JPS61223143A - Method for prereducing chromium ore fines - Google Patents

Method for prereducing chromium ore fines

Info

Publication number
JPS61223143A
JPS61223143A JP6513585A JP6513585A JPS61223143A JP S61223143 A JPS61223143 A JP S61223143A JP 6513585 A JP6513585 A JP 6513585A JP 6513585 A JP6513585 A JP 6513585A JP S61223143 A JPS61223143 A JP S61223143A
Authority
JP
Japan
Prior art keywords
chromium ore
fluidized bed
gas
ore
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6513585A
Other languages
Japanese (ja)
Inventor
Masaharu Anezaki
姉崎 正治
Yujo Marukawa
雄浄 丸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6513585A priority Critical patent/JPS61223143A/en
Publication of JPS61223143A publication Critical patent/JPS61223143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To stabilize behaviour balance of powder in fluidized layer, and to prevent mixing of impurity in carbon powder, by controlling grain size ranges of Cr ore fines and solid carbon powder so that they are not overlapped, in preliminary reduction of Cr ore by fluidized layer. CONSTITUTION:Or ore fines and coal fines are charged to a fluidized bed 1 of reducing apparatus from supplying sources 2, 3 respectively, and counter current gas is supplied from under. Recovered gas is cleaned by a gas treating means 6 provided in circulation passage of counter current gas, and deficinet quantity thereof is supplied from source of gas such as steam, CH4 through a heater 7. The bed 1 is held to reducing temp. of Cr ore by a heating means 8. Thereat, overlapping of respective grain size ranges of Cr ore fines and coal fines is prevented. In such a way, Cr ore fines is reduced, the reduced part is passed through a slanted sieve 9 to sieve unburnt coal fines and ash without passing them therethrough, reduced Cr fines part is recovered, and sent to the following process by a carrying means 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はクロム鉱石の予備還元方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for prereducing chromium ore.

更に詳細には本発明は、流動層を用いるクロム鉱石の予
備還元方法において、還元剤である固体炭素の未燃焼分
と灰分とをクロム鉱石分から分離し、次工程でのクロム
還元反応に有害な成分を除去し、クロム精錬の効率を向
上し且つ全体としての製造コストを低減する方法に関す
る。
More specifically, the present invention provides a method for preliminary reduction of chromium ore using a fluidized bed, in which unburned solid carbon as a reducing agent and ash are separated from the chromium ore, and are removed from the chromium ore, which are harmful to the chromium reduction reaction in the next step. The present invention relates to a method for removing components, improving the efficiency of chromium smelting, and reducing overall manufacturing costs.

従来の技術 従来、ステンレス鋼あるいはクロム合金鋼は、クロム鉱
石を電気炉においてコークスにより還元しそ高炭素フェ
ロクロムを製造し、これを原料として溶製されてきた。
BACKGROUND OF THE INVENTION Conventionally, stainless steel or chromium alloy steel has been produced by reducing chromium ore with coke in an electric furnace to produce high carbon ferrochrome, and using this as a raw material.

すなわち、この方式は、crl       %が高い
鉱石の還元が進行するためには高温度が必要であるため
、これを過剰量の炭材(コークス)の存在下で電気炉で
行い、得られたフェロクロムを鉄源とともに再度溶解、
脱炭してステンレス鋼やクロム鋼を製造する2段階の方
法である。
In other words, this method requires high temperatures to proceed with the reduction of ores with high CRL%, so this process is carried out in an electric furnace in the presence of an excessive amount of carbonaceous material (coke), and the resulting ferrochrome is melted again with the iron source,
It is a two-step method to decarburize and produce stainless steel or chrome steel.

しかしながら、′間接製造法”と称するこの方式には、
クロム鉱石からステンレス鋼までの一貫の流れとして見
た場合、次のような問題点がある。
However, this method, which is called ``indirect manufacturing method'', has
When viewed as a consistent flow from chrome ore to stainless steel, there are the following problems.

