JPS61225566A - Water-side heat exchanger - Google Patents

Water-side heat exchanger

Info

Publication number
JPS61225566A
JPS61225566A JP6354185A JP6354185A JPS61225566A JP S61225566 A JPS61225566 A JP S61225566A JP 6354185 A JP6354185 A JP 6354185A JP 6354185 A JP6354185 A JP 6354185A JP S61225566 A JPS61225566 A JP S61225566A
Authority
JP
Japan
Prior art keywords
refrigerant
chamber
tube
heat exchanger
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6354185A
Other languages
Japanese (ja)
Inventor
下出 哲雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6354185A priority Critical patent/JPS61225566A/en
Publication of JPS61225566A publication Critical patent/JPS61225566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は空耐ヒートポンプ式チラートに係シ、特に除箱
開始時に不足した冷媒を補うのに好適な受液器を一体化
した水側熱交換器に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air-resistant heat pump type chiller, and in particular to a water-side heat exchanger integrated with a liquid receiver suitable for supplementing the refrigerant that is insufficient at the start of box removal. Concerning vessels.

〔発明の背景〕[Background of the invention]

従来の装置は受液器と水側熱交換器は別構成部品でお互
に逆止弁と膨脹弁が並列に接続されていた。
In conventional equipment, the liquid receiver and water side heat exchanger were separate components, and the check valve and expansion valve were connected in parallel to each other.

しかし除箱開始時には空気側熱交換器かb受液器への冷
媒流込が一時的になくなるため、受液器内の圧力が下が
ってしまうと膨脹弁出入口の差圧が少なくなってIg@
弁通過通過量少して低圧側冷媒不足を生じて除箱能力の
低下を発生する点についてはなにも配慮されてなかった
However, at the start of unboxing, the refrigerant does not flow into the air side heat exchanger or liquid receiver temporarily, so if the pressure inside the liquid receiver decreases, the differential pressure at the outlet and outlet of the expansion valve decreases, causing Ig@
No consideration was given to the fact that a small amount of refrigerant passing through the valve would cause a shortage of refrigerant on the low-pressure side, resulting in a decrease in unboxing capacity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は@房運転時にのみ、受液器となる容器を
水側熱交換器と一体化し、受液器と水側熱交換器の間に
設けたオリアイスで、除箱開始時に低圧側に不足する冷
媒を受液器から補給しやすくして、吸込圧力の一時低下
を防ぎ、除籟効率を上げて、安定した除籍サイクルを提
供することにある。
The object of the present invention is to integrate a container that serves as a liquid receiver with a water-side heat exchanger only during cell operation, and to use an oriice installed between the liquid receiver and the water-side heat exchanger to The object of the present invention is to make it easier to replenish the refrigerant that is in short supply from a liquid receiver, to prevent a temporary drop in suction pressure, to increase the removal efficiency, and to provide a stable removal cycle.

〔発明の概要〕[Summary of the invention]

暖房運転時のみ必要となる余剰冷媒をため、また除籟開
始時に不足する冷媒を容易に低圧側に供給する受g、器
の構造を持たせるためには、水側熱交換器と一体化構造
が厳良であり、膨脹弁を通さなくてもよくするためには
一体化壁面Vc2]冷媒を流子穴があれは充分である。
In order to store surplus refrigerant that is required only during heating operation, and to have a structure that easily supplies the refrigerant that is insufficient at the start of filtration to the low pressure side, an integrated structure with the water side heat exchanger is required. In order to eliminate the need for the refrigerant to pass through the expansion valve, it is sufficient to have holes for the refrigerant to flow through the integrated wall surface Vc2.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図(a)、Φ)に示す一実施例によ
り説明する。
The present invention will be explained below with reference to an embodiment shown in FIG. 1(a), Φ).

