JPS61223278A - Dehumidifier device for compressed air - Google Patents

Dehumidifier device for compressed air

Info

Publication number
JPS61223278A
JPS61223278A JP6476486A JP6476486A JPS61223278A JP S61223278 A JPS61223278 A JP S61223278A JP 6476486 A JP6476486 A JP 6476486A JP 6476486 A JP6476486 A JP 6476486A JP S61223278 A JPS61223278 A JP S61223278A
Authority
JP
Japan
Prior art keywords
compressed air
compressor
engine
air
receiver tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6476486A
Other languages
Japanese (ja)
Inventor
Shinji Hatano
波田野 伸二
Toru Kanbayashi
徹 神林
Michio Sayama
佐山 道雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP6476486A priority Critical patent/JPS61223278A/en
Publication of JPS61223278A publication Critical patent/JPS61223278A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Abstract

PURPOSE:To carry out the heating and drying of compressed air efficiently by passing the compressed air which has passed an after-cooler through the path of exhaust heat medium through which the exhaust gas of an engine passes, in a package type compressor not provided with a refrigerating cycle. CONSTITUTION:A package type oil-cooled compressor 1 is driven by an engine 2, and discharges compressed gas containing lubricating oil into a receiver tank 3. In this tank 3 lubricating oil is separated from the compressed gas, and is taken out from the bottom of the receiver tank 3, and then is supplied to the compressor 1 via an oil-cooler 7. To the oil-cooler 7 a radiator 8 is juxtaposed, and also an after-cooler 4 which cools the compressed gas is juxtaposed. In the above, an after-warmer 6 is installed in the exhaust muffler 13 provided in the exhaust system of an engine 2, and the inlet is communicated to the outlet of compressed gas of the receiver tank 3 via the after-cooler 4.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、エンジン駆動圧縮機における圧縮空気の除湿
装置に関し、より詳しくは圧縮機及びエンジンその他の
関連機器を外気の吸気孔及び排気孔を有する箱体内に収
納した冷凍サイクルを備えないパッケージ型圧縮機にお
いて空冷式の熱交換器から成るアフタクーラ通過後の凝
縮水分が除去され飽和状態にある圧縮空気を、前記エン
ジンの排気通路を通過する加熱された廃熱媒体たる排気
ガスと熱交換して加熱し相対湿度の低い実用範囲では水
分の凝縮が生じない程度に充分乾燥された空気を供給す
ることのできるエンジン駆動圧縮機における冷凍サイク
ルを有しない圧縮空気の除湿装置に関する。
The present invention relates to a dehumidifying device for compressed air in an engine-driven compressor, and more specifically to a package type compressor without a refrigeration cycle, in which the compressor, engine, and other related equipment are housed in a box having outside air intake and exhaust holes. After passing through the aftercooler, which is an air-cooled heat exchanger, the compressed air is saturated and the condensed water is removed, and the compressed air is heated by exchanging heat with exhaust gas, which is a heated waste heat medium, that passes through the exhaust passage of the engine. The present invention relates to a dehumidifying device for compressed air without a refrigeration cycle in an engine-driven compressor that can supply air that is sufficiently dry to the extent that moisture condensation does not occur in a practical range of low relative humidity.

【従来技術及び問題点】[Prior art and problems]

