JPS6122262B2 - - Google Patents

Info

Publication number
JPS6122262B2
JPS6122262B2 JP7767881A JP7767881A JPS6122262B2 JP S6122262 B2 JPS6122262 B2 JP S6122262B2 JP 7767881 A JP7767881 A JP 7767881A JP 7767881 A JP7767881 A JP 7767881A JP S6122262 B2 JPS6122262 B2 JP S6122262B2
Authority
JP
Japan
Prior art keywords
fraction
hbs
hbsag
slow
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7767881A
Other languages
Japanese (ja)
Other versions
JPS5716357A (en
Inventor
Yatsuhiro Kamimura
Toshihiko Tanaka
Satoru Funakoshi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN CROSS CORP
Original Assignee
GREEN CROSS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN CROSS CORP filed Critical GREEN CROSS CORP
Priority to JP7767881A priority Critical patent/JPS5716357A/en
Publication of JPS5716357A publication Critical patent/JPS5716357A/en
Publication of JPS6122262B2 publication Critical patent/JPS6122262B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/576Immunoassay; Biospecific binding assay; Materials therefor for hepatitis
    • G01N33/5761Hepatitis B
    • G01N33/5764Hepatitis B surface antigