JPS61223622A - Multitemperature measuring instrument - Google Patents

Multitemperature measuring instrument

Info

Publication number
JPS61223622A
JPS61223622A JP6543885A JP6543885A JPS61223622A JP S61223622 A JPS61223622 A JP S61223622A JP 6543885 A JP6543885 A JP 6543885A JP 6543885 A JP6543885 A JP 6543885A JP S61223622 A JPS61223622 A JP S61223622A
Authority
JP
Japan
Prior art keywords
capacitor
voltage
resistor
input
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6543885A
Other languages
Japanese (ja)
Inventor
Ikuo Sato
佐藤 威久雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6543885A priority Critical patent/JPS61223622A/en
Publication of JPS61223622A publication Critical patent/JPS61223622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/20Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/206Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer in a specially-adapted circuit, e.g. bridge circuit in a potentiometer circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To obtain an accurate measured result and to make high-speed and efficient measurement possible by applying directly the voltage between both ends of a selected resistance bulb to a capacitor to charge it quickly, and applying it through a resistor just before disconnecting from the capacitor. CONSTITUTION:FET switches S1-S3 for selection are turned on successively for a certain time to select voltages between both ends of resistance bulbs RTD1-RTD3, and they are inputted to a sample and hold circuit 2; and when this input is started, an FET switch S4 is turned on to apply directly voltages to a capacitor C1, and the capacitor C1 is charged at a high speed. When this charge is completed, the switch S4 is turned off, and a resistor R1 and the capacitor C1 operate as an HPF to eliminate the generated noise, and the charging voltage of the capacitor C1 is held in a certain level without the variance due to noise. Thus, one measurement is performed in a short time to measure many temperatures efficiently at a high speed.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は複数の測温抵抗体により複数の温度を計測する
多温度計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a multi-temperature measurement device that measures a plurality of temperatures using a plurality of resistance temperature sensors.

(従来技術とその問題点′) 第4図はこの種の従来の多温度計測装置の回路図である
(Prior art and its problems') FIG. 4 is a circuit diagram of this type of conventional multi-temperature measuring device.

この214図に示されるようにこの従来装置においては
、複数の測温抵抗体RT D i1〜RTD13が選択
用FETスイッチ811〜S13をそれぞれ介して、抵
抗器R17〜R18とホイートストンブリッジを形成す
るように3線式接続法により接続されている。前記各測
温抵抗体RTD  −RTD、3は前記名選択用FET
スイッチ811〜$13により選択され、選択された測
温抵抗体の抵抗値変化に応じた電圧が前記ブリッジに発
生する。このブリッジに発生した電圧はフライングキャ
パシタ方式のすンプルホールド回路12に入力されるよ
うになっている。このナンブルホールド回路12内では
、その入力端子に抵抗器R11とリレーに11の切替接
点とを順に介してコンデンサC11が接続されており、
このコンデンサC11は前記抵抗器R11を介して前記
ブリッジに発生した電圧と同レベルにまで充電される。
As shown in FIG. 214, in this conventional device, a plurality of resistance temperature detectors RT Di1 to RTD13 form a Wheatstone bridge with resistors R17 to R18 via selection FET switches 811 to S13, respectively. It is connected to the 3-wire connection method. Each of the above-mentioned resistance temperature detectors RTD - RTD, 3 is the FET for selecting the above-mentioned name.
The switches 811 to $13 are selected, and a voltage corresponding to a change in the resistance value of the selected resistance temperature detector is generated in the bridge. The voltage generated on this bridge is input to a flying capacitor type simple hold circuit 12. In this number hold circuit 12, a capacitor C11 is connected to its input terminal via a resistor R11, a relay, and 11 switching contacts in this order.
This capacitor C11 is charged via the resistor R11 to the same level as the voltage developed across the bridge.

その際、前記抵抗器R11と前記コンデンサC11とが
バイパスフィルタとして働くため、前記ブリッジ側で発
生した高周波ノイズによって前記コンデンサC11の充
電電圧が変動しないようになっている。この充電が完了
した時点で前記リレーに11の接点が切替られ、前記コ
ンデンサC11は入力端子から切り離され出力端子へ接
続される。
At this time, since the resistor R11 and the capacitor C11 function as a bypass filter, the charging voltage of the capacitor C11 is prevented from changing due to high frequency noise generated on the bridge side. When this charging is completed, 11 contacts of the relay are switched, and the capacitor C11 is disconnected from the input terminal and connected to the output terminal.