(1)クロム酸化物の還元に要する多量のエネルギーと
して、高価な電力を用いている。
(1) Expensive electricity is used as the large amount of energy required to reduce chromium oxide.

(2)一般に7エロクロム製造工場と製鋼工場は離れて
いるため、高炭素フェロクロムは溶融物として製造され
ながら、いったん凝固させ、製鋼過程で再溶融するので
エネルギー損失が大きい。
(2) In general, 7 ferrochrome manufacturing plants and steelmaking plants are located far apart, so high carbon ferrochrome is manufactured as a molten product, but it is once solidified and then remelted during the steelmaking process, resulting in large energy losses.

(3)多量のスラグが[Cr%〕の高いフェムクロムと
接触した状態で精錬されるので、スラグ中の(Cr%)
を低くすることがむずかしく、クロム損失が大きい。
(3) Since a large amount of slag is refined in contact with femchrome with a high [Cr%], the (Cr%) in the slag
It is difficult to lower the chromium loss, and the loss of chromium is large.

従って、クロム鋼の溶製のコスト低減のためにはこれら
の問題を解決することが必要であり、次のような対策が
考えられた。すなわち、(1)クロム鉱石の還元エネル
ギーとして、電力ではなく安価な一次エネルギーを最大
限利用すること、   − (2)クロム鉱石からステンレス鋼までの一貫工程とし
てエネルギー損失が最少となるようにすること、 (3)スラグを最小量とし、Cr回収率の高い反応また
は反応環境とすること、 が重要である。
Therefore, in order to reduce the cost of melting chromium steel, it is necessary to solve these problems, and the following measures have been considered. In other words, (1) to maximize the use of inexpensive primary energy rather than electricity as reduction energy for chromium ore, - (2) to minimize energy loss in the integrated process from chromium ore to stainless steel. (3) It is important to minimize the amount of slag and create a reaction or reaction environment with a high Cr recovery rate.

このような技術的思想のもとにクロム鉱石を炭材により
直接還元し、溶融還元する方法が近年盛んに研究されて
いる。現在実用化されている□のは、クロム鉱石粉を炭
材と混合して得られるグリーンペレットをロータリキル
ンにより高温下で予備還元し、得られたペレットを電気
炉やその他の溶解炉に装入する方法がある。
Based on this technical idea, methods of directly reducing chromium ore with carbonaceous materials and melting reduction have been actively researched in recent years. Currently in practical use, green pellets obtained by mixing chromium ore powder with carbonaceous materials are pre-reduced at high temperatures in a rotary kiln, and the resulting pellets are charged into an electric furnace or other melting furnace. There is a way to do it.

しかしながら、こうした方法では炭材の未燃焼分及び灰
分がそのまま精錬炉に装入されることとなるため、炭材
、特に灰分中のP、0.や5iOa、(S)等の不純物
も溶鋼中に持ち込まれ、これらを除去するために余分の
フラックスと精錬工程を必要とする。とりわけP2O,
は、脱燐反応が酸化雰囲気で進行するのでステンレス鋼
の精錬工程ではほとんど除去することができないため、
予備還元したペレットの使用量に制限があり゛、上記し
た目的を達成することができない。
However, in such a method, the unburned content and ash content of the carbonaceous material are directly charged into the smelting furnace, so that the P content in the carbonaceous material, especially the ash content, is 0. Impurities such as , 5iOa, and (S) are also introduced into the molten steel, requiring extra flux and a refining step to remove them. Especially P2O,
Since the dephosphorization reaction proceeds in an oxidizing atmosphere, it can hardly be removed in the stainless steel refining process.
There is a limit to the amount of pre-reduced pellets that can be used, making it impossible to achieve the above objectives.

すなわち、従来方法による予備還元ペレットでは、P分
の低減を図るため、P分の低い炭材の選択を余儀なくさ
れたり、或いは許容される範囲内のP分に相当する装入
量に限定される。
That is, in pre-reduced pellets produced by conventional methods, in order to reduce the P content, one is forced to select a carbon material with a low P content, or the charging amount is limited to a P content that is within an allowable range. .