従来この種の圧縮空気の除湿装置は、圧m機の吐出側に
設けたアフタクーラにより吐出空気を冷却し、ドレン分
離後、ダスト及び油ミストを分離し、ドラ゛イヤーへ送
るように構成され、このドライヤーは、−火熱交換器、
二次熱交換器(冷凍機)から成り、二次熱交換器におい
て、圧縮気体は低温の冷媒ガスと熱交換され低温の除湿
された飽和1  圧m*体とし、再び一次熱交換器へ導
入される。 この−次熱交換話では、ドライヤーへ導入した高温圧縮
気体と、上述冷凍機から成る二次熱交換器で冷却された
低温圧縮気体との熱交換により、ドライヤーへ導入した
高温圧縮気体を得ようとする・ ものである。 かような従来の装置にあっては、上述のように、アフタ
クーラ、ドレン分離機、及び冷凍機から成る二次熱交換
器と、−次熱交換語等を有するドライヤーを必須とする
ため、装置が複雑かつ大型となり、結局圧縮機ユニット
そのものも全体として大型となるため装置全体をコンパ
クト化できず、必然的に高価かつ保守管理が繁雑なもの
となり、更にランニングコストも高価なものとなる等の
欠点を有していた。 また、使用に供される圧縮空気は、使用可能限度比加熱
し相対湿度を低くすべきであるが、上述の一次熱交換器
における熱媒は、アフタクーラ通過後の冷却された吐出
空気であり必然的に温度の低いものとなり充分な加熱に
よる除湿効果が得られないものであった。 そこで、上述ドライヤー内の一次熱交換器を圧縮機の吐
出側に設け、ドランヤー内の冷凍機から成る二次熱交換
器により吐出空気を冷却し、前記−次熱父換冊で再加熱
する手段が提案されたが、これによれば、−火熱交換器
における再加熱を高温にすることは可能であるが、冷凍
機から成る二次熱交換器を有するドライヤーを不可欠の
ものとするため、設備費、メンンテナンス、ランニング
コスト及び設備スペースの問題が解決されず、可搬式の
パッケージ型とすることがむずかしく、又冷凍機の負担
が増大するという欠点を残すものであった。 また、実開昭55−154387号のごとく、冷凍サイ
クルによって除湿された圧縮空気を冷凍サイクル内の凝
縮器の冷却ファンにより導入した大気によって、凝縮器
の近傍に設けた加熱器で加熱しようという手段も見られ
るが、冷凍サイクルを用いる点で前記冷凍機から成る構
成におけろ欠点が付随し、また、前記大気は圧縮空気の
加熱媒体としては温度が低く、加熱によって露点温度と
の差を広げるためには、充分な冷却を必要とし、□  
冷凍機の負担が増大すると共にコンパクト化でき′  
ず、いわゆるパッケージ型の圧WJmtに適用できない
等の問題を残すものであった。
Conventionally, this type of compressed air dehumidification device is configured to cool the discharged air with an aftercooler provided on the discharge side of the compressor, and after separating the drain, dust and oil mist are separated and sent to the dryer. This dryer includes - a fire heat exchanger;
It consists of a secondary heat exchanger (refrigerator). In the secondary heat exchanger, the compressed gas is heat exchanged with low-temperature refrigerant gas to become a low-temperature, dehumidified, saturated 1-pressure m* body, and then introduced into the primary heat exchanger again. be done. In this secondary heat exchange story, we will obtain the high-temperature compressed gas introduced into the dryer by heat exchange between the high-temperature compressed gas introduced into the dryer and the low-temperature compressed gas cooled by the secondary heat exchanger consisting of the above-mentioned refrigerator. It is something that is. As mentioned above, such conventional equipment requires a secondary heat exchanger consisting of an aftercooler, a drain separator, and a refrigerator, and a dryer having a secondary heat exchanger. becomes complicated and large, and as a result, the compressor unit itself becomes large as a whole, making it impossible to downsize the entire device, inevitably making it expensive and complicated to maintain, and furthermore, running costs become expensive. It had drawbacks. In addition, the compressed air to be used should be heated to a usable limit and have a low relative humidity, but the heat medium in the above-mentioned primary heat exchanger is the cooled discharge air after passing through the aftercooler. The temperature was so low that a sufficient dehumidifying effect by heating could not be obtained. Therefore, the above-mentioned primary heat exchanger in the dryer is provided on the discharge side of the compressor, and the discharged air is cooled by a secondary heat exchanger consisting of a refrigerator in the dryer, and then reheated by the secondary heat exchanger. According to this proposal, it is possible to reheat at a high temperature with a fire heat exchanger, but since a dryer with a secondary heat exchanger consisting of a refrigerator is essential, the equipment The problems of costs, maintenance, running costs, and equipment space remain unsolved, and it is difficult to create a portable package type, and there remains the disadvantage that the burden on the refrigerator increases. In addition, as in Utility Model Application No. 55-154387, there is a method in which the compressed air dehumidified in the refrigeration cycle is heated by the air introduced by the cooling fan of the condenser in the refrigeration cycle, using a heater installed near the condenser. However, since a refrigeration cycle is used, the configuration consisting of the refrigerator has disadvantages, and the temperature of the atmosphere is low enough to be used as a heating medium for compressed air, and heating widens the difference from the dew point temperature. Sufficient cooling is required to
The load on the refrigerator increases and it cannot be made more compact.
First, there remain problems such as the inability to apply the pressure WJmt of a so-called package type.

【目的】【the purpose】

本発明は、上記従来の欠点を解消するためになされたも
ので、冷凍サイクルを有しないパッケージ型の水冷式エ
ンジン駆動圧縮機において、加熱媒体を得るための特別
な手段を用いることな〈従来そのまま単に廃棄されてい
た圧縮機駆動源たるエンジンから排出される廃熱を有効
利用した圧縮空気の加熱乾燥に重点を置き、相対湿度を
低下させかつ露点温度との差を広げて実用上における配
管途中並びに空気工具中での水分の凝縮を防止すること
のできる圧縮機の除湿装置を提供すると同時に、この除
湿装置を、上記エンジン駆動圧縮機等−切の機器と共に
一つのパッケージ内に収納したユニットとして、設置場
所を問わず、移動可能な画期的な乾燥空気供給用圧縮機
ユニットを提供することを目的とするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks of the conventional technology. We focused on heating and drying compressed air by making effective use of the waste heat emitted from the engine that drives the compressor, which had previously been simply discarded.We lowered the relative humidity and widened the difference with the dew point temperature, making it easier to use in practical piping. In addition, the present invention provides a dehumidifying device for a compressor that can prevent moisture condensation in an air tool, and at the same time provides a unit in which this dehumidifying device is housed in one package together with the engine-driven compressor, etc. The purpose of this invention is to provide an innovative dry air supply compressor unit that is movable regardless of the installation location.

【構成】【composition】

上記目的を達成するための本発明の構成を図示の実施例
に基づき説明すると、圧縮機1の吐出口に連通するレシ
ーバタンク3と、該レシーバタンク3の圧縮空気の出口
に連通ずる空冷式の熱又換器から成るアフタクーラ4を
有し、且つ、エンジン2に直結駆動される圧縮機及び関
連機器を外気の吸気孔及び排気孔を有する箱体内に収納
した冷凍サイクルを備えないパッケージ型圧縮機におい
て、前記エンジンの排気通路を通過する高温の排気ガス
たる廃熱媒体の経路13に、前記アフタクーラ通過後の
圧縮空気を管路6を介して通過せしめて、前記廃熱へ)
ら成る熱媒体と熱交換し、圧縮空気を加熱乾燥すること
を特徴とする。従って、圧縮空気は、空冷式の熱又換器
から成る7フタク、   −ラ4へ導入され核部で冷却
され飽和状態となる。 次いで、前記管ls6へ送給され、エンジン2の高温の
排気ガスと熱交換し、加熱、乾燥されサービスエアーと
して排出される。
The structure of the present invention for achieving the above object will be explained based on the illustrated embodiment. The receiver tank 3 communicates with the discharge port of the compressor 1, and the air-cooled receiver tank 3 communicates with the compressed air outlet of the receiver tank 3. A packaged compressor without a refrigeration cycle, which has an aftercooler 4 consisting of a heat exchanger, and a compressor directly connected to and driven by the engine 2 and related equipment housed in a box body having outside air intake and exhaust holes. The compressed air after passing through the aftercooler is passed through the pipe line 6 into the path 13 of the waste heat medium, which is the high-temperature exhaust gas passing through the exhaust passage of the engine, to the waste heat)
It is characterized by heating and drying compressed air by exchanging heat with a heat medium consisting of: Therefore, the compressed air is introduced into the air-cooled heat exchanger 4, where it is cooled at the core and brought to a saturated state. Next, the air is fed to the pipe ls6, where it exchanges heat with the high-temperature exhaust gas of the engine 2, is heated and dried, and is discharged as service air.

【*施例】[*Example]

