography
US3514262A (en) Chromatographic separation method
US3865562A (en) Chromatographic separating apparatus and method
Brochmann-Hanssen et al. Gas chromatography of alkaloids with polar stationary liquids
Narasimhan et al. Phase equilibra of polystyrene/polybutadiene/tetrahydrofuran using gel permeation chromatography
Meucci et al. Solvent selection in countercurrent chromatography using small-volume hydrostatic columns
Greenwood et al. Liquid chromatographic separation and quantitative determination of isomeric arene tricarbonylchromium complexes
Karlesky et al. A study of polynuclear aromatic hydrocarbons on an amino bonded phase liquid chromatographic column in the normal and reversed phase
Bombaugh et al. A new gradient elution chromatograph
Cartoni et al. Evaluation of capillary gas chromatographic columns in series: analytical application to lemon oil
Schwartz et al. Separation of saturated hydrocarbons from petroleum residues
Shibusawa et al. Polyethylene glycol-potassium phosphate aqueous two-phase systems for countercurrent chromatography of proteins
Kiselev et al. Molecular structure and retention behaviour of some polycyclic aromatic and perhydroaromatic hydrocarbons on graphitized carbon black
Trevelin et al. Optimization of parameters for the gas chromatographic determination of polycyclic aromatic hydrocarbons
Jinno et al. Group‐type analysis of gasoline range materials by high performance liquid chromatography
Haslam et al. Applications of gas-liquid chromatography: the examination of terpenes and related substances
Dhanesar et al. Support-deactivating fluorocarbon stationary phase for gas chromatography
Dark Shale oil separation by high performance liquid chromatography