発明の解決しようとする問題点 本発明の目的は、上記した従来技術の問題点を 。Problems that the invention attempts to solve The purpose of the present invention is to solve the problems of the prior art described above.

解決し、電気炉あるいはその他の溶解炉でのCr精錬に
好適に使用できるクロム鉱石の予備還元方法を提供する
にある。
It is an object of the present invention to provide a method for pre-reducing chromium ore which can be used suitably for Cr refining in an electric furnace or other melting furnace.

更に詳細には本発明の目的は、クロム鉱石の炭材による
予備還元方法において、炭材中のP分および灰分が鉱石
中に混入しないような条件でクロム鉱石を還元処理し、
次工程のクロム還元精錬の効率を向上し且つコストを低
減すると同時に、予備還元に使用する炭材の種類の選択
の範囲を拡げることにある。
More specifically, the object of the present invention is to provide a method for pre-reducing chromium ore with carbonaceous material, which involves reducing chromium ore under conditions such that the P content and ash in the carbonaceous material do not mix into the ore;
The objective is to improve the efficiency and reduce the cost of the next step of chromium reduction and refining, and at the same time to expand the range of choices for the type of carbon material used for preliminary reduction.

問題点を解決する手段 上記した従来技術の問題を解決し、本発明の目的を達成
するため、本発明者等はクロム鉱石の予備還元方法につ
いて実験、研究を重ねた結果、本発明を完成したもので
ある。
Means for Solving the Problems In order to solve the problems of the prior art described above and achieve the purpose of the present invention, the present inventors have completed the present invention as a result of repeated experiments and research on a method for pre-reducing chromium ore. It is something.

すなわち、本発明に従うと、不活性ガスあるいは還元性
ガスを向流ガスとして用いる流動層に、それぞれの粒度
範囲が重複しないクロム鉱石粉と固体炭素粉とを供給し
、クロム鉱石粉を還元し、還元後の材料を分級して還元
クロム鉱石粉を回収することを特徴とするクロム鉱石粉
の予備還元方法が提供される。
That is, according to the present invention, chromium ore powder and solid carbon powder whose particle size ranges do not overlap are supplied to a fluidized bed using an inert gas or a reducing gas as a countercurrent gas, and the chromium ore powder is reduced. A method for preliminary reduction of chromium ore powder is provided, which comprises classifying the reduced material to recover reduced chromium ore powder.

これらのクロム鉱石と固体炭素粉とは、1〜2、   
   市の範囲のある値を境界として粒度範囲が異なる
ことが好ましい。
These chromium ore and solid carbon powder are 1-2,
It is preferable that the granularity range differs with a certain value of the city range as the boundary.

さらに本発明の1態様に従うと、向流ガスを回収後、ス
チーム、CH4またはCs Ht=のいずれか1種また
は2種以上を回収ガスに混合し、流動層内へ再循環させ
る。
Further, according to one embodiment of the present invention, after the countercurrent gas is recovered, one or more of steam, CH4, or Cs Ht= is mixed with the recovered gas and recycled into the fluidized bed.

流動層は単−扇型であっても多段層型であってもよく、
さらに内燃方式または外燃方式のいずれでもよい。
The fluidized bed may be a single-fan type or a multi-layered type,
Furthermore, either an internal combustion method or an external combustion method may be used.

外燃方式の流動層の場合は、流動層から未燃焼の固体炭
素粉回収し、これを燃焼せしめて流動層をクロム鉱石の
還元温度まで加熱することが好ましい。
In the case of an external combustion type fluidized bed, it is preferable to recover unburned solid carbon powder from the fluidized bed and combust it to heat the fluidized bed to the reduction temperature of chromium ore.