以下、本発明の詳細を図示の実施例にもとづ艶説明する
。なお図において、令は空気配管、÷は潤滑油の配管、
◆は冷却水の配管、÷ばエンジンの排気用配管及び流れ
の方向を示す。 気の吸気孔及び排気孔を有する箱体内に収納したいわゆ
るパッケージ型(防音型)油冷式圧縮機を示し、1は油
冷式圧縮機で、水冷式エンジン2に直結駆動され、この
エンジン2は、マフラー13、ラジェータ8を備え、フ
ァン9により、ラジェータ8とエンジン2間を循環する
冷却水により冷却される。−万、圧!mailの吐出口
にはレシーバタンク3が連結され、このレシーバタンク
3内に設けた図示せざるセパレータにより圧m気体と共
に吐出され/′l:潤滑油が分離され、潤滑油はレシー
バタンク3底部より管路を介してオイルクーラ7へ送ら
れ、核部で冷却された後再び圧縮機1内の圧111室に
噴射、供給され該部の潤滑、密封、冷却の後、再び吐出
気体と共にレシーバタンク3へ吐出され循環使用される
。このオイルクーラ7は、ラジェータ8に並設され、又
、オイルクーラ7に、レシーバタンク3の圧縮気体の出
口から管路を介して連通ずるアフタクーラ4が並設され
ている。 オイルクーラ7、アフタクーラ4はラジェータ8と同様
、ファン9により空冷される。 以上の圧縮機1及びエンジン等の関連機器は外気の吸気
孔及び排気孔を有する図示せざる箱体内に収納され吸気
孔より外気がラジェータ8のファン9あるいは、図示せ
ざる換気扇により導入され、排気孔より排出して、箱体
内を換気し、エンジン2あるいは圧縮機1等の機器から
発生した熱で箱体内の温度が上昇することを防ぐように
なっている。 そして、空冷式の熱交換器から成るアフタクーラ4を介
してレシーバタンク3の圧縮気体の出口に連通ずる熱交
換器を構成するアフタウオーマ6は、エンジン2の排気
通路である排気マフラー13内に設けられている。 なお、上記実施例ではラジェータ8を有する水式エンジ
ン駆動圧縮機にも適用することができることは言うまで
もない。 なお、15は燃料タンクを示し、5はドレントラップで
アフタクーラ4及びアフタウオーマ6の流路の入口間の
管路を分岐して設けられており、アフタクーラ4通過後
の圧縮空気中の凝縮水分が分離される。また14はエア
クリーナで、圧縮機の吸入口に設けられる。 次にその作用について述べると、圧縮空気は、レシーバ
タンク3内のセパレータにより潤滑油分と分離され空冷
式の熱交換器から成るアフタクーラ4へ導入され核部で
冷却され飽和状態となる。 次いで、飽和状態にある圧縮空気はドレントラップ5に
より凝縮水分が分離されたのちエンジン2の排気通路で
ある排気マフラー13内に設けられたアフタウオーマ6
の流路の入口に送られ、圧縮気体はマフラー13内を通
過する際約400℃〜550℃の冨温のエンジンの排恒
と熱交換して加熱、乾燥されサービスエアーとしてアフ
タウオーマ6の流路の出口より排出されろ。
Hereinafter, details of the present invention will be explained based on illustrated embodiments. In addition, in the diagram, the value is air piping, ÷ is lubricating oil piping,
◆ indicates cooling water piping, ÷ indicates engine exhaust piping and flow direction. The figure shows a so-called package type (soundproof type) oil-cooled compressor housed in a box body having air intake holes and exhaust holes. Reference numeral 1 denotes an oil-cooled compressor, which is directly connected to and driven by a water-cooled engine 2. includes a muffler 13 and a radiator 8, and is cooled by cooling water that circulates between the radiator 8 and the engine 2 by a fan 9. - Ten thousand, pressure! A receiver tank 3 is connected to the outlet of the mail, and a separator (not shown) installed in the receiver tank 3 discharges the lubricating oil together with the pressure m gas. The oil is sent to the oil cooler 7 via a pipe, cooled in the core, and then injected and supplied again to the pressure chamber 111 in the compressor 1. After lubricating, sealing, and cooling that part, it is sent to the receiver tank together with the discharged gas again. 3 and used for circulation. The oil cooler 7 is arranged in parallel with the radiator 8, and an aftercooler 4 is arranged in parallel with the oil cooler 7, which communicates with the compressed gas outlet of the receiver tank 3 via a pipe. Like the radiator 8, the oil cooler 7 and the aftercooler 4 are air-cooled by a fan 9. The above-mentioned compressor 1 and related equipment such as the engine are housed in a box body (not shown) that has an intake hole and an exhaust hole for outside air, and outside air is introduced through the intake hole by a fan 9 of the radiator 8 or a ventilation fan (not shown), and then exhausted. The air is discharged from the hole to ventilate the inside of the box to prevent the temperature inside the box from rising due to heat generated from equipment such as the engine 2 or compressor 1. The aftercooler 6, which constitutes a heat exchanger that communicates with the compressed gas outlet of the receiver tank 3 via the aftercooler 4, which is an air-cooled heat exchanger, is provided in the exhaust muffler 13, which is the exhaust passage of the engine 2. ing. It goes without saying that the above embodiment can also be applied to a water-type engine-driven compressor having a radiator 8. In addition, 15 indicates a fuel tank, and 5 is a drain trap, which is provided by branching the pipe line between the inlets of the flow paths of the aftercooler 4 and the aftercooler 6, and the condensed moisture in the compressed air after passing through the aftercooler 4 is separated. be done. Further, 14 is an air cleaner provided at the suction port of the compressor. Next, the operation will be described. The compressed air is separated from the lubricating oil by a separator in the receiver tank 3, and introduced into the aftercooler 4, which is an air-cooled heat exchanger, where it is cooled at the core and becomes saturated. Next, the saturated compressed air is separated from condensed moisture by a drain trap 5, and then passed to an after-warmer 6 provided in an exhaust muffler 13, which is an exhaust passage of the engine 2.
When the compressed gas passes through the muffler 13, it exchanges heat with the exhaust gas of the engine at a temperature of approximately 400°C to 550°C, is heated and dried, and is sent to the flow path of the after-heater 6 as service air. be ejected from the exit.

