JPS61224304A - Magnetic shielding device for induction electric apparatus - Google Patents
Magnetic shielding device for induction electric apparatusInfo
- Publication number
- JPS61224304A JPS61224304A JP60063641A JP6364185A JPS61224304A JP S61224304 A JPS61224304 A JP S61224304A JP 60063641 A JP60063641 A JP 60063641A JP 6364185 A JP6364185 A JP 6364185A JP S61224304 A JPS61224304 A JP S61224304A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- tank
- magnetic shield
- shield
- magnetic flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/34—Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
- H01F27/36—Electric or magnetic shields or screens
- H01F27/363—Electric or magnetic shields or screens made of electrically conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Regulation Of General Use Transformers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は新規な誘導電器用磁気シールド装置に係り、特
に、磁気シールド板を効果的に組合せ配備することによ
り、タンク壁での損失集中による局部温度上昇を防止し
ようとしている。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a novel magnetic shielding device for induction electric appliances, and in particular, by effectively arranging magnetic shielding plates in combination, local losses due to concentration of losses on tank walls can be reduced. Trying to prevent temperature rise.
一般に、変圧器やリアクトルなどの誘導電器においては
1巻線から発生する漏洩磁束がタンク壁に侵入して損失
を発生させたり1局部的な損失集中のために局部過熱を
誘因したりすることがある。Generally, in induction electric appliances such as transformers and reactors, leakage magnetic flux generated from one winding can penetrate the tank wall and cause loss, or cause localized overheating due to local concentration of loss. be.
そのため、従来よりタンク内壁に高導電性の非磁性板を
磁気シールドとして設けて、これに流れるうず電流の反
抗磁界で漏洩磁束を飛散させる方法や、高透磁率の磁性
板をタンク内壁に取付けることにより、漏洩磁束の大部
分をこの板中を通過させてタンクへの侵入を減らす方法
が採られてきた。For this reason, conventional methods include installing a highly conductive non-magnetic plate on the inner wall of the tank as a magnetic shield and scattering the leakage magnetic flux by the countermagnetic field of the eddy current flowing through it, and attaching a magnetic plate with high magnetic permeability to the inner wall of the tank. Therefore, a method has been adopted in which most of the leakage magnetic flux passes through this plate to reduce its intrusion into the tank.
これらの方法のうち、特に、後者の磁性板をタンク壁に
配備する方法は最近広く用いられる傾向にあり、第3図
及び第4図に示すように、多数の磁気シールド板を並列
に配置するものである。つまり、漏洩磁束は鉄心1に巻
回された巻線2,3の間から発生し、図中矢印で示すよ
うに、タンク壁4に侵入しようとするが、タンク内壁に
取付けられた高透磁率の磁気シールド板5の作用により
、大部分″の漏洩磁束はこの磁気シールド板中を通過し
てしまい、タンク壁での発生損失の大幅な低減が図れる
ことになる。しかし、第4図の変圧器の平面図からも知
られるように、巻線2,3から発生した漏洩磁束は図中
矢印のように、径方向に飛散するため、通常のU、V、
W相から成る三相変圧器の相間部ではタンク長手方向(
図中ではX方向)の磁束成分がどうしても大きくなり、
第3図及び第4図に示したように単に、タンク高さ方向
(Z方向)に長い磁気シールド板5を並置するだけでは
、十分なシールド効果が得られない問題があった。そこ
で実公昭51−32010号公報に記載されているよう
に、漏洩磁束のタンクへの侵入形態にできるだけ近づけ
たものとして、第5図のタンク内壁の平面図に示すよう
な磁気シールドの配備の仕方が示されている。つまり、
漏洩磁束のうちでタンク高さ方向(Z方向)成分の大き
くなる相中心部では磁気シールド板5aのように、タン
ク高さ方向に磁束の通路を作り、一方、漏洩磁束のタン
ク長手方向(X方向)成分が大きくなる相間部では磁気
シールド板5bでタンク長手方向への磁束の通路を形成
することにより、磁気シールドの効果を一層向上させよ
うとしている。一方、最近の超大容量変圧器や高インピ
ーダンスの変圧器といった漏洩磁束の大きい変圧器では
これまでさほど問題視されなかった磁気シールド板自身
の損失も相当に大きくなるため、第6図に示すように磁
気シールド板5の積層方向を従来と90″変え、タンク
壁4と平行とすることでシールド板自身に流れるうず電
流の通路を細分し、発生損失を極端に減少しようとする
考えが実開昭54−24011号公報などに示されてい
る。Among these methods, the latter method, in which magnetic plates are placed on the tank wall, has recently become widely used, and as shown in Figures 3 and 4, a large number of magnetic shield plates are arranged in parallel. It is something. In other words, the leakage magnetic flux is generated between the windings 2 and 3 wound around the iron core 1, and tries to enter the tank wall 4 as shown by the arrow in the figure. Due to the action of the magnetic shield plate 5 in FIG. As can be seen from the plan view of the device, the leakage magnetic flux generated from the windings 2 and 3 scatters in the radial direction as shown by the arrows in the figure, so the normal U, V,
In the phase-to-phase section of a three-phase transformer consisting of W-phase, the longitudinal direction of the tank (
The magnetic flux component in the X direction (in the figure) inevitably becomes large,
As shown in FIGS. 3 and 4, simply arranging long magnetic shield plates 5 in parallel in the tank height direction (Z direction) has the problem that a sufficient shielding effect cannot be obtained. Therefore, as described in Japanese Utility Model Publication No. 51-32010, a method of deploying a magnetic shield as shown in the plan view of the inner wall of the tank in Fig. 5 is proposed to approximate the form of leakage magnetic flux entering the tank as much as possible. It is shown. In other words,
At the phase center where the leakage magnetic flux has a large component in the tank height direction (Z direction), a magnetic flux path is created in the tank height direction like the magnetic shield plate 5a. In the interphase portion where the component (direction) is large, the magnetic shielding plate 5b forms a path for magnetic flux in the longitudinal direction of the tank, thereby further improving the effectiveness of the magnetic shielding. On the other hand, in transformers with large leakage magnetic flux such as recent ultra-large capacity transformers and high impedance transformers, the loss of the magnetic shield plate itself, which has not been seen as a problem in the past, becomes considerably large, so as shown in Figure 6, The idea was to change the stacking direction of the magnetic shield plate 5 by 90'' from the conventional one and make it parallel to the tank wall 4, thereby subdividing the path of the eddy current flowing through the shield plate itself and drastically reducing the generated loss. 54-24011 and the like.
つまり、これらの考案から知れるように、第6図に示す
タンク壁4に平行積層した磁気シールド板5を第5図の
ように漏洩磁束のタンクへの侵入形態にできるだけ近く
なるように配備することができれば、極めて大きな損失
低減を図れることが可能となる。In other words, as is known from these ideas, the magnetic shield plate 5 laminated parallel to the tank wall 4 shown in FIG. 6 should be arranged so as to be as close as possible to the form of leakage magnetic flux entering the tank as shown in FIG. If this is possible, it will be possible to achieve an extremely large reduction in loss.
ところが、通常の変圧器等では磁気シールド板5が取付
けられるタンクの形状が輸送条件などにより、第7図の
ように、屈曲したものが多く採用されるため1曲げるこ
とが困難な第6図のような磁気シールド板ではどうして
もタンクの屈曲部でこの磁気シールドの配備を止めざる
得ないことになる。その結果、第7図中矢印で示すよう
に磁気シールド板5aを流れてきた磁束がその端部で集
中的にタンク4に移行し、この部分で局部過熱などを引
きおこす問題が生じてきた。However, in ordinary transformers, the shape of the tank to which the magnetic shield plate 5 is attached is often bent, as shown in Figure 7, due to transportation conditions and other factors. With such a magnetic shield plate, the deployment of the magnetic shield must be stopped at the bent portion of the tank. As a result, as shown by the arrow in FIG. 7, the magnetic flux flowing through the magnetic shield plate 5a is concentrated at its end and transferred to the tank 4, causing a problem of local overheating in this area.
本発明の目的は、磁気シールド板の端部のタンク壁での
局部過熱を効果−に防止しようとするもので、特に、磁
気シールド板の取付範囲が制限される屈曲したタンク等
で有効なものである。An object of the present invention is to effectively prevent local overheating on the tank wall at the end of the magnetic shield plate, and is particularly effective in bent tanks where the mounting range of the magnetic shield plate is limited. It is.
(発明の概要〕
本発明はタンク壁に平行に積層された多数の磁性体から
なる磁気シールド板を、漏洩磁束の侵入形態を考慮して
タンク内壁に縦及び横方向に配置する際、磁気シールド
の先端部付近からタンク壁へ磁束が侵入しないように縦
方向磁気シールドと横方向磁気シールドをつなぐ屈曲し
た第三の磁気シールドを適宜配備した構造となっている
。(Summary of the Invention) The present invention provides a method for magnetic shielding when a magnetic shield plate made of a large number of magnetic materials laminated in parallel to the tank wall is arranged vertically and horizontally on the tank inner wall in consideration of the penetration form of leakage magnetic flux. The structure is such that a bent third magnetic shield connecting the vertical magnetic shield and the horizontal magnetic shield is appropriately provided to prevent magnetic flux from entering the tank wall from near the tip of the tank.
本発明の一実施例を第1図に示す。 An embodiment of the present invention is shown in FIG.