1は冷媒接続管で、冷媒室2に接続されており、該冷媒
室2と冷媒室4はU形体熱管3により連通している。5
は冷媒接続管で、片端を前記冷媒室4に接続し、他端は
分岐f6t−介して一方は逆止弁7により冷媒室8に接
続し、他方は冷房用膨脹弁15に接続されている。9は
オリアイスで、前記冷Is、44と8の間の仕切壁8a
に設けられている。10は伝熱管で、冷媒室8と受液室
11を連通している。12は逆止弁で、前記受液室11
と前記冷房用膨脹弁15の人口側を配管12a。
A refrigerant connecting pipe 1 is connected to a refrigerant chamber 2, and the refrigerant chamber 2 and the refrigerant chamber 4 are communicated through a U-shaped heat tube 3. 5
is a refrigerant connecting pipe, one end of which is connected to the refrigerant chamber 4, the other end of which is connected to the refrigerant chamber 8 via a branch f6t through a check valve 7, and the other end is connected to the cooling expansion valve 15. . 9 is Oriais, the cold Is, the partition wall 8a between 44 and 8;
It is set in. Reference numeral 10 denotes a heat transfer tube, which communicates the refrigerant chamber 8 and the liquid receiving chamber 11. 12 is a check valve, and the liquid receiving chamber 11
and the artificial side of the cooling expansion valve 15 is connected to the pipe 12a.

13a分岐管13および逆止弁14を介して接続してい
る。50は水入口、51は水出口である。
13a are connected via a branch pipe 13 and a check valve 14. 50 is a water inlet, and 51 is a water outlet.

52はジャマイタである。53は液冷媒管で、空気側熱
交換器く図示せず)に接続されている。31はサイドシ
ェル、32.35は側板である。
52 is a jamaita. 53 is a liquid refrigerant pipe connected to an air side heat exchanger (not shown). 31 is a side shell, and 32.35 is a side plate.

