JPS61223250A - Control valve for multicylinder stirring engine - Google Patents

Control valve for multicylinder stirring engine

Info

Publication number
JPS61223250A
JPS61223250A JP6277485A JP6277485A JPS61223250A JP S61223250 A JPS61223250 A JP S61223250A JP 6277485 A JP6277485 A JP 6277485A JP 6277485 A JP6277485 A JP 6277485A JP S61223250 A JPS61223250 A JP S61223250A
Authority
JP
Japan
Prior art keywords
pressure
valve
low
control valve
pressure piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277485A
Other languages
Japanese (ja)
Other versions
JPH0330715B2 (en
Inventor
Masabumi Nogawa
正文 野川
Tetsumi Watanabe
渡辺 哲美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP6277485A priority Critical patent/JPS61223250A/en
Publication of JPS61223250A publication Critical patent/JPS61223250A/en
Publication of JPH0330715B2 publication Critical patent/JPH0330715B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/045Controlling
    • F02G1/05Controlling by varying the rate of flow or quantity of the working gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Driven Valves (AREA)
  • Lift Valve (AREA)

Abstract

PURPOSE:To reduce the leak of gas and heat to the min. by constituting the captioned control valve so that a bypass passage is opened when the ratio between the max. pressure and the min. pressure in each operation space of a multicylinder Stirling engine exceeds a prescribed value and the working gas in the max. pressure pipe is discharged to the min. pressure pipe. CONSTITUTION:The captioned control valve 30 is installed between a conduit 23 connected between the compression space of each cylinder of a multicylinder Stirling engine and an auxiliary conduit 21 connected to a feeding conduit communicating to the compression space, and a valve 50 is accommodated in shiftable ways into a housing 40. Said valve 50 is constituted of a stepped piston, and the high and low pressure cylinder chambers 43 and 44 can be partitioned by the front and rear edge surfaces 51 and 52 and the inner surface of the housing 40. The ratio R1 between the areas S1 and S2 of the edge surfaces 51 and 52 is set a little smaller than the ratio R2 in ordinary case between the min. pressure P1 and the max. pressure P2 in the operation space of each cylinder. Further, a bypass passage 54 is formed onto the side peripheral surface of the valve 50, and the bypass ports 41 and 42 are allowed to communicate when the valve 50 is shifted.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明はスターリング機関の各作動空間の圧力を平衡を
保つように制御する制御弁に関するものであり、複数の
作動空間のサイクル最高圧力の平衡を保つ必要のある多
気筒複動型スターリング機関等に利用される。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a control valve that controls the pressure in each working space of a Stirling engine so as to maintain equilibrium. It is used in multi-cylinder double-acting Stirling engines, etc., which require balance of maximum cycle pressure.

(従来の技術) 従来この種の装置としては、特開昭57−83647号
公報に示されるものがある。この従来の圧力平衡装置で
は、第3図に示すごとく、各作動空間のサイクル最高圧
力を各シリンダ60に導いている。そして少なくとも一
つの作動空間の最高圧力が変化して平衡が崩れた場合に
、スプリング61の付勢力により摺動部材62が摺動し
、放出孔63を通じて高圧ガスを低圧回路側に放出して
圧力平衡を保つている。
(Prior Art) A conventional device of this type is disclosed in Japanese Patent Application Laid-Open No. 57-83647. In this conventional pressure balancing device, the cycle maximum pressure of each working space is guided to each cylinder 60, as shown in FIG. When the maximum pressure in at least one working space changes and the equilibrium is disrupted, the sliding member 62 slides due to the biasing force of the spring 61, and releases high pressure gas to the low pressure circuit side through the release hole 63, thereby reducing the pressure. Maintaining equilibrium.

(発明が解決しようとする問題点) 上記した従来の装置では、シリンダ、スプリング、摺動
部材等の圧力調整機構がスターリング機関の作動空間の
数と同数必要であり、多気筒スターリング機関において
は構造が複雑化するという問題点があった。また上記装
置においては、例え機関運転に支障が無い程度の微小の
気筒間サイクル最高圧力差であっても、それが発生して
いれば、常に全作動空間のサイクル最高圧力のうち最も
低い作動空間の圧力に合わせるように制御する。従って
放出孔を通してのガスおよび熱の漏れが多く、機関性能
が低下するという不具合があった。
(Problems to be Solved by the Invention) In the conventional device described above, the number of pressure adjustment mechanisms such as cylinders, springs, and sliding members is required to be the same as the number of working spaces of the Stirling engine. The problem was that it became complicated. In addition, in the above device, even if there is a small cycle maximum pressure difference between cylinders that does not interfere with engine operation, if it occurs, the working space is always the lowest among the cycle maximum pressures of all working spaces. control to match the pressure. Therefore, a large amount of gas and heat leaked through the discharge hole, resulting in a problem that the engine performance deteriorated.