固体炭素粉としては瀝青炭、コークス、チャーのいずれ
でもよく、いずれの材料を選ぶかにより向流ガス及び流
動層の温度を調整すればよい。
The solid carbon powder may be bituminous coal, coke, or char, and the temperature of the countercurrent gas and fluidized bed may be adjusted depending on which material is selected.

作用 以上の説明の如く、本発明はクロム鉱石の流動層による
予備還元を行うに際し、それぞれの粒度範囲が重複しな
いクロム鉱石粉と固体炭素粉を用い、予備還元後のそれ
らを容易にフルイ分けし、双方を完全に分離可能とした
ことに特徴を有するものである。本発明の方法により予
備還元され、フルイ分けして得られたクロム鉱石粉には
未燃焼固体炭素粉も、その灰分も混入せず、次工程での
電気炉等の精錬炉による精錬反応に有害なP2O3、S
iO*、(S)等が持ち込まれなくなる。
Function As explained above, the present invention uses chromium ore powder and solid carbon powder whose particle size ranges do not overlap when performing pre-reduction of chromium ore in a fluidized bed, and allows them to be easily sieved after pre-reduction. , is characterized in that both can be completely separated. The chromium ore powder pre-reduced by the method of the present invention and obtained by sieving does not contain unburned solid carbon powder or its ash, which is harmful to the refining reaction in a refining furnace such as an electric furnace in the next step. P2O3, S
iO*, (S), etc. will no longer be brought in.

すなわち、クロム鉱石粉および固体炭素粉は流動層にお
ける還元反応後も粒度があまり変化しないので、還元後
のクロム鉱石粉から固体炭素分を分離回収することが、
例えば篩をもちいて容易に行うことができるからである
In other words, the particle size of chromium ore powder and solid carbon powder does not change much even after the reduction reaction in the fluidized bed, so it is possible to separate and recover the solid carbon content from the chromium ore powder after reduction.
This is because it can be easily carried out using a sieve, for example.

更に固体炭素粉と比較してクロム鉱石粉は比重が大きく
、粒度差を与えることによって流動層内での粒子の挙動
のバランスをとりやすい。すなわち、粒子直径dと比重
ρの積dρを一定に維持することが流動層内での反応を
均一に進行させるに極めて重要である。
Furthermore, compared to solid carbon powder, chromium ore powder has a higher specific gravity, and by providing a difference in particle size, it is easier to balance the behavior of the particles in the fluidized bed. That is, it is extremely important to maintain the product dρ of the particle diameter d and specific gravity ρ constant in order for the reaction to proceed uniformly in the fluidized bed.

ところで、一般的にクロム鉱石粉の比重は3.5であり
、固体炭素粉の比重は2.0である。このとき、クロム
鉱石粉の粒子直径をdl、固体炭素粉の粒子直径d2と
すると次の式が成立するときに、流動層内の粒子の挙動
バランスが成立しやすい。
By the way, the specific gravity of chromium ore powder is generally 3.5, and the specific gravity of solid carbon powder is 2.0. At this time, when the particle diameter of the chromium ore powder is dl and the particle diameter of the solid carbon powder is d2, the behavior of the particles in the fluidized bed is likely to be balanced when the following equation holds.

3.5d+ = 2.Oda 従って、クロム鉱石粉の粒径d+を0.8mmとすると
、固体炭素粉の粒径d、はl、 4mmとなる。このよ
うに固体炭素粉とクロム鉱石粉の粒度範囲を相違させる
ことが流動層内の反応上極めて好都合である。
3.5d+ = 2. Oda Therefore, if the particle size d+ of the chromium ore powder is 0.8 mm, the particle size d of the solid carbon powder is l, 4 mm. Making the particle size ranges of the solid carbon powder and the chromium ore powder different in this way is extremely convenient for reactions within the fluidized bed.