このサンプルホールド回路12の出力端子には演埠増幅
器A11が接続されており、この演算増幅器A は抵抗
器RRの抵抗比により定まる閾値によって前記コンデン
サC11の充電電圧をA/D変換づる。
An operational amplifier A11 is connected to the output terminal of the sample and hold circuit 12, and this operational amplifier A performs A/D conversion of the charging voltage of the capacitor C11 using a threshold determined by the resistance ratio of the resistor RR.

ところで、このような構成において、前記ブリッジに発
生する電圧には実際には前記測温抵抗体RTD  −R
TD13の各抵抗値だけでなく前記選択用FETスイッ
チ811〜S13の各オン抵抗値の影響も現われる。こ
のため、前記各オン抵抗値が全く同一であれば前記電圧
の校正により前記オン抵抗による誤差を無くせるが、通
常は多少のばらつきがあるから画一的な校正によっては
前記誤差を解消することはできない。また、前記サンプ
ルホールド回路12内ではノイズ除去のために入力端子
と前記コンデンサC11との間に前記抵抗器R11が挿
入されているので前記コンデンサの充電に比較的長時間
を要し1回の計測を短時間で終了させることができない
。従って、多数の温度を高速で能率良く計測して行くと
いうことができない。
By the way, in such a configuration, the voltage generated in the bridge actually includes the resistance temperature detector RTD -R.
The effect appears not only of each resistance value of TD13 but also of each on-resistance value of the selection FET switches 811 to S13. Therefore, if the on-resistance values are exactly the same, the error due to the on-resistance can be eliminated by calibrating the voltage, but since there is usually some variation, it is not possible to eliminate the error by uniform calibration. I can't. In addition, in the sample and hold circuit 12, the resistor R11 is inserted between the input terminal and the capacitor C11 for noise removal, so it takes a relatively long time to charge the capacitor, and one measurement is required. cannot be completed in a short time. Therefore, it is not possible to efficiently measure a large number of temperatures at high speed.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点に鑑みてなされたもので、計測抵抗体
選択用スイッチのオン抵抗値の影響が計測結果に誤差と
して現われず、しかも、1回の計測を短時間で終了する
ことにより多数の温度を高速で能率良く計測することが
できる多温度計測装置を提供することを目的とする。
The present invention has been made in view of the above points, and the influence of the on-resistance value of the measurement resistor selection switch does not appear as an error in the measurement results. It is an object of the present invention to provide a multi-temperature measurement device that can efficiently measure the temperature of

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明は、各測温抵抗体に一定
電流を流してこの各測温抵抗体の両端間に発生した電圧
をフライングキャパシタ方式によるサンプルホールド回
路へ入力し、このサンプルホールド回路内においては、
入力した前記電圧をコンデンサに直接印加することによ
りこのコンデンサの充電を速やかに行ない、前記コンデ
ンサを入力端子から切り離す直前において前記電圧を抵
抗器を介して前記コンデンサに印加するようにしたもの
である。
In order to achieve the above object, the present invention supplies a constant current to each resistance temperature sensor and inputs the voltage generated between both ends of each resistance temperature sensor to a sample and hold circuit using a flying capacitor system. Inside,
The capacitor is quickly charged by directly applying the input voltage to the capacitor, and the voltage is applied to the capacitor via a resistor immediately before disconnecting the capacitor from the input terminal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明に係る多温度計測装置の実施例について説
明する。
Embodiments of the multi-temperature measuring device according to the present invention will be described below.

第1図は、本発明に係る多温度計測装置の第1実施例を
示す回路図であり、第2図は同実施例の動作を示すタイ
ムチャートである。
FIG. 1 is a circuit diagram showing a first embodiment of a multi-temperature measuring device according to the present invention, and FIG. 2 is a time chart showing the operation of the same embodiment.

第1図に示されるように、本実施例においては、定電流
発生器1に複数の4線式測温抵抗体RTD1〜RTD3
が直列接続されそれぞれ直流定電流■1の供給を受けて
いる。また、前記測温抵抗体RTD  −RTD3のい
ずれかが断線した場合にも電流が遮断されることのない
ように、前記各測温抵抗体RTD1〜RTD3と並列に
それぞれダイオードD −D3が順方向に接続されてい
る。更に、前記各1llIl温抵抗体RTD1〜RTD
2の両端は選択用FETスイッチ81〜S3をそれぞれ
介してフライングキャパシタ方式によるサンプルホール
ド回路2の入力端子に接続されており、前記各両端間に
発生した両端間電圧のうち1つが選択されて前記サンプ
ルホールド回路2に入力されるようになっている。この
サンプルホールド回路2内では、前述した従来例のそれ
と同様にその入力端子に抵抗器R1とリレーに1の切替
接点とを順に介してコンデンサC1が接続されており、
このコンデンサC4は前記リレーに1を付勢してその接
点を切替ることにより前記入力端子から切り離されて出
力端子に接続されてようになっている。更に、本実施例
の特徴として前記抵抗器R1に並列にバイパス用FET
スイツチS4が接続されており、このバイパス用FET
スイッチS4をオンすれば入力された前記両端間電圧が
前記コンデンサC1に直接印加されるようになっている
。前配り”ンブルホールド回路2の出力端子のうち前記
コンデンサC1のプラス側端子と接続される出力端子に
は、演算増幅器△1の非反転入力端子が接続されており
、また、前記コンデンサC1のマイナス側端子と接続さ
れる出力端子には、一端が接地された抵抗器R2と負の
直流定電流12を発生する定電流発生器3との接続点が
接続されている。従って、前記演算増幅器 A1の非反
転入力端子には、前記コンデンサC1の充電電圧から前
記抵抗器Rの前記定電流I2が流れることによる電圧降
下分を差し引いた電圧が印加される。また、前記演算増
幅器A1の反転入力端子には、この演算増幅器へ1の出
力電圧E0を抵抗器R、Rの抵抗比で分圧した電圧が印
加されている。従って、前記演算wI幅器A1は、前記
コンデンサC1の充電電圧から前記抵抗器R2の電圧降
下分を差し引いた電圧を前記抵抗器R3,R4の分圧比
により定まる閾値レベルによってデジタル信号に変換す
る。
As shown in FIG. 1, in this embodiment, a constant current generator 1 includes a plurality of four-wire resistance temperature detectors RTD1 to RTD3.
are connected in series and each receives a constant DC current ■1. Further, in order to prevent the current from being cut off even if any of the resistance temperature detectors RTD - RTD3 is disconnected, diodes D - D3 are connected in parallel with each of the resistance temperature detectors RTD1 to RTD3 in the forward direction. It is connected to the. Furthermore, each of the temperature resistors RTD1 to RTD
Both ends of 2 are connected to the input terminals of a sample-and-hold circuit 2 using a flying capacitor system via selection FET switches 81 to S3, respectively, and one of the voltages generated between the two ends is selected. The signal is input to a sample hold circuit 2. In this sample hold circuit 2, a capacitor C1 is connected to its input terminal via a resistor R1, a relay and a switching contact in this order, as in the conventional example described above.
This capacitor C4 is disconnected from the input terminal and connected to the output terminal by energizing 1 to the relay and switching its contacts. Furthermore, as a feature of this embodiment, a bypass FET is connected in parallel to the resistor R1.
Switch S4 is connected, and this bypass FET
When the switch S4 is turned on, the input voltage across the capacitor C1 is directly applied to the capacitor C1. The non-inverting input terminal of the operational amplifier Δ1 is connected to the output terminal of the pre-distributed "multiple hold circuit 2" which is connected to the positive terminal of the capacitor C1, and the negative terminal of the capacitor C1 is connected to the output terminal connected to the positive terminal of the capacitor C1. The output terminal connected to the side terminal is connected to a connection point between a resistor R2 whose one end is grounded and a constant current generator 3 that generates a negative constant current 12. Therefore, the operational amplifier A1 A voltage obtained by subtracting a voltage drop due to the constant current I2 flowing through the resistor R from the charging voltage of the capacitor C1 is applied to the non-inverting input terminal of the operational amplifier A1. A voltage obtained by dividing the output voltage E0 of 1 by the resistance ratio of the resistors R and R is applied to this operational amplifier.Therefore, the operational wI amplifier A1 divides the charging voltage of the capacitor C1 into the voltage. The voltage obtained by subtracting the voltage drop across the resistor R2 is converted into a digital signal using a threshold level determined by the voltage division ratio between the resistors R3 and R4.

次に、このような構成を有する本実施例の作用を説明す
る。
Next, the operation of this embodiment having such a configuration will be explained.

前記各測温抵抗体RTD1〜RTD3は例えば白金製で
温度が0℃から50”Cまで上昇するとその抵抗値は1
00Ωから120Ωまで変化する。
Each of the resistance temperature detectors RTD1 to RTD3 is made of platinum, for example, and its resistance value becomes 1 when the temperature rises from 0°C to 50"C.
It varies from 00Ω to 120Ω.

そして、この抵抗変化に伴って前記測温抵抗体RTD1
〜RTD3の各両端間電圧が例えば100mVから11
0mVまで変化するように前記定電流11の大きさが決
められている。尚、この各311温抵抗体RTD1〜R
TD3に並列接続された前記ダイオ−ドD1〜D3の各
順方向電圧降下(例えば約700mV>は前記測温抵抗
体RTD1〜RTD3の各端子間電圧より大きいので、
前記測温抵抗体RTD1〜RTD3の断線時以外は前記
ダイオードD 〜D3には電流は流れない。前記選択用
FETスイッチ81〜s3は第2図に示されるように順
次一定時間づつオンされて行き、これにより前記測温抵
抗体RTD1〜RTD3の各両端間電圧は順次選択され
て前記サンプルホールド回路2に入力されて行く。この
サンプルホールド回路2内では、前記各両端間電圧の入
力が開始される時点ではすでに前記コンデンサC1は入
力端子側に接続されており、入力開始と同時に前記バイ
パス用FETスイッチS4がターンオンされる。これに
より、前記両端間電圧は前記抵抗器R1を介さずに直接
前記コンデンサCに印加されるので、このコンデンサC
1は高速充電される。この充電がほぼ完了すると゛前記
バイパス用FETスイッチS4はターンオフされ、前記
抵抗器R1と前記コンデンサC1とはバイパスフィルタ
として動く。これにより、前記測温抵抗体 RTD1〜
RTD3側で発生したノイズは除去されるので前記コン
デンサC1の充電電圧は前記ノイズによって変動するこ
となく一定レベルに保持される。この状態において前記
リレーに1の接点が切替えられ、前記コンデンサC1は
出力端子に接続される。前記定電流発生器3が発生する
電流1 は前記抵抗器R2の電圧降下分が100mVに
なるように調整されている。従って、前記コンデンサC
1の充電電圧から100mVを差し引いた電圧が前記演
算増幅2SA1に入力される。
Then, along with this resistance change, the resistance temperature detector RTD1
~The voltage between each end of RTD3 is, for example, 100 mV to 11
The magnitude of the constant current 11 is determined so that it varies up to 0 mV. In addition, each of these 311 temperature resistance elements RTD1 to R
Since each forward voltage drop (for example, about 700 mV) of the diodes D1 to D3 connected in parallel to TD3 is larger than the voltage between the terminals of the temperature sensing resistors RTD1 to RTD3,
No current flows through the diodes D to D3 except when the resistance temperature detectors RTD1 to RTD3 are disconnected. The selection FET switches 81 to s3 are sequentially turned on for a certain period of time as shown in FIG. 2 will be input. In this sample and hold circuit 2, the capacitor C1 is already connected to the input terminal side at the time when the input of the voltages between both ends starts, and the bypass FET switch S4 is turned on at the same time as the input starts. As a result, the voltage across the capacitor C is directly applied to the capacitor C without passing through the resistor R1.
1 is fast charged. When this charging is almost completed, the bypass FET switch S4 is turned off, and the resistor R1 and capacitor C1 act as a bypass filter. Thereby, the temperature measuring resistor RTD1~
Since the noise generated on the RTD 3 side is removed, the charging voltage of the capacitor C1 is maintained at a constant level without being fluctuated by the noise. In this state, one contact of the relay is switched, and the capacitor C1 is connected to the output terminal. The current 1 generated by the constant current generator 3 is adjusted so that the voltage drop across the resistor R2 is 100 mV. Therefore, the capacitor C
A voltage obtained by subtracting 100 mV from the charging voltage of 1 is input to the operational amplifier 2SA1.