本発明は上記問題点に鑑みてなされたものであり、簡単
、安価な構造で、自動的に調整が行なわれ、かつガスお
よび熱の漏れを最小限に抑えた圧力平衡装置を提供する
ことを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a pressure equalization device that has a simple, inexpensive structure, automatically adjusts, and minimizes leakage of gas and heat. purpose.

[発明の構成] (問題点を解決するための手段) 本発明の1lJIIIl弁は、多気筒スターリング機関
の作動空間から作動ガスが出る逆止弁を介して各該作動
空間と接続し、全ての空間中の最高圧力が管内圧力とな
る最高圧力管に接続した高圧シリンダ室と、該作動空間
への作動ガスが入る逆止弁を介して各該作動空間と接続
し、全ての該作動空間中の最小圧力が管内圧力となる最
小圧力管に接続した低圧シリンダ室と、該最高圧力管お
よび該最小圧力管とを連通するバイパス通路とをもつハ
ウジングと、 該^圧シリンダ室内を摺動する高圧ピストン部と該低圧
シリンダ室内を摺動する低圧ピストン部を有し、該高圧
ピストン部および該低圧ピストン部の受ける相対圧力で
該ハウジング^を正逆方向に移動し、該高圧ピストン部
の受ける全押力が該低圧ピストン部の受ける全押力より
大きい場合の移動により該バイパス通路を開き、逆の場
合に該バイパス通路を閉じる弁とを具備することを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) The 1lJIIIl valve of the present invention is connected to each working space of a multi-cylinder Stirling engine through a check valve from which working gas exits, and all A high-pressure cylinder chamber connected to the highest pressure pipe where the highest pressure in the space becomes the pipe internal pressure, and a high-pressure cylinder chamber connected to each working space via a check valve that allows working gas to enter the working space, A housing having a low pressure cylinder chamber connected to a minimum pressure pipe whose minimum pressure is the internal pressure of the pipe, and a bypass passage communicating with the highest pressure pipe and the minimum pressure pipe; It has a piston part and a low pressure piston part that slides in the low pressure cylinder chamber, and the housing is moved in forward and reverse directions by the relative pressure received by the high pressure piston part and the low pressure piston part, and the entire body received by the high pressure piston part is moved in the forward and reverse directions. It is characterized by comprising a valve that opens the bypass passage when the pushing force is greater than the total pushing force received by the low-pressure piston portion, and closes the bypass passage when the opposite occurs.

本発明の制御弁はハウジングと該ハウジング内に配され
た弁とから構成される。
The control valve of the present invention is comprised of a housing and a valve disposed within the housing.

ハウジングには高圧シリンダ室と低圧シリンダ室とが設
けられている。この高圧シリンダ室には、多気筒スター
リング機関の各作動空間中の最高圧力が管内圧力となる
最高圧力管が接続される。この最高圧力管は、各作動空
間から作動ガスが出る方向にのみ開く逆止弁を介して各
作動空間と連通している。従って最高圧力管内の圧力は
各作動空間中の最高圧力となる。なお最高圧力管に連通
する作動空間の数には特に制限は無く、一本の最高圧力
管に多数の作動空間を連通させることが可能である。
The housing is provided with a high pressure cylinder chamber and a low pressure cylinder chamber. A maximum pressure pipe in which the maximum pressure in each working space of the multi-cylinder Stirling engine is the internal pressure is connected to this high pressure cylinder chamber. This highest pressure pipe communicates with each working space via a check valve that opens only in the direction in which working gas exits from each working space. Therefore, the pressure in the highest pressure pipe becomes the highest pressure in each working space. Note that there is no particular restriction on the number of working spaces that communicate with the highest pressure pipe, and it is possible to make a single highest pressure pipe communicate with a large number of working spaces.