暖房運転時には圧縮機からの高温高圧冷媒は冷媒接続管
1よシ冷媒室2に流込して、そこからU形伝熱官3部に
おいて水と熱交して除々に液化され冷ts室4では全て
液冷媒となって流込する。大部分の冷媒は冷媒接続管5
、分岐管6、逆止弁7を通シ冷媒室8に流込する。また
一部は冷媒室4からオリフィス9を通り冷媒室8に流込
する。冷媒室8の冷媒は伝熱管10を通り受液室11に
流込し、そこから逆止弁12を通り、分岐管13を通っ
てy房用膨脹弁へ進む。冷房運転時には空気側熱交換器
にて凝縮した液冷T!&は分岐管13へ米るこの冷媒は
逆上9P12にて遮断されているので受液室11へは流
れない。そこで逆止弁11−通り冷房用膨脹弁15で減
圧され分岐管6、冷媒接続管5、冷媒室4へと流込する
。受液器11とはオリフィス9を介して低圧に均圧化し
ているので液冷媒がたまることはない。冷媒室4に人り
た冷媒にU形体熱管3を通り冷媒室2、冷媒接続口1へ
と伝熱I#3部で熱交換しガス化して圧縮機へ戻る。従
って受液室11は暖房運転時の液冷媒をためる役目をす
る。また除籟運転切換す直後に、冷媒室4、U形体熱管
3、冷媒室2内にたまった冷媒は圧縮機VC直ちに戻る
。その後冷媒室4の圧力が低下するので、冷媒室8との
間に差圧が発生する。この差圧により冷媒室8、伝熱管
10、受液室11、逆止弁12の間にある液冷媒はオリ
フィス9で減圧さnながら冷媒室4に流出しU形体熱管
3、冷媒室2、冷媒接続口1を通って圧縮機に戻るので
吸込圧力の低下を防ぎ、圧縮機より空気側熱交換器へ吐
出され除@能力を上げる。璧気側熱交!fc器へ多電の
冷媒がηLルるのでそこでの圧力は上昇し、しだいに分
岐管13、冷房用膨脹弁15へ流出する。膨脹弁15で
減圧され冷媒室4へ流れるのでつねに低圧側は冷媒が補
給されるので、本実施例によれば除籍開始時に低圧側の
圧力低下をきたすことなく除籟運転を紬続出米る効果が
ある。従来技術では水側熱交換器は第2図に示すとおり
冷TS接続口1、冷媒室2、U形体熱管3、冷媒室4、
冷媒接続口5のみで構成され、受g、呈11とは別傳成
部品であるため冷房用膨脹弁15、逆止弁7を並列に配
管で接続するのみの構造であるため受液室110の液冷
媒は冷房用膨脹弁1st−通過するのみであり、受液器
110の液冷媒が少なくなってくると膨脹弁前後の差圧
が少なく牛り、この膨脹弁15f:通過する量が減少し
て、第2図(b)に示すように吸込側の圧力低下をまね
いていたが、本発明の実施例によればオリフィス9より
容易に液冷媒が流出するので吸込圧力の低下をまねくこ
とはない。
During heating operation, the high-temperature, high-pressure refrigerant from the compressor flows into the refrigerant chamber 2 through the refrigerant connection pipe 1, and from there, it exchanges heat with water in the U-shaped heat transfer section 3 and is gradually liquefied into the cold TS chamber 4. Then, all of the refrigerant flows in as liquid refrigerant. Most of the refrigerant is in the refrigerant connection pipe 5
, branch pipe 6 , and check valve 7 to flow into the refrigerant chamber 8 . A portion also flows from the refrigerant chamber 4 into the refrigerant chamber 8 through the orifice 9 . The refrigerant in the refrigerant chamber 8 passes through the heat transfer tube 10 and flows into the liquid receiving chamber 11, and from there passes through the check valve 12 and passes through the branch pipe 13 to the y-chamber expansion valve. During cooling operation, liquid cooling T condenses in the air side heat exchanger! The refrigerant flowing to the branch pipe 13 does not flow to the liquid receiving chamber 11 because it is blocked by the upper part 9P12. There, the pressure is reduced through the check valve 11 and the cooling expansion valve 15, and the refrigerant flows into the branch pipe 6, the refrigerant connection pipe 5, and the refrigerant chamber 4. Since the pressure of the liquid receiver 11 is equalized to a low level through the orifice 9, liquid refrigerant does not accumulate. The refrigerant in the refrigerant chamber 4 passes through the U-shaped heat pipe 3 to the refrigerant chamber 2 and the refrigerant connection port 1, where it undergoes heat exchange in the heat transfer section I#3, gasifies, and returns to the compressor. Therefore, the liquid receiving chamber 11 serves to store liquid refrigerant during heating operation. Immediately after switching to the removal operation, the refrigerant accumulated in the refrigerant chamber 4, the U-shaped heat tube 3, and the refrigerant chamber 2 immediately returns to the compressor VC. After that, the pressure in the refrigerant chamber 4 decreases, so that a pressure difference is generated between the refrigerant chamber 8 and the refrigerant chamber 8. Due to this differential pressure, the liquid refrigerant located between the refrigerant chamber 8, heat transfer tube 10, liquid receiving chamber 11, and check valve 12 is depressurized at the orifice 9 and flows out into the refrigerant chamber 4, where it flows into the U-shaped heat tube 3, refrigerant chamber 2, The refrigerant returns to the compressor through the refrigerant connection port 1, preventing a drop in suction pressure, and is discharged from the compressor to the air-side heat exchanger, increasing the removal capacity. Perfect heat exchange! As the high-voltage refrigerant flows into the FC unit, the pressure there rises and gradually flows out to the branch pipe 13 and the cooling expansion valve 15. Since the pressure is reduced by the expansion valve 15 and the refrigerant flows into the refrigerant chamber 4, the low-pressure side is always replenished with refrigerant. Accordingly, this embodiment has the effect of continuously performing the mulch removal operation without causing a pressure drop on the low-pressure side at the start of deregistration. There is. In the conventional technology, the water side heat exchanger has a cold TS connection port 1, a refrigerant chamber 2, a U-shaped heat pipe 3, a refrigerant chamber 4, as shown in FIG.
It consists only of the refrigerant connection port 5 and is a separate component from the receiver g and the receiver 11, so the structure is such that the cooling expansion valve 15 and the check valve 7 are connected in parallel with piping. The liquid refrigerant only passes through the cooling expansion valve 1st, and as the liquid refrigerant in the liquid receiver 110 decreases, the differential pressure across the expansion valve decreases, and the amount passing through the expansion valve 15f decreases. However, according to the embodiment of the present invention, the liquid refrigerant easily flows out from the orifice 9, so this does not cause a drop in the suction pressure. do not have.