【効果】【effect】

以上詳述したように本発明による圧縮空気の除湿装置は
、圧縮機の吐出口に連通するレシーバタンクと、該レシ
ーバタンクの圧縮空気の出口に連通ずる空冷式の熱交換
装から成るアフタクーラを有し、且つ、エンジンに直結
駆動される圧縮機及び関連機器を外気の吸気孔及び排気
孔を有する箱、  体内に収納した冷凍サイクルを備え
ないパッケージ型圧m機において、前記エンジンの排気
通路を通過する高温の廃熱媒体の経路に、前記アフタク
ーラ通過後の圧縮空気を管路を介して通過せしめて、前
記廃熱から成る熱媒体と熱交換し圧縮空気を加熱乾燥す
るよう構成したもので、アフタクーラにより飽和状態に
ある圧縮空気を、高温の廃熱媒体すなわち排気ガスと熱
交換し、加熱乾燥するので、特別な熱源あるいは大型の
熱交換盤を必要とせずに加熱媒体を得るための特別な手
段を用いることな〈従来そのまま単に廃棄されていた圧
縮機、駆動源たるエンジンから排出される廃熱を有効利
用し圧縮空気の相対湿度を低下させかつ露点温度との差
を広げ、実用上における配管途中並びに空気工具中での
水分の凝縮を防止することができる。また廃熱媒体その
ものが高温であるため、圧縮空気の加熱手段そのものが
小さくて済むので、空冷式の熱交換装から成るアフタク
ーラと共にコンパクトかつ安価な構成により極めて乾燥
度の高い乾燥圧縮空気を得ることができ、また上記除湿
装置を、エンジン駆動圧縮機等−切の機器と共に一つの
パッケージ内に収納したユニットとして、設置場所を問
わず、移動可能な画期的な乾燥空気供給用圧縮機ユニッ
トを提供することができ、その実用上の効果は大なるも
のである。
As described in detail above, the compressed air dehumidification device according to the present invention includes a receiver tank that communicates with the discharge port of the compressor, and an aftercooler that includes an air-cooled heat exchange device that communicates with the compressed air outlet of the receiver tank. In a package-type compressor without a refrigeration cycle in which a compressor and related equipment directly connected to the engine and related equipment are housed in a box with intake and exhaust holes for outside air, the air passes through the exhaust passage of the engine. The compressed air after passing through the aftercooler is passed through a pipe line in the path of the high-temperature waste heat medium, and the compressed air is heated and dried by exchanging heat with the heat medium made of the waste heat, The aftercooler exchanges heat with saturated compressed air with the high-temperature waste heat medium, or exhaust gas, and heats and dries it, so a special heat exchanger is used to obtain the heating medium without the need for a special heat source or large heat exchange board. By effectively utilizing the waste heat emitted from the compressor and the engine, which is the drive source, and reducing the relative humidity of the compressed air and widening the difference between the dew point and the It is possible to prevent moisture from condensing in the middle of piping and in air tools. In addition, since the waste heat medium itself is high temperature, the compressed air heating means itself can be small, so it is possible to obtain extremely dry compressed air with a compact and inexpensive structure together with the aftercooler consisting of an air-cooled heat exchange device. In addition, the above dehumidifier is housed in one package along with other equipment such as an engine-driven compressor, creating a revolutionary dry air supply compressor unit that can be moved regardless of the installation location. can be provided, and its practical effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す概略図である。 The figure is a schematic diagram showing an embodiment of the invention.

Claims (1)

【特許請求の範囲】 圧縮機の吐出口に連通するレシーバタンクと、該レシー
バタンクの圧縮空気の出口に連通する空冷式の熱交換器
から成るアフタクーラを有し、且つ、エンジンに直結駆
動される圧縮機及び関連機器を外気の吸気孔及び排気孔
を有する箱体内に収納した冷凍サイクルを備えないパッ
ケージ型圧縮機において、 前記エンジンの排気通路を通過する廃熱媒体の経路に、
前記アフタクーラ通過後の圧縮空気を管路を介して通過
せしめて、前記廃熱から成る熱媒体と熱交換し、圧縮空
気を加熱乾燥することを特徴とする圧縮空気の除湿装置
[Claims] It has an aftercooler consisting of a receiver tank communicating with the discharge port of the compressor and an air-cooled heat exchanger communicating with the compressed air outlet of the receiver tank, and is directly connected and driven by the engine. In a packaged compressor without a refrigeration cycle in which the compressor and related equipment are housed in a box having outside air intake holes and exhaust holes, the path of the waste heat medium passing through the exhaust passage of the engine includes:
A dehumidifying device for compressed air, characterized in that the compressed air after passing through the aftercooler is passed through a conduit to exchange heat with a heat medium made of the waste heat, thereby heating and drying the compressed air.
JP6476486A 1986-03-25 1986-03-25 Dehumidifier device for compressed air Pending JPS61223278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6476486A JPS61223278A (en) 1986-03-25 1986-03-25 Dehumidifier device for compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6476486A JPS61223278A (en) 1986-03-25 1986-03-25 Dehumidifier device for compressed air

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58043175A Division JPS59170482A (en) 1983-03-17 1983-03-17 Dehumidifier for compressed air

Publications (1)

Publication Number Publication Date
JPS61223278A true JPS61223278A (en) 1986-10-03

Family

ID=13267580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6476486A Pending JPS61223278A (en) 1986-03-25 1986-03-25 Dehumidifier device for compressed air

Country Status (1)

Country Link
JP (1) JPS61223278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161118A1 (en) * 2016-03-17 2017-09-21 Powerphase Llc Gas turbine modular air cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017161118A1 (en) * 2016-03-17 2017-09-21 Powerphase Llc Gas turbine modular air cooling system
US10760490B2 (en) 2016-03-17 2020-09-01 Powerphase Llc Gas turbine efficiency and power augmentation system's modular air cooling system and methods of using the same

Similar Documents

Publication Publication Date Title
JP5049495B2 (en) Artificial drying method and system for wood
RU1778453C (en) Method of processing air in room
US6082094A (en) Ventilation system for acoustic enclosures for combustion turbines and air breathing heat engines
AR023091A1 (en) AIR DEHUMIDIFIER ASSEMBLY.
EP0799635A1 (en) Method and device for drying a compressed gas
US3789621A (en) Air conditioning apparatus
US1994515A (en) Air conditioning system
JPS61223278A (en) Dehumidifier device for compressed air
JP4231345B2 (en) Engine driven compressor
JPH0245508Y2 (en)
EP0943882A3 (en) Dry cooling tower for the hybrid condensation of a refrigerant
JPS61223277A (en) Dehumidifier device for compressed air
JPS59170482A (en) Dehumidifier for compressed air
JP2002227788A (en) Screw compressor with air dryer
JPS6027853Y2 (en) air conditioner
SU1681019A1 (en) Air conditioning device for mines
SU892175A1 (en) Sealed object cooling system
CN217715211U (en) High-efficient dehumidifier suitable for under low humidity operating mode
RU2229546C1 (en) Apparatus for closed-circuit heat recuperation in papermaking machine ventilation system
JPS6349148B2 (en)
JPH0118187Y2 (en)
JP3289155B2 (en) Low-temperature air generation method and apparatus
SU1679055A1 (en) Compressed air drying device
RU2247907C2 (en) Compressed gas dehumidifier and method of its operation
SU1112190A1 (en) Apparatus for utilizing heat energy