低圧シリンダ室には、多気筒スターリング機関の各作動
空間中の最小圧力が管内圧力となる最小圧力管が接続さ
れる。この最小圧力管は、各作動空間に作動ガスが入る
方向にのみ開(逆止弁を介して各作動空間と連通してい
る。また最小圧力管は作動ガス貯蔵器と連通させること
もできる。
A minimum pressure pipe in which the minimum pressure in each working space of the multi-cylinder Stirling engine is the internal pressure is connected to the low pressure cylinder chamber. This minimum pressure pipe opens only in the direction in which the working gas enters each working space (communicates with each working space via a check valve).The minimum pressure pipe can also communicate with a working gas reservoir.

ハウジングには最高圧力管と最小圧力管とを連通するバ
イパス通路が設けられる。このバイパス通路により、機
関の圧力バランスが崩れた際に過剰の圧力を逃がすこと
を可能とするものである。
The housing is provided with a bypass passage that communicates the highest pressure pipe and the lowest pressure pipe. This bypass passage makes it possible to release excess pressure when the pressure balance of the engine is disrupted.

弁は上記高圧シリンダ室を摺動する高圧ピストン部と、
上記低圧シリンダ室を摺動する低圧ピストン部とから構
成される。それぞれのピストン部は別体としてもよく、
一体的に形成することもできる。高圧ピストン部は最高
圧力管から導かれる最高圧力により一方向に付勢され、
低圧ピストン部は最小圧力管から導かれる最小圧力によ
り高圧ピストン部の付勢力と逆方向へ付勢される。そし
てこの両方向からの付勢力により弁は正逆方向に移動し
、バイパス通路の開閉を可能とするものである。しかし
ながら、このままでは高圧ピストン部が受ける付勢力が
低圧ピストン部が受ける付勢力に勝り、弁は一方向のみ
に移動してしまう。従って低圧ピストン部が受ける付勢
力を何らかの手段により増強する必要がある。この手段
としては、例えばバネの付勢力を利用することができる
。ま・ た高圧ピストン部の最高圧力の付勢力を受ける部分の面
積を、低圧ピストン部の最小圧力の付勢力を受ける部分
の面積より小さくすることにより、高圧ピストン部の全
応力と低圧ピストン部の全応力のバランスをとることも
できる。この手段によれば、予じめ知られた機関の最高
圧力、と最小圧力の比をそれぞれのピストン部の面積比
に設定し、その圧力比を超えない限りバイパス通路を閉
状態とすることができる。従うてバイパス通路を通して
のガスおよび熱の漏れは最小限に抑えることができ、ま
たピストン部の面積比を変更するのみでほとんどの機関
の圧力平衡を保つことが可能となる。
The valve includes a high-pressure piston portion that slides in the high-pressure cylinder chamber,
and a low-pressure piston portion that slides in the low-pressure cylinder chamber. Each piston part may be a separate body,
It can also be formed integrally. The high pressure piston part is biased in one direction by the highest pressure led from the highest pressure pipe,
The low pressure piston section is biased in a direction opposite to the biasing force of the high pressure piston section by the minimum pressure introduced from the minimum pressure pipe. The biasing forces from both directions move the valve in the forward and reverse directions, making it possible to open and close the bypass passage. However, if this continues, the urging force applied to the high-pressure piston portion will exceed the urging force applied to the low-pressure piston portion, and the valve will move in only one direction. Therefore, it is necessary to increase the urging force applied to the low-pressure piston portion by some means. As this means, for example, the biasing force of a spring can be used. In addition, by making the area of the part of the high-pressure piston part that receives the maximum pressure biasing force smaller than the area of the part of the low-pressure piston part that receives the minimum pressure biasing force, the total stress in the high-pressure piston part and that of the low-pressure piston part are reduced. It is also possible to balance the total stress. According to this means, the ratio of the maximum pressure and the minimum pressure of the engine known in advance is set as the area ratio of each piston part, and the bypass passage can be kept in a closed state unless the pressure ratio is exceeded. can. Therefore, leakage of gas and heat through the bypass passage can be minimized, and it is possible to maintain pressure balance in most engines simply by changing the area ratio of the piston portion.