磁気シールド板自身での発生損失ができるだけ小さくな
るように、磁気シールド板の積層方向はすべてタンク壁
4と平行になるように構成されている。漏洩磁束のタン
ク壁への侵入形態にできるだけ近づけられるように、相
中心部付近ではタンク高さ方向に磁束が通り易い縦方向
磁気シールド板5aを、又、相関部付近ではタンク長手
方向に磁束が通り易い横方向磁気シールド板5b1゜5
biが、それぞれ、配備され、5b1と5b2社その端
部で屈曲し、かつ、同一積層方向をもつ第三の磁気シー
ルド板5cの介在により磁気的に結合された構成となっ
ている。The stacking direction of all the magnetic shield plates is configured to be parallel to the tank wall 4 so that the loss generated by the magnetic shield plates themselves is as small as possible. In order to approach the form of leakage magnetic flux entering the tank wall as close as possible, a vertical magnetic shield plate 5a is installed near the phase center where the magnetic flux easily passes in the tank height direction, and near the correlation part the magnetic flux is installed in the longitudinal direction of the tank. Easy-to-pass horizontal magnetic shield plate 5b1゜5
5b1 and 5b2 are bent at their ends, and are magnetically coupled through the interposition of a third magnetic shield plate 5c having the same stacking direction.
この構成で輸送条件等によりタンク4が屈曲し、縦方向
磁気シールド板5aが屈曲部を除いた直線部のみに限定
して取付けざるを得ない時に問題となる磁気シールド5
aの端部からタンク4への磁束が、屈曲した第三の磁気
シールド板5cの作用により、これを介して隣接する横
方向磁気シールド板5b1にスムーズに移行できること
になる。With this configuration, the magnetic shield 5 becomes a problem when the tank 4 is bent due to transportation conditions and the vertical magnetic shield plate 5a has to be installed only in the straight part excluding the bent part.
Due to the effect of the bent third magnetic shield plate 5c, the magnetic flux flowing from the end of a to the tank 4 can be smoothly transferred to the adjacent horizontal magnetic shield plate 5b1 via the third magnetic shield plate 5c.
なお、この第三の磁気シールド板5cは他の磁気シール
ド板と同様にその積層方向がタンク壁と平行になってお
り、成形焼鈍などにより、所定の形状に保持されており
、その端面が縦方向磁気シールド板5a及び横方向磁気
シールド板5b1と十分に接触するようになっている。This third magnetic shield plate 5c has its lamination direction parallel to the tank wall like the other magnetic shield plates, is held in a predetermined shape by forming annealing, etc., and its end face is vertical. It is in sufficient contact with the directional magnetic shield plate 5a and the lateral magnetic shield plate 5b1.
そのため、本実施例によれば、縦方向磁気シールド板5
aの取は範囲がタンクの直線部に限定されたことによる
、タンク屈曲部付近での集中的な磁束移行現象が見られ
なくなり、従来、問題視されてきたこの付近でのタンク
の局部温度上昇をほとんどなくすことができる。Therefore, according to this embodiment, the vertical magnetic shield plate 5
Since the range of a is limited to the straight part of the tank, the concentrated magnetic flux transfer phenomenon near the bent part of the tank is no longer observed, and the local temperature increase in the tank in this area, which has been considered a problem in the past, has been reduced. can be almost eliminated.
第2図では漏洩磁束のタンク壁への侵入形態に一層近い
磁気シールド配置となるよう、長さの異なる縦方向磁気
シールド板58i t S a zと、横方向磁気シー
ルド板5b、、5b2と適宜組合せ配備したものである
。しかも、多量の漏洩磁束が通る縦方向磁気シールド板
5a、と5atの端部では、磁路が切断されないように
屈曲された磁気シールド板5cユと5c2で横方向磁気
シールド板5bよ、5b2と結合されている。In FIG. 2, vertical magnetic shielding plates 58i t S a z and horizontal magnetic shielding plates 5b, 5b2 of different lengths are used as appropriate so that the magnetic shielding arrangement is more similar to the form in which leakage magnetic flux enters the tank wall. This is a combination deployment. Moreover, at the ends of the vertical magnetic shield plates 5a and 5at through which a large amount of leakage magnetic flux passes, the magnetic shield plates 5c and 5c2 are bent so that the magnetic path is not cut, and the horizontal magnetic shield plates 5b and 5b2 are bent so that the magnetic path is not cut. combined.
本発明によれば、磁気シールドによる磁路が見掛上長く
なり、磁気シールド端部でのタンク壁への集中的な磁束
移行が回避でき、この部分での局部温度上昇を防ぐこと
ができる。According to the present invention, the magnetic path caused by the magnetic shield is apparently longer, and concentrated magnetic flux transfer to the tank wall at the end of the magnetic shield can be avoided, and local temperature rise in this portion can be prevented.