このようにして本発明の方法により予備還元処理に付さ
れた材料は篩等により容易にクロム鉱石分とそれ以外の
未燃焼固体炭素分及び灰分とに選別できる。従って、次
工程のクロム精錬工程に送られる還元クロム鉱石には炭
素材料からの不純物の混入がなく、次の利点が得られる
The material subjected to the preliminary reduction treatment according to the method of the present invention can be easily separated into chromium ore components and unburned solid carbon components and ash components using a sieve or the like. Therefore, the reduced chromium ore sent to the next chromium refining process is not contaminated with impurities from the carbon material, providing the following advantages.

(リ 次工程の精錬反応での不純物が少なくなり、余分
の7ラツクスおよび精錬の必要がなくなる。
(Impurities in the next refining reaction are reduced, eliminating the need for extra 7 lux and refining.)

(支)) 固体炭素中の不純物の混入のおそれがなくな
るので、安価な炭素材料を選択することができる。
(Support)) Since there is no risk of contamination with impurities in solid carbon, an inexpensive carbon material can be selected.

実施例 以下、本発明を実施例により説明するが、これらの実施
例は本発明の単なる例示であって本発明の範囲を何隻限
定するものではないことは勿論である。
EXAMPLES Hereinafter, the present invention will be explained with reference to examples, but these examples are merely illustrative of the present invention, and of course do not limit the scope of the present invention.

添付の第1図は本発明の方法を実施するのに用いる流動
層還元装置の概略図である。
FIG. 1 of the accompanying drawings is a schematic diagram of a fluidized bed reduction apparatus used to carry out the method of the present invention.

図示の如く、還元装置は、上方から鉱石および還元剤を
装入され、下方から向流ガスを供給される流動層1を備
える。図示の例では、流動層1は上方でクロム鉱石粉の
供給源2およびコークス粉の供給源3と連結している。
As shown in the figure, the reduction apparatus includes a fluidized bed 1 into which ore and reducing agent are charged from above and countercurrent gas is supplied from below. In the illustrated example, the fluidized bed 1 is connected above with a source 2 of chromium ore powder and a source 3 of coke powder.

一方、流動層1の下部では矢印方向に向流ガスが供給さ
れ、流動層1の上部で回収されるように、向流ガス供給
管4および回収管5が、それぞれ流動層の下部および上
部で連結している。より詳細には、向流ガス供給管4は
流動層1の周囲から均等に供給され、流動層1内の粒子
浮遊バランスを保のが好ましい。
On the other hand, a countercurrent gas supply pipe 4 and a recovery pipe 5 are installed at the bottom and top of the fluidized bed, respectively, so that countercurrent gas is supplied in the direction of the arrow at the bottom of the fluidized bed 1 and recovered at the top of the fluidized bed 1. It is connected. More specifically, it is preferable that the countercurrent gas supply pipe 4 is uniformly supplied from the periphery of the fluidized bed 1 to maintain the particle suspension balance within the fluidized bed 1.

さらにこれらの向流ガス供給管4および回収管5は循環
路を形成し、循環路内にガス処理手段6が介設され、そ
れにより回収ガスを清浄化する。
Further, the countercurrent gas supply pipe 4 and the recovery pipe 5 form a circulation path, and a gas processing means 6 is interposed in the circulation path to purify the recovery gas.

さらに、循環路はヒーター7を介してスチーム、CH,
またはCa H−等のガス供給源(図示せず)と連結し
、不足量の向流ガスを補給する。
Furthermore, the circulation path is provided with steam, CH,
Alternatively, it is connected to a gas supply source (not shown) such as Ca H- to replenish the insufficient amount of countercurrent gas.

図示の流動層還元装置は外熱方式であり、流動層1を取
囲むように加熱手段8が設けられている。
The illustrated fluidized bed reduction apparatus is of an external heating type, and a heating means 8 is provided so as to surround the fluidized bed 1.

流動層1の下方部分には篩9が傾斜して設けられ、還元
反応後のクロム鉱石分はこの篩9上を移動しながら篩を
通過し、未燃焼の固体炭素粉および灰分は通過しないよ
うなメツシュで構成されている。更に、流動層1の下方
の還元装置の最下部には篩9を通過後、落下してくる還
元クロム鉱石分を回収するよう、ベルトコンベア等の盪
送手段13が設けられ、次工程へと還元クロム鉱石を送
る。
A sieve 9 is installed at an angle in the lower part of the fluidized bed 1, so that the chromium ore after the reduction reaction passes through the sieve while moving on the sieve 9, while unburned solid carbon powder and ash do not pass through. It is composed of meshes. Further, at the lowest part of the reduction device below the fluidized bed 1, a conveying means 13 such as a belt conveyor is provided to collect the reduced reduced chromium ore that falls after passing through the sieve 9, and then transfers it to the next process. Send reduced chromium ore.

一方、還元装置は更に、篩9を通過しない未燃焼固体炭
素及び灰分を流動層外に回収する回収管10を傾斜する
篩9の下端部に隣接した位置で備えている。一方、回収
管10は灰分処理手段11に接続している。灰分処理手
段11は篩9の篩上の材料から灰分を除去し、未燃焼固
体炭素分のみを管路12を介して加熱手段8に送る。
On the other hand, the reduction device further includes a recovery pipe 10 adjacent to the lower end of the slanted sieve 9 for recovering unburned solid carbon and ash that do not pass through the sieve 9 out of the fluidized bed. On the other hand, the recovery pipe 10 is connected to an ash treatment means 11. The ash treatment means 11 removes ash from the material on the sieve 9 and sends only unburned solid carbon to the heating means 8 via the pipe 12.

以上が、本発明の方法を実施するのに使用する流動層還
元装置の概略であるが、以下にその操作について説明す
る。
The above is an outline of the fluidized bed reduction apparatus used to carry out the method of the present invention, and its operation will be explained below.

図示例でクロム鉱石供給源2より供給するクロム鉱石粉
は、例えば南アフリカ産のクロムサンドまたはフィリッ
ピン産のクロムサンドであり、一般に粒度が1mm未満
であるが、流動層1内で固体炭素粉と良好な浮遊バラン
スを有するために、必要により、更に粉砕してもよい。
In the illustrated example, the chromium ore powder supplied from the chromium ore supply source 2 is, for example, chromium sand produced in South Africa or chromium sand produced in the Philippines, and generally has a particle size of less than 1 mm. If necessary, it may be further pulverized in order to have a good floating balance.

一方、固体炭素粉は、コークス粉、チャー粉、非粘結炭
等の任意の炭素材料であってもよいが、粒度が1〜3m
mの範囲となるよう分級等の処理をうけたものである。
On the other hand, the solid carbon powder may be any carbon material such as coke powder, char powder, or non-caking coal, but the particle size is 1 to 3 m.
It has undergone processing such as classification so that it falls within the range of m.

向流ガスは、不活性ガスまだは還元性のガスであるが、
図示の如く、加熱スチーム、またはCH,、C3H,等
の還元性ガスを混入させてもよい。
Countercurrent gas is an inert gas that is still a reducing gas, but
As shown in the figure, heated steam or a reducing gas such as CH, C3H, etc. may be mixed.

流動床1はクロム鉱石粉の還元温度に保持されており、
最適の保持温度は使用する固体炭素粉および向流ガスの
種類に応じて、例えば次の表に示すように決定される。
The fluidized bed 1 is maintained at the reduction temperature of chromium ore powder,
The optimum holding temperature is determined, for example, as shown in the following table, depending on the type of solid carbon powder and countercurrent gas used.

上記の表に示す温度は還元反応に適当な温度であって、
これ以上の反応温度にすることも可能である。
The temperatures shown in the table above are suitable temperatures for the reduction reaction,
It is also possible to use a reaction temperature higher than this.

また、本発明の方法の場合、固体炭素粉の種類を問わな
いが、還元反応効率および熱バランスを考慮すると、石
炭粉よりもチャー粉の方が好ましい。
Further, in the case of the method of the present invention, the type of solid carbon powder does not matter, but in consideration of reduction reaction efficiency and heat balance, char powder is preferable to coal powder.