上記それぞれのピストン部の面積比を変更する手段を採
用する場合には、弁は一体的に形成された断面階段状の
2段型ピストンとすることが望ましい。そして弁表面に
溝部等を設け、圧力比が所定の値を超えて弁が移動した
場合に、ハウジングのバイパス通路と溝部とが一致して
バイパス通路を開とする、等とすることができる。なお
この場合、弁の肩部とハウジングとの間には、負圧によ
って弁の移動を妨げないように常に一定の圧力となるよ
うにすることが望ましい。例えば大気に解放してもよい
が、作動ガスの漏れがある場合には、作動ガスが移動し
ても圧力は変化しないように調整された作動ガス収納室
等に接続することが望ましい。
When employing the above means for changing the area ratio of each piston portion, it is desirable that the valve be an integrally formed two-stage piston with a stepped cross section. It is also possible to provide a groove or the like on the valve surface so that when the pressure ratio exceeds a predetermined value and the valve moves, the bypass passage of the housing coincides with the groove and opens the bypass passage. In this case, it is desirable that a constant pressure be maintained between the shoulder of the valve and the housing so that the movement of the valve is not hindered by negative pressure. For example, it may be released to the atmosphere, but if there is a leak of working gas, it is desirable to connect it to a working gas storage chamber or the like that is adjusted so that the pressure will not change even if the working gas moves.

(作用) 本発明の制御弁では、多気筒スターリング機関の各作動
空間中の最高圧力および最小圧力が弁の高圧ピストン部
および低圧ピストン部にかかつている。そして最高圧力
と最小圧力の比が所定の値を超えた場合に、弁はハウジ
ング内を移動してバイパス通路を開き、最高圧力管内の
作動ガスを最小圧力管内に逃がす。そして最高圧力と最
小圧力の比が所定の値以下となると弁は元の位置に移動
し、バイパス通路は閉状態となる。
(Operation) In the control valve of the present invention, the maximum and minimum pressures in each working space of the multi-cylinder Stirling engine are applied to the high-pressure piston portion and the low-pressure piston portion of the valve. When the ratio of the highest pressure to the lowest pressure exceeds a predetermined value, the valve moves within the housing to open the bypass passage and allow the working gas in the highest pressure tube to escape into the lowest pressure tube. When the ratio of the maximum pressure to the minimum pressure becomes less than or equal to a predetermined value, the valve moves to its original position and the bypass passage becomes closed.

(実施例) 以下実施例により具体的に説明する。(Example) This will be explained in detail below using examples.

第1図に本発明の一実施例の制御弁を用いた多気筒スタ
ーリング機関の系統図を示す。
FIG. 1 shows a system diagram of a multi-cylinder Stirling engine using a control valve according to an embodiment of the present invention.

スターリング機関のシリ、シダ1a〜1d内をピストン
2a〜2dがロッド3a〜3dを介して図示しないクラ
ンクにより位相差をもって連結されている。前記シリン
ダ内の空間はピストンに設けられたシール部材48〜4
dによって高い温度を有する膨張中1115a〜5dと
低い温度を圧縮空間6a〜6dとに区画され雨空間5a
〜5d 、 5a〜6dは、ヒータ7a 〜7d 、蓄
熱器8a〜8dおよびクーラー98〜9dを介して連結
され、それぞれ作動空間を構成している。この作動空間
にはヘリウムからなる作動気体が封入され、バーナー2
28〜22dによりヒータ7a〜7dで加熱される。前
記圧縮中116a〜6dには主導管10a〜10dが連
結され、圧縮空間68〜6dの方向にのみ開く第1の逆
止弁11a〜11d、供給導管14及び供給弁15を介
して貯蔵!116に連結されている。そして供給導!!
14内の圧力は、各作動空間の最小圧力となるように調
節されている。又同様に主導管10a〜10dは圧縮中
11i6a〜6dと反対の方向にのみ開く第2の逆止弁
12a〜12d1回収管17.減圧弁18及び圧縮機1
9を介して前記貯蔵器16に連結されている。
Pistons 2a to 2d are connected within the sills and ferns 1a to 1d of the Stirling engine by a crank (not shown) via rods 3a to 3d with a phase difference. The space inside the cylinder is filled with seal members 48 to 4 provided on the piston.
The rain space 5a is divided into expansion spaces 1115a to 5d having a high temperature and compression spaces 6a to 6d having a low temperature.
5d, 5a to 6d are connected via heaters 7a to 7d, heat storage devices 8a to 8d, and coolers 98 to 9d, and each constitutes an operating space. This working space is filled with working gas consisting of helium, and the burner 2
28 to 22d are heated by heaters 7a to 7d. The main pipes 10a to 10d are connected to the compression chambers 116a to 6d, and the first check valves 11a to 11d, which open only in the direction of the compression spaces 68 to 6d, the supply conduit 14 and the supply valve 15 are used for storage! 116. And supply guidance! !
The pressure within 14 is adjusted to be the minimum pressure in each working space. Similarly, the main pipes 10a to 10d open only in the opposite direction to those of the main pipes 11i6a to 6d during compression. Pressure reducing valve 18 and compressor 1
9 to the reservoir 16.