第1図は本発明の一実施例のタンク内壁を示す要部斜視
図、第2図は第1図と同一部を示す他の実施例図、第3
図、第4図は変圧器の漏洩磁束のようすの説明図、第5
図、第6図はこれまでに提示された磁気シールド板の改
善構造を示す図、第7図は現状の問題点の説明図である
。
1・・・鉄心、2,3・・・巻線、4・・・タンク、5
・・・磁気シールド板、5a、5a1,5a2・・・縦
方向磁気シールド板、5b、5bL、5b、・・・横方
向磁気シールド板、5c、5c、、5c、・・・屈曲し
た第3の磁気シールド板。FIG. 1 is a perspective view of a main part showing the inner wall of a tank according to an embodiment of the present invention, FIG. 2 is a diagram of another embodiment showing the same part as FIG. 1, and FIG.
Figure 4 is an explanatory diagram of the leakage magnetic flux of the transformer, Figure 5
6 are diagrams showing an improved structure of the magnetic shield plate presented so far, and FIG. 7 is an explanatory diagram of the current problems. 1... Iron core, 2, 3... Winding wire, 4... Tank, 5
... Magnetic shielding plates, 5a, 5a1, 5a2... Vertical magnetic shielding plates, 5b, 5bL, 5b, ... Lateral magnetic shielding plates, 5c, 5c, 5c, ... Bent third magnetic shield plate.
Claims (1)
透磁率の磁性体をタンク壁と平行となるように多数積層
した磁気シールド板を縦方向及び横方向に直線的に組合
せて配置するものにおいて、前記縦方向磁気シールド板
と前記横方向磁気シールド板の両者を先端部付近で、ほ
ぼ直角に屈曲させ、かつ、他と同方向に積層した第三の
磁気シールド板により磁気的に結合させたことを特徴と
する誘導電器用磁気シールド装置。1. On the inner wall of the tank of an induction electric appliance in which multiple windings are arranged, magnetic shield plates made of a large number of high permeability magnetic materials laminated parallel to the tank wall are arranged in a linear combination in the vertical and horizontal directions. In the device, both the vertical magnetic shield plate and the horizontal magnetic shield plate are bent at a substantially right angle near their tips, and a third magnetic shield plate laminated in the same direction as the other magnetic shield plates allows magnetic shielding. A magnetic shielding device for induction electric appliances characterized by a combination of the two.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60063641A JPS61224304A (en) | 1985-03-29 | 1985-03-29 | Magnetic shielding device for induction electric apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60063641A JPS61224304A (en) | 1985-03-29 | 1985-03-29 | Magnetic shielding device for induction electric apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61224304A true JPS61224304A (en) | 1986-10-06 |
Family
ID=13235182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60063641A Pending JPS61224304A (en) | 1985-03-29 | 1985-03-29 | Magnetic shielding device for induction electric apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61224304A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104112572A (en) * | 2014-04-30 | 2014-10-22 | 广州西门子变压器有限公司 | Power transformer with winding magnetic-shielding device |
-
1985
- 1985-03-29 JP JP60063641A patent/JPS61224304A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104112572A (en) * | 2014-04-30 | 2014-10-22 | 广州西门子变压器有限公司 | Power transformer with winding magnetic-shielding device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010232272A (en) | Transformer | |
JPH0366108A (en) | Stationary electromagnetic induction apparatus | |
JP3646595B2 (en) | Static induction machine | |
US20020039062A1 (en) | Airgapped magnetic component | |
JPS61224304A (en) | Magnetic shielding device for induction electric apparatus | |
US4156862A (en) | Electrical inductive apparatus having non-magnetic flux shields | |
JPS59119810A (en) | Interphase reactor device | |
JP2004103633A (en) | Amorphous core molded transformer | |
JPH0661071A (en) | Stationary electromagnetic induction apparatus | |
JPS61219122A (en) | Magnetic shielding system for induction electric apparatus | |
JPS62105410A (en) | Magnetic shield for stationary induction electric apparatus | |
JPS58279Y2 (en) | stationary induction appliance | |
JPH023614Y2 (en) | ||
JPS6193604A (en) | Superconducting magnet | |
JP2942448B2 (en) | Stationary induction device | |
JP2001244129A (en) | Static induction electrical apparatus | |
JP2002075751A (en) | Stationary induction apparatus | |
JPS63293902A (en) | Coil component | |
JP2568559Y2 (en) | Foil wound transformer | |
JPH0423294Y2 (en) | ||
JPH0582364A (en) | Reactor | |
JPS5952817A (en) | Transformer | |
JP3327460B2 (en) | Current transformer | |
JP3668013B2 (en) | Static induction machine | |
JPH0720903Y2 (en) | Noise shielding transformer |