発明の効果 以上に説明の如く、本発明はクロム鉱石の流動層による
還元方法の改良に関し、クロム鉱石粉と、還元剤である
固体炭素粉の粒度範囲が重複しないように調整すること
によって流動層内の粉体の挙動バランスを安定して持続
するとともに、還元クロム鉱石に固体炭素粉中のP2O
5,3i02、(S)等の不純物の混入を防止すること
が可能にして還元クロム鉱石を回収することを特徴とす
る。
As explained above, the present invention relates to an improvement of a method for reducing chromium ore using a fluidized bed, and by adjusting the particle size ranges of chromium ore powder and solid carbon powder, which is a reducing agent, so that they do not overlap, the fluidized bed reduction method is achieved. In addition to stably maintaining the behavior balance of the powder in the powder, P2O in the solid carbon powder is added to the reduced chromium ore.
It is characterized by recovering reduced chromium ore while preventing the contamination of impurities such as 5, 3i02 and (S).

従って、本発明の方法には以下の如き利点がある。Therefore, the method of the present invention has the following advantages.

■ 微粉のクロム鉱石を用いるので高還元効率を達成で
きる。
■ High reduction efficiency can be achieved because fine chromium ore is used.

■ 特にP 20 sの少ない還元クロム鉱石を得るこ
とができるので次工程での溶解精錬において、脱燐用の
フラックスの使用の低減が可能になり、あるいは脱燐処
理が不用となる。
(2) In particular, since reduced chromium ore with low P 20 s can be obtained, it is possible to reduce the use of flux for dephosphorization in the next step of melting and refining, or eliminate the need for dephosphorization treatment.

■ 炭材の化学成分及び種類を問わず、特に高P1高S
の安価な炭材を用いることができる。
■ Regardless of the chemical composition and type of carbon material, especially high P1 and high S
An inexpensive carbonaceous material can be used.

■ 本発明の方法により製造した予備還元クロム鉱石は
P2O,を含有しないので、その装入量の制限はない。
(2) Since the pre-reduced chromium ore produced by the method of the present invention does not contain P2O, there is no restriction on the amount of P2O to be charged.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに用いる流動層還元
装置の1例の概略図である。 (主な参照番号)
FIG. 1 is a schematic diagram of an example of a fluidized bed reduction apparatus used to carry out the method of the present invention. (main reference number)

Claims (6)