更に主導!!10a 〜10dは圧縮空間68〜6dと
反対の方向にのみ開く第3の逆止弁13a〜13d、導
管20a 〜20dおよび導1!23を介して制御弁3
0に連結されている。導管20a〜20dは全て導管2
3に連結されている。また前記制御弁30は補助導管2
1により前記供給導114にも連結される。
Even more initiative! ! 10a to 10d are third check valves 13a to 13d that open only in the opposite direction to the compression spaces 68 to 6d, and control valves 3 via conduits 20a to 20d and conduits 1!23.
Connected to 0. Conduits 20a to 20d are all conduits 2
It is connected to 3. Further, the control valve 30 is connected to the auxiliary conduit 2.
1 is also connected to the supply conductor 114.

制御弁30は第2図に示すように、ハウジング40と、
ハウジング40内を軸方向に移動する弁50とから構成
されている。
As shown in FIG. 2, the control valve 30 includes a housing 40,
The valve 50 is configured to move in the axial direction within the housing 40.

ハウジング40には、一端部側に導管23、他端部側に
補助導管21が接続され、それぞれ内部空間に連通して
いる。またハウジング40の側部には内部空間に連通す
る最高圧バイパスポート41および最小圧バイパスボー
ト42が設けられ、それぞれ導管23および補助導管2
1と連通している。
A conduit 23 is connected to one end of the housing 40, and an auxiliary conduit 21 is connected to the other end, each of which communicates with the internal space. Further, a maximum pressure bypass port 41 and a minimum pressure bypass port 42 are provided on the side of the housing 40 and communicate with the internal space, and a conduit 23 and an auxiliary conduit 2 are provided, respectively.
It communicates with 1.

・ 弁50は一端面51の面積S1が他端面52の面積S2
より小さな段付ピストンで構成され、それぞれの端面の
直径と略同−の内径を有するハウジング40の内部空間
内に、リング状のガスシール53a〜53dを介して気
密的に軸方向正逆両方向に移動可能に配@されている。
- In the valve 50, the area S1 of one end surface 51 is the area S2 of the other end surface 52.
In the internal space of the housing 40, which is composed of smaller stepped pistons and has an inner diameter that is approximately the same as the diameter of each end surface, airtight pistons are inserted in both forward and reverse axial directions through ring-shaped gas seals 53a to 53d. Arranged so that it can be moved.

そして一端部51とハウジング40内面とで高圧シリン
ダ室43が、他端面52とハウジング40内面とで低圧
シリンダ室44が形成されている。なお弁50の一端面
51の面積S1と他端面52の面積S2の比R1(R1
=S1/82)は、各作動空間の最小圧力P1と最高圧
力P2の平常時の比R2(R2−P1/P2)より僅か
に小さくなっている。
One end 51 and the inner surface of the housing 40 form a high-pressure cylinder chamber 43, and the other end 52 and the inner surface of the housing 40 form a low-pressure cylinder chamber 44. Note that the ratio R1 (R1
=S1/82) is slightly smaller than the normal ratio R2 (R2-P1/P2) between the minimum pressure P1 and the maximum pressure P2 in each working space.

弁50の側周面にはバイパス通路54が設けられ、弁5
0が移動して他端面52がハウジング40内壁に当接し
た場合に、バイパス通路54を介してバイパスポート4
1とバイパスポート42が連通するように構成されてい
る。
A bypass passage 54 is provided on the side peripheral surface of the valve 50.
0 moves and the other end surface 52 comes into contact with the inner wall of the housing 40, the bypass port 4 passes through the bypass passage 54.
1 and the bypass port 42 are configured to communicate with each other.

また弁50の肩部55とハウジング40とで形成される
空@45には図示しない作動ガス収納室に通じる通路5
6が開口し、空間45は常時大気圧に保たれ、弁50は
容易に移動可能となっている。
Also, in the cavity @ 45 formed by the shoulder 55 of the valve 50 and the housing 40, there is a passage 5 leading to a working gas storage chamber (not shown).
6 is open, the space 45 is always maintained at atmospheric pressure, and the valve 50 is easily movable.