〔発明の効果〕〔Effect of the invention〕

本考案によれば暖房運転時には全ての冷媒が受液器に流
込し、冷房運転時には低圧のガス冷媒が少したまるだけ
なので暖房運転時の余剰冷媒をためる役目を持ちながら
、除霜開始時には空気側熱交換器から膨脹弁前1c尚圧
液冷媒がこないため膨脹弁を通過する冷媒tは減少する
が、受液器に逆止弁で封じ込められていた爾圧液冷媒は
容易にオリスイスを通過出来るので、低圧側への冷媒供
給j1r増加させ、一時働吸込圧力の低下を防ぎ、圧縮
磯勿介して空気側熱交換器へ多量の冷媒を供給すること
で、除籍効率を上げ(除籟運転時間の短縮ンて暖房運転
時の除霜熱ロス込み暖房熱効率を高める効果がある。
According to this invention, all the refrigerant flows into the liquid receiver during heating operation, and only a small amount of low-pressure gas refrigerant accumulates during cooling operation. Since the still pressurized liquid refrigerant does not come from the side heat exchanger in front of the expansion valve, the amount of refrigerant passing through the expansion valve decreases, but the pressurized liquid refrigerant, which was sealed in the liquid receiver with the check valve, easily passes through the oriswiss. Therefore, by increasing the refrigerant supply j1r to the low pressure side, preventing a drop in temporary working suction pressure, and supplying a large amount of refrigerant to the air side heat exchanger through the compression chamber, the removal efficiency is increased (removal operation This has the effect of shortening the time and increasing heating efficiency including defrosting heat loss during heating operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本−明の冷凍サイクルの冷媒の流れ及び機能を
説明するための部品サイクル系統図、第2図は従来技術
の冷凍サイクルの冷媒の流れ及び機能を説明するための
部品サイクル系統図である1・・・冷媒接続口  2・
・・冷媒室  3・・・U形体熱管  4・・・冷媒室
  5・・・冷媒接続口  6・・・分岐管  7・・
・逆止弁  8・・・冷媒室  9・・・オリフィス 
 10・・・伝熱管  11・・・受液室12・・・逆
止弁  13・・・分岐管  14・・・逆止弁15・
・・冷房用膨脹弁  20・・・管板  21・・・サ
イドシェル  22.23・・・仕切板  24・・・
オリフィス  25.26・・・冷媒接続口  27・
・・U形体熱’f   28・・・伝熱管  29・・
・管板30・・・受液室  31・・・サイドシェル 
 32・・・側板  33.34・・・冷媒接続口  
35・・・側板36・・・上段冷媒室  37・・・中
段冷媒室  38・・・下段冷媒室。 竿1m 算Z菌 (久)
Fig. 1 is a parts cycle system diagram for explaining the refrigerant flow and function of the refrigeration cycle of the present invention, and Fig. 2 is a parts cycle system diagram for explaining the refrigerant flow and function of the conventional refrigeration cycle. 1... Refrigerant connection port 2.
...Refrigerant chamber 3...U-shaped heat tube 4...Refrigerant chamber 5...Refrigerant connection port 6...Branch pipe 7...
・Check valve 8... Refrigerant chamber 9... Orifice
10... Heat transfer tube 11... Liquid receiving chamber 12... Check valve 13... Branch pipe 14... Check valve 15.
...Air conditioning expansion valve 20...Tube plate 21...Side shell 22.23...Partition plate 24...
Orifice 25.26... Refrigerant connection port 27.
・・U-shaped heat 'f 28...Heat transfer tube 29...
・Tube plate 30...liquid receiving chamber 31...side shell
32...Side plate 33.34...Refrigerant connection port
35... Side plate 36... Upper refrigerant chamber 37... Middle refrigerant chamber 38... Lower refrigerant chamber. Pole 1m Z-bacteria (Kyu)

Claims (1)

【特許請求の範囲】[Claims] U形伝熱管を固定する側の管板は水側と冷媒側を仕切り
、管板の冷媒流路面側の外周はサイドシェルでかこなよ
うにしたシェルアンドチューブ式の水側熱交換熱交換器
において、このサイドシェル内部は仕切板で三分割され
、仕切られた上段室は冷媒入口用接続配管とU形伝熱管
の一端を接続し、中段室はU形伝熱管の他端と冷媒出口
用接続配管を接続し、該中段室からの冷媒出口用接続配
管は分岐管で分流され一方を逆止弁を介して前記下段室
へ接続し、他方を膨脹弁に接続し、前記中段室と下段室
を仕切る仕切板には除霜運転時補助減圧装置(オリフィ
ス)を設け、下段室の管板には血管伝熱管を固定し、そ
の管端は水側を仕切る別の管板に固定し、別の管板の冷
媒側はサイドシェルと側板でかこまれた暖房時の液を溜
める受液容器室を設け、該受液容器室は逆止弁を接続す
るための冷媒液出口を有することを特徴とする水側熱交
換器。
The tube plate on the side where the U-shaped heat transfer tubes are fixed partitions the water side and the refrigerant side, and the outer periphery of the tube plate on the refrigerant flow path side is surrounded by a side shell.This is a shell-and-tube type water-side heat exchange heat exchanger. The inside of this side shell is divided into three parts by a partition plate, and the partitioned upper chamber connects the refrigerant inlet connection pipe and one end of the U-shaped heat exchanger tube, and the middle chamber connects the other end of the U-shaped heat exchanger tube and the refrigerant outlet. Connecting piping is connected, and the connecting piping for the refrigerant outlet from the middle chamber is divided by a branch pipe, one side is connected to the lower chamber via a check valve, and the other side is connected to the expansion valve, so that the middle chamber and the lower chamber are connected to each other. An auxiliary pressure reducing device (orifice) during defrosting operation is installed on the partition plate that partitions the chamber, and a vascular heat transfer tube is fixed to the tube plate of the lower chamber, and the tube end is fixed to another tube plate that partitions the water side. The refrigerant side of the other tube plate is provided with a liquid receiving container chamber surrounded by a side shell and a side plate for storing liquid during heating, and the liquid receiving container chamber has a refrigerant liquid outlet for connecting a check valve. Characteristic water side heat exchanger.
JP6354185A 1985-03-29 1985-03-29 Water-side heat exchanger Pending JPS61225566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6354185A JPS61225566A (en) 1985-03-29 1985-03-29 Water-side heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6354185A JPS61225566A (en) 1985-03-29 1985-03-29 Water-side heat exchanger

Publications (1)

Publication Number Publication Date
JPS61225566A true JPS61225566A (en) 1986-10-07

Family

ID=13232181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6354185A Pending JPS61225566A (en) 1985-03-29 1985-03-29 Water-side heat exchanger

Country Status (1)

Country Link
JP (1) JPS61225566A (en)

Similar Documents

Publication Publication Date Title
US6898947B2 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
US20020179294A1 (en) Tube and shell heat exchanger for multiple circuit refrigerant system
JPH0633917B2 (en) Falling film evaporator
US4669279A (en) Motor cooling apparatus for refrigerator
CN2926937Y (en) Heat exchanger of wind-cooling hot-pump set
CN108954899B (en) Wet film type low temperature air-cooled heat pump multi-connected unit
JPH04371759A (en) Freezing cycle of two-stage compression and two-stage expansion
CN113819684A (en) Economizer and refrigerating system comprising same
CN108844256A (en) Compressor and air conditioning system
JPS61225566A (en) Water-side heat exchanger
CN212720083U (en) Container data center multi-connected air conditioning system
CN211012000U (en) Flash evaporator and air conditioning system
JP2004301461A (en) Air conditioner
CN211650799U (en) Cold energy generation equipment and cryogenic system
CN106969520A (en) A kind of double loop handpiece Water Chilling Units and dual temperature cooling system
CN107588581B (en) Heat pump unit system and flash tank structure thereof
JP2003254641A (en) Refrigerating system, condenser for refrigerating cycle and refrigerant outlet structure thereof
CN207006613U (en) A kind of bottom heat exchange mechanisms of the refrigeration unit of height reduction
CN111023607A (en) Cold energy generation equipment and cryogenic system
JP2923151B2 (en) Refrigeration cycle
CN212673542U (en) Combined refrigerating system
CN214249788U (en) Multi-split air conditioning system
JPS60200089A (en) Direct expansion type regenerative heat exchanger
CN220453832U (en) Air-cooled central air conditioning unit
CN217785513U (en) Parallel refrigeration compressor unit of double-evaporation type condenser