【特許請求の範囲】[Claims] (1)不活性ガスあるいは還元性ガスを向流ガスとして
用いる流動層に、それぞれの粒度範囲が重複しないクロ
ム鉱石粉と固体炭素粉とを供給し、クロム鉱石粉を還元
し、還元後の材料を分級して還元クロム鉱石粉を回収す
ることを特徴とするクロム鉱石粉の予備還元方法。
(1) Chromium ore powder and solid carbon powder whose particle size ranges do not overlap are supplied to a fluidized bed using an inert gas or a reducing gas as a countercurrent gas, and the chromium ore powder is reduced, and the reduced material is A method for preliminary reduction of chromium ore powder, which comprises classifying and recovering reduced chromium ore powder.
(2)1〜2mmの範囲の特定の数値を境界として、ク
ロム鉱石粉の最大粒径は該特定値未満であり、固体炭素
粉の最大粒径は該特定値以上であることを特徴とする特
許請求の範囲第1項記載のクロム鉱石粉の予備還元方法
(2) With a specific numerical value in the range of 1 to 2 mm as the boundary, the maximum particle size of the chromium ore powder is less than the specific value, and the maximum particle size of the solid carbon powder is greater than or equal to the specific value. A method for pre-reducing chromium ore powder according to claim 1.
(3)上記向流ガスを回収後、スチーム、CH_4およ
びC_3H_8からなる群から選ばれた少なくとも1種
のガスを回収ガスに混合し、流動層内へ再循環させるこ
とを特徴とする特許請求の範囲第1項または第2項のい
ずれかに記載のクロム鉱石粉の予備還元方法。
(3) After recovering the countercurrent gas, at least one gas selected from the group consisting of steam, CH_4 and C_3H_8 is mixed with the recovered gas and recirculated into the fluidized bed. A method for pre-reducing chromium ore powder according to any one of Items 1 and 2.
(4)上記流動層は内熱方式でクロム鉱石の還元温度に
加熱されていることを特徴とする特許請求の範囲第1項
乃至第3項のいずれかに記載のクロム鉱石粉の予備還元
方法。
(4) The method for preliminary reduction of chromium ore powder according to any one of claims 1 to 3, wherein the fluidized bed is heated to the reduction temperature of the chromium ore by an internal heating method. .
(5)上記流動層は外熱方式でクロム鉱石の還元温度に
加熱されていることを特徴とする特許請求の範囲第1項
乃至第3項のいずれかに記載のクロム鉱石粉の予備還元
方法。
(5) The method for pre-reducing chromium ore powder according to any one of claims 1 to 3, wherein the fluidized bed is heated to the reduction temperature of the chromium ore using an external heating method. .
(6)未燃焼の固体炭素粉を流動層から回収し、燃焼せ
しめて流動層を加熱することを特徴とする特許請求の範
囲第5項記載のクロム鉱石粉の予備還元方法。
(6) The method for preliminary reduction of chromium ore powder according to claim 5, characterized in that unburned solid carbon powder is recovered from a fluidized bed and combusted to heat the fluidized bed.
JP6513585A 1985-03-29 1985-03-29 Method for prereducing chromium ore fines Pending JPS61223143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6513585A JPS61223143A (en) 1985-03-29 1985-03-29 Method for prereducing chromium ore fines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6513585A JPS61223143A (en) 1985-03-29 1985-03-29 Method for prereducing chromium ore fines

Publications (1)

Publication Number Publication Date
JPS61223143A true JPS61223143A (en) 1986-10-03

Family

ID=13278130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6513585A Pending JPS61223143A (en) 1985-03-29 1985-03-29 Method for prereducing chromium ore fines

Country Status (1)

Country Link
JP (1) JPS61223143A (en)

Similar Documents

Publication Publication Date Title
US3936296A (en) Integrated fluidized reduction and melting of iron ores
CN105908061A (en) Method for producing high-carbon ferrochrome
KR940009338A (en) Method and apparatus for producing molten pig iron and molten steel preproducts
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
US4551172A (en) Process of producing liquid carbon-containing iron
US2805929A (en) Process for obtaining iron from material containing iron oxides
JP3618813B2 (en) Method for producing high-grade nickel matte from nickel-containing raw material at least partially purified by high temperature metallurgy
RU2612330C2 (en) Method of direct reduction of materials containing metal oxides to produce melt metal and device for carrying out method
US4434001A (en) Method for manufacturing metal from fine-grain metal-oxide material
JP4120230B2 (en) Operation method of mobile hearth furnace
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
JPS61223143A (en) Method for prereducing chromium ore fines
CA1204943A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material
JPS61217512A (en) Production of pig iron
CN115652009B (en) System and method for preparing sponge iron
JPH0784624B2 (en) Method for producing molten metal from powdered ore containing metal oxide
JPS63216934A (en) Fluidized-bed reducing method for chromium ore or the like
JPS62227022A (en) Preheating and reducing device for iron ore
JPS6311609A (en) Prereduction device for iron ore
JPH11302712A (en) Reduction dissolution refining method for iron oxide
BR102023002911B1 (en) PROCESS AND SYSTEM FOR CONTINUOUS PRE-REDUCTION OF A SOLID GRANULATED MATERIAL
JP2502976B2 (en) Iron ore preliminary reduction device
JPH02175809A (en) Smelting reduction iron-making method
JPS6311610A (en) Prereduction device for iron ore
Holappa et al. Comparison of different coal based direct reduction processes