上記のように構成された制御弁30の作用を以下に説明
する。仮にピストン2aのシール部材4aのシール性が
悪化した場合を想定する。
The operation of the control valve 30 configured as described above will be explained below. Let us assume that the sealing performance of the sealing member 4a of the piston 2a deteriorates.

膨張空1115aから圧縮空間6aに作動ガスが漏れる
と、圧縮空間5a、クーラー9a、蓄熱器8a1ヒータ
7aおよび膨張空間5bより形成される作動空間のサイ
クル圧力は他の3つの作動空間のサイクル圧力より轟く
なる。そして第3の逆止弁13a・導管20aおよび導
管23を通じて高圧シリンダ室43にその圧力が形成さ
れる@平常時には他端面52にかがる全押力が一端面5
1にかかる全押力に勝り、弁50は肩部55がハウジン
グ40内面に当接した位置で停止している・なおこの時
にはバイパスポート41.42は互いに連通していない
。そして高圧シリンダ室43の圧力が上昇し、低圧シリ
ンダ室の圧力と高圧シリンダ室の圧力との比Rが上記比
R1を超えると弁50は移動を始め、他端部52がハウ
ジング40内面に当接した位置となる。この位置でバイ
パスボート41とバイパスボート42はバイパス通路5
4を介して連通し、導管20aの高圧作動ガスは補助導
管21を介して供給導管14に逃げる。さらに、膨張空
間5aと関連する作動空間の圧力は、作動ガスの漏れに
より低下するため、第1の逆止弁11dを介して供給1
11114より作動気体が供給される。そして圧力比R
がR1より小さくなると弁50は元の位置に戻り、バイ
パスポート41.42は閉とされる。従って各作動空間
のサイクル最高圧力およびサイクル最小圧力はほぼ均等
に保たれ、各作動空間の出力をほぼ等しくすることがで
き、振動および騒音の発生を防止することができる。
When the working gas leaks from the expansion space 1115a to the compression space 6a, the cycle pressure of the working space formed by the compression space 5a, cooler 9a, heat storage device 8a1, heater 7a, and expansion space 5b becomes higher than the cycle pressure of the other three working spaces. It gets loud. Then, the pressure is formed in the high pressure cylinder chamber 43 through the third check valve 13a, the conduit 20a and the conduit 23. At normal times, the entire pushing force applied to the other end surface 52 is
1, the valve 50 is stopped at the position where the shoulder 55 abuts the inner surface of the housing 40. At this time, the bypass ports 41, 42 are not communicating with each other. Then, when the pressure in the high-pressure cylinder chamber 43 rises and the ratio R of the pressure in the low-pressure cylinder chamber and the pressure in the high-pressure cylinder chamber exceeds the ratio R1, the valve 50 begins to move, and the other end 52 comes into contact with the inner surface of the housing 40. It will be in a position where they are in contact with each other. At this position, the bypass boat 41 and the bypass boat 42 are connected to the bypass passage 5.
4, the high pressure working gas in conduit 20a escapes via auxiliary conduit 21 to supply conduit 14. Further, since the pressure in the working space associated with the expansion space 5a decreases due to leakage of the working gas, the supply 1
Working gas is supplied from 11114. and pressure ratio R
When becomes smaller than R1, the valve 50 returns to its original position and the bypass ports 41, 42 are closed. Therefore, the cycle maximum pressure and the cycle minimum pressure of each working space are kept substantially equal, the output of each working space can be made substantially equal, and the generation of vibration and noise can be prevented.

[発明の効果] 同様の目的を達成する他の手段として、最高圧回路と最
小迂回路との間にニードルバルブを設け、手動操作する
ことも考えられる。しかしながらこの方法では、圧力状
態の監視が必要となる等操作が繁雑となる。またニード
ルバルブの替りに電磁バルブを用い、その開閉を最高圧
力、最小圧力を圧力変換器を通した信号出力により自動
操作するものが考えられる。しかしながらこれは、圧力
変換器、動ひすみ計、コントローラ等が必要であり、高
価となる。
[Effects of the Invention] As another means for achieving the same objective, it is conceivable to provide a needle valve between the highest pressure circuit and the lowest detour and manually operate it. However, this method requires complicated operations such as the need to monitor the pressure state. It is also conceivable to use an electromagnetic valve instead of a needle valve, and to automatically open and close the valve by outputting a signal through a pressure transducer for the maximum pressure and the minimum pressure. However, this requires a pressure transducer, a dynamic sistometer, a controller, etc., and is expensive.