即ち、前述したように前記測温抵抗体RTD1〜RTD
3は温度が0℃から50℃に変化するとその端子II!
圧はioomvから110mVまで変化するから、この
両端[f圧のバイアス分である100mVを前記コンデ
ンItC,の充電電圧から差し引くようにして前記両端
間電圧の温度0℃時を基準とする変化分だけが前記演算
増幅器A1に入力されるようにしているのである。そし
て、この演算増幅器A1は前記両端間電圧の変化分をA
/D変換する。
That is, as described above, the resistance temperature detectors RTD1 to RTD
3 is the terminal II when the temperature changes from 0℃ to 50℃!
Since the voltage varies from ioomv to 110 mV, subtract 100 mV, which is the bias of the voltage across this terminal [f, from the charging voltage of the capacitor ItC, and calculate the change in voltage between the terminals based on the temperature at 0°C. is input to the operational amplifier A1. Then, this operational amplifier A1 converts the change in the voltage between both ends into A
/D conversion.

このようにして、前記測温抵抗体RTD、〜RTD3の
各両端間電圧が忠実にかつ短時間でサンプルホールドさ
れるので、正確かつ高速に測定を行なうことが可能とな
る。
In this way, the voltages across each of the temperature sensing resistors RTD, -RTD3 are sampled and held faithfully and in a short time, making it possible to perform measurements accurately and at high speed.

第3図は本発明に係る多温度計測装置の第2実施例を示
す回路図である。
FIG. 3 is a circuit diagram showing a second embodiment of the multi-temperature measuring device according to the present invention.

本実施例の前述した第1実施例との相違点は、定電流発
生器1から各測温抵抗体RTDl〜。
The difference between this embodiment and the first embodiment described above is from the constant current generator 1 to each resistance temperature detector RTD1.

RTD  へ供給される直流定電流11を利用して前記
測温抵抗体RTD、〜RTD3の各両端間電圧のバイア
ス分の補正を行なうようにしているところにある。即ち
、前記測温抵抗体RTD1〜。
The DC constant current 11 supplied to the RTD is used to correct the bias amount of the voltage across each of the temperature sensing resistors RTD, -RTD3. That is, the temperature measuring resistor RTD1~.

RTD30温度O℃時と等しい抵抗値100Ωを有する
抵抗器R5が、前記測温抵抗体RTD1〜RT[)  
に直列に接続されて前記定電流■1の供給を受けている
。従って、前記抵抗器R5の両端間には前記バイアス分
100mVが発生している。
A resistor R5 having a resistance value of 100Ω, which is equal to that at RTD30 temperature of 0°C, is connected to the resistance temperature detectors RTD1 to RT[).
is connected in series to receive the constant current (1). Therefore, the bias voltage of 100 mV is generated between both ends of the resistor R5.

この抵抗器R5の両端間には抵抗器R6とコンデンサC
2との直列接続回路が接続されており、前記コンデンサ
C2は前記バイアス分100mVと同レベルに充電され
る。そして、前記コンデンサC2は計測開始前に既に充
電を完了し、計測開始時にはリレーに2の接点切替えに
よって前記抵抗器R5から切り離されて、前記サンプル
ホールド回路2の前記コンデンサC1のマイナス端子と
接続される出力端子とアースとの間に、プラス側をアー
ス側に向けて接続されている。これにより、前記コンデ
ンサC1が前記サンプルボールド回路2の出力端子に接
続された時には、その充電電圧から前記コンデンサC2
に充電されているバイアス分100mVを差し引いた電
圧が前記演算増幅器A1に入力されてA/D変換される
ことになる。
A resistor R6 and a capacitor C are connected across this resistor R5.
2 is connected in series, and the capacitor C2 is charged to the same level as the bias voltage of 100 mV. The capacitor C2 has already been charged before the start of measurement, and when the measurement starts, it is disconnected from the resistor R5 by switching the contact point 2 of the relay and connected to the negative terminal of the capacitor C1 of the sample hold circuit 2. The positive side is connected between the output terminal and the ground, with the positive side facing the ground. As a result, when the capacitor C1 is connected to the output terminal of the sample bold circuit 2, the capacitor C2 is
A voltage obtained by subtracting 100 mV from the bias charged in the voltage is input to the operational amplifier A1 and A/D converted.

このような構成により、第1実施例のように別個に定電
流発生器3を設ける必要がないという利点がある。
This configuration has the advantage that there is no need to provide a separate constant current generator 3 as in the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば各測温抵抗体に一
定電流を流してこの各測温抵抗体の両端間にその抵抗値
にのみ対応した電圧を発生させ、この各電圧の1つを選
択用スイッチにより選択してフライングキャパシタ方式
によるサンプルホールド回路に入力し、このサンプルホ
ールド回路内においては入力した前記電圧を直接コンデ
ンサに印加することによりこのコンデンサの充電を速や
かに行ない、このコンデンサを入力端子から切り離す直
前において前記電圧を抵抗器を介して前記コンデンサに
印加することによりこのコンデンサの充電電圧のノイズ
による変動を防止するようにしているため、前記選択用
スイッチの影響が計測結果に誤差として現われなくなり
正確な計測結果を得ることができるとともに、前記サン
プルホールドを速やかに行なえるので1回の計測を短時
間で終了でき、従って多数の温度を高速で能率良く計測
することができる。
As explained above, according to the present invention, a constant current is passed through each resistance temperature sensor to generate a voltage between both ends of each resistance temperature sensor, which corresponds only to the resistance value of the resistance value. is selected by a selection switch and inputted to a sample-and-hold circuit using a flying capacitor method, and in this sample-and-hold circuit, the input voltage is directly applied to a capacitor to quickly charge this capacitor. By applying the voltage to the capacitor via the resistor immediately before disconnecting it from the input terminal, the capacitor's charging voltage is prevented from fluctuating due to noise, so the influence of the selection switch may cause errors in the measurement results. This makes it possible to obtain accurate measurement results, and because the sample hold can be carried out quickly, one measurement can be completed in a short time, and therefore a large number of temperatures can be measured quickly and efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の回路図、第2図は同第1
実施例のタイムチャート、第3図は本発明の第2実施例
の回路図、第4図は従来装置の回路図である。 1.3・・・定電流発生器、2・・・サンプルボールド
回路、RTD1〜RTD3・・・測温抵抗体、81〜$
3・・・選択用FETスイッチ、s4・・・バイパス用
FETスイッヂ、R1・・・抵抗器、cl、c2・・・
コンデンサ、 K、に2・・・リレー、A1・・・演算
増幅器、R〜R・・・抵抗器。 出願人代理人  猪  股    清 第2図
FIG. 1 is a circuit diagram of a first embodiment of the present invention, and FIG. 2 is a circuit diagram of the first embodiment of the present invention.
FIG. 3 is a circuit diagram of a second embodiment of the present invention, and FIG. 4 is a circuit diagram of a conventional device. 1.3...Constant current generator, 2...Sample bold circuit, RTD1~RTD3...Resistance temperature detector, 81~$
3...FET switch for selection, s4...FET switch for bypass, R1...Resistor, cl, c2...
Capacitor, K, 2...Relay, A1...Operation amplifier, R~R...Resistor. Applicant's agent Kiyoshi Inomata Figure 2

Claims (1)

【特許請求の範囲】 直列接続された複数の測温抵抗体と、 前記測温抵抗体に一定電流を流す定電流発生器と、 前記各測温抵抗体の両端からそれぞれいずれか1つのみ
がオン状態となるように制御される選択用スイッチを介
して前記各両端間に生じた各電圧の1つを入力され、こ
の入力した電圧によりコンデンサを充電し充電完了後こ
のコンデンサを入力端子から切り離すことにより前記電
圧を保持するものであって、入力された前記電圧を前記
コンデンサに直接印加することにより前記充電を行ない
、前記コンデンサの切り離し直前において前記電圧を抵
抗器を介して前記コンデンサに印加するようにしたサン
プルホールド回路と、 このサンプルホールド回路により保持された前記電圧を
所定の信号形式に変換する出力回路とを有する多温度計
測装置。
[Scope of Claims] A plurality of resistance temperature detectors connected in series; a constant current generator that supplies a constant current to the resistance temperature detector; One of the voltages generated between the two terminals is input through a selection switch controlled to be in the on state, and the input voltage charges the capacitor, and after charging is completed, the capacitor is disconnected from the input terminal. The voltage is held by applying the input voltage directly to the capacitor to charge the capacitor, and immediately before disconnecting the capacitor, the voltage is applied to the capacitor via a resistor. A multi-temperature measuring device comprising: a sample-hold circuit configured as described above; and an output circuit that converts the voltage held by the sample-hold circuit into a predetermined signal format.
JP6543885A 1985-03-29 1985-03-29 Multitemperature measuring instrument Pending JPS61223622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6543885A JPS61223622A (en) 1985-03-29 1985-03-29 Multitemperature measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6543885A JPS61223622A (en) 1985-03-29 1985-03-29 Multitemperature measuring instrument

Publications (1)

Publication Number Publication Date
JPS61223622A true JPS61223622A (en) 1986-10-04

Family

ID=13287128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6543885A Pending JPS61223622A (en) 1985-03-29 1985-03-29 Multitemperature measuring instrument

Country Status (1)

Country Link
JP (1) JPS61223622A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504048A (en) * 1989-10-05 1991-09-05 エンドレス ウント ハウザー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー temperature measurement circuit
EP0836085A1 (en) * 1996-10-09 1998-04-15 Horst Prof. Dr. Ziegler Resistance measuring circuit and resistance measuring method
JP2007198946A (en) * 2006-01-27 2007-08-09 Omron Corp Input circuit and measurement apparatus
JP2007327809A (en) * 2006-06-07 2007-12-20 Hayashi Denko Kk Multi-channel temperature measuring circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03504048A (en) * 1989-10-05 1991-09-05 エンドレス ウント ハウザー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー temperature measurement circuit
EP0836085A1 (en) * 1996-10-09 1998-04-15 Horst Prof. Dr. Ziegler Resistance measuring circuit and resistance measuring method
JP2007198946A (en) * 2006-01-27 2007-08-09 Omron Corp Input circuit and measurement apparatus
JP2007327809A (en) * 2006-06-07 2007-12-20 Hayashi Denko Kk Multi-channel temperature measuring circuit
JP4705522B2 (en) * 2006-06-07 2011-06-22 林電工株式会社 Multi-channel temperature measurement circuit

Similar Documents

Publication Publication Date Title
US4082998A (en) Dual slope integration circuit
US5481199A (en) System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages
JPH07159460A (en) Input device for resistance sensor
US4150433A (en) Automatic common mode rejection in an analog measuring system
US4217543A (en) Digital conductance meter
US20110001501A1 (en) Internal self-check resistance bridge and method
US5448173A (en) Triple-probe plasma measuring apparatus for correcting space potential errors
US5091698A (en) Circuit for measuring the internal resistance of a lambda probe
JPS61223622A (en) Multitemperature measuring instrument
US4697151A (en) Method and apparatus for testing operational amplifier leakage current
JPH04248472A (en) Method of measuring resistance value
US3928795A (en) Contact tester
US3790887A (en) Amplifying and holding measurement circuit
JPS62261968A (en) Measuring instrument for physical quantity
US2866948A (en) Test circuit for interconnected components
US2677102A (en) Transfer conductance test set
US7091725B2 (en) Fast, high-resolution, indirect measurement of a physical value
SU1104440A1 (en) Method and device for measuring resistance
JPH0443791Y2 (en)
SU1661588A1 (en) Apparatus to measure temperature difference
JPS5825353Y2 (en) Micro resistance change measuring device
JP2595858B2 (en) Temperature measurement circuit
SU1030760A1 (en) Camera exposure measuring instrument
US3495169A (en) Modified kelvin bridge with yoke circuit resistance for residual resistance compensation
SU1076986A1 (en) Method of measuring voltage of chemical source of electric energy