本発明の制御弁によれば、多気筒スターリング機関にお
いても1個の制御弁を用いるのみで自動的に圧力平衡が
保たれる。従って部品点数が少なくなり、装置が簡単に
なってスペース的な効果が生ずる。さらに圧力異常が生
じた時にノミ作動カスを逃がすので、ガス、熱の漏れを
最小限にすることができる。従って各作動空間のサイク
ル圧力は最小限のロスで平衡が保たれ、各作動空間の出
力をほぼ等しくすることができ、振動および騒音の発生
を防止する大きな効果を有する。
According to the control valve of the present invention, pressure balance can be automatically maintained even in a multi-cylinder Stirling engine by using only one control valve. Therefore, the number of parts is reduced, the device is simplified, and space is saved. Furthermore, when a pressure abnormality occurs, the chisel action debris is released, so gas and heat leakage can be minimized. Therefore, the cycle pressures in each working space are balanced with minimal loss, and the output of each working space can be made approximately equal, which has a great effect in preventing the generation of vibration and noise.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例制御弁に係り、第1図
はその制御弁を利用した多気筒スターリング機関の系統
図、第2図は制御弁の断面図である。 第3図は従来の圧力平衡装置の略図である。 18〜1d・・・シリンダ 2a〜2d・・・ピストン
30・・・制御弁     40・・・ハウジング41
.42・・・バイパスボート 43・・・高圧シリンダ室 44・・・低圧シリンダ室
50・・・弁 53a〜53d・・・ガスシール 54・・・バイパス通路
1 and 2 relate to a control valve according to an embodiment of the present invention, FIG. 1 is a system diagram of a multi-cylinder Stirling engine using the control valve, and FIG. 2 is a sectional view of the control valve. FIG. 3 is a schematic diagram of a conventional pressure equalization device. 18-1d...Cylinder 2a-2d...Piston 30...Control valve 40...Housing 41
.. 42...Bypass boat 43...High pressure cylinder chamber 44...Low pressure cylinder chamber 50...Valves 53a to 53d...Gas seal 54...Bypass passage

Claims (4)

【特許請求の範囲】[Claims] (1)多気筒スターリング機関の作動空間から作動ガス
が出る逆止弁を介して各該作動空間と接続し、全ての該
作動空間中の最高圧力が管内圧力となる最高圧力管に接
続した高圧シリンダ室と、該作動空間への作動ガスが入
る逆止弁を介して各該作動空間と接続し、全ての該作動
空間中の最小圧力が管内圧力となる最小圧力管に接続し
た低圧シリンダ室と、該最高圧力管および該最小圧力管
とを連通するバイパス通路とをもつハウジングと、該高
圧シリンダ室内を摺動する高圧ピストン部と該低圧シリ
ンダ室内を摺動する低圧ピストン部を有し、該高圧ピス
トン部および該低圧ピストン部の受ける相対圧力で該ハ
ウジング内を正逆方向に移動し、該高圧ピストン部の受
ける全押力が該低圧ピストン部の受ける全押力より大き
い場合の移動により該バイパス通路を開き、逆の場合に
該バイパス通路を閉じる弁とを具備することを特徴とす
る多気筒スターリング機関用制御弁。
(1) A high pressure pipe connected to each working space of the multi-cylinder Stirling engine through which working gas comes out through a check valve, and connected to the highest pressure pipe where the highest pressure in all the working spaces becomes the pipe pressure. A low-pressure cylinder chamber connected to each working space via a cylinder chamber and a check valve that allows working gas to enter the working space, and connected to a minimum pressure pipe such that the minimum pressure in all the working spaces becomes the pipe internal pressure. a housing having a bypass passage communicating with the highest pressure pipe and the lowest pressure pipe; a high pressure piston portion that slides within the high pressure cylinder chamber; and a low pressure piston portion that slides within the low pressure cylinder chamber; The high-pressure piston section and the low-pressure piston section move in the forward and reverse directions within the housing due to the relative pressures that they receive, and the movement occurs when the total pushing force that the high-pressure piston section receives is greater than the total pushing force that the low-pressure piston section receives. A control valve for a multi-cylinder Stirling engine, comprising a valve that opens the bypass passage and closes the bypass passage in the opposite case.
(2)高圧ピストン部と低圧ピストン部とは同軸上を摺
動し、高圧ピストン部の押力のかかる端面の面積と、低
圧ピストン部の押力のかかる端面の面積との比は平常時
の各作動空間の最小圧力と最高圧力との比よりわずかに
小さい構成である特許請求の範囲第1項記載の多気筒ス
ターリング機関用制御弁。
(2) The high-pressure piston section and the low-pressure piston section slide on the same axis, and the ratio of the area of the end surface to which the pushing force of the high-pressure piston section is applied and the area of the end surface to which the pushing force of the low-pressure piston section is applied is the same under normal conditions. The control valve for a multi-cylinder Stirling engine according to claim 1, wherein the control valve is configured to be slightly smaller than the ratio between the minimum pressure and the maximum pressure of each working space.
(3)弁は低圧ピストン部と高圧ピストン部とが一体的
に形成された断面階段状の段付ピストンである特許請求
の範囲第1項記載の多気筒スターリング機関用制御弁。
(3) The control valve for a multi-cylinder Stirling engine according to claim 1, wherein the valve is a stepped piston with a stepped cross section in which a low-pressure piston portion and a high-pressure piston portion are integrally formed.
(4)断面階段状の弁の肩部とハウジング内面とにより
形成される空間は作動ガス収納室に連通している特許請
求の範囲第3項記載の多気筒スターリング機関用制御弁
(4) The control valve for a multi-cylinder Stirling engine according to claim 3, wherein the space formed by the shoulder of the valve having a stepped cross section and the inner surface of the housing communicates with a working gas storage chamber.
JP6277485A 1985-03-27 1985-03-27 Control valve for multicylinder stirring engine Granted JPS61223250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6277485A JPS61223250A (en) 1985-03-27 1985-03-27 Control valve for multicylinder stirring engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6277485A JPS61223250A (en) 1985-03-27 1985-03-27 Control valve for multicylinder stirring engine

Publications (2)

Publication Number Publication Date
JPS61223250A true JPS61223250A (en) 1986-10-03
JPH0330715B2 JPH0330715B2 (en) 1991-05-01

Family

ID=13210054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6277485A Granted JPS61223250A (en) 1985-03-27 1985-03-27 Control valve for multicylinder stirring engine

Country Status (1)

Country Link
JP (1) JPS61223250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229456A (en) * 1988-03-29 1993-07-20 Rohm And Haas Company Graft copolymers and blends thereof with polyolefins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229456A (en) * 1988-03-29 1993-07-20 Rohm And Haas Company Graft copolymers and blends thereof with polyolefins

Also Published As

Publication number Publication date
JPH0330715B2 (en) 1991-05-01

Similar Documents

Publication Publication Date Title
US3753426A (en) Balanced pressure fuel valve
US6389837B1 (en) Scroll compressor
JPH0511222B2 (en)
US7310945B2 (en) Work-space pressure regulator
US4986225A (en) Intake reservoir system for an engine having a check valve
JPH03234987A (en) Fluid pressure control device
EP0064481A1 (en) A reciprocating, hydraulically operated, positive displacement compressor
JP2008286109A (en) Refrigerant intake structure in fixed capacity type piston type compressor
JPH03213676A (en) Changeover device for suction system in vacuum pump
JPS61223250A (en) Control valve for multicylinder stirring engine
US7484482B1 (en) Valve assembly for a two-stroke engine
US4248058A (en) Differential piston type reversing valve construction, system utilizing the same and method of making
US4708725A (en) Cryogenic refrigerator
JPH06510106A (en) hydraulic regulator
US2867973A (en) Hot-gas reciprocating apparatus
JP2000274473A (en) Oil damper
US6301902B1 (en) Pulse tube refrigerator
JPH11257405A (en) Oil damper
JPS6316851Y2 (en)
JP2995883B2 (en) Stirling cycle device
US3817035A (en) Valve control means for changing working space volume in stirling cycle engine
JP2636579B2 (en) Capacity control device for screw type two-stage compressor
US3756018A (en) Varying the power output of stirling cycle engines
JPH05256194A (en) Output control device for stirling engine
US20020112474A1 (en) Replenishing device for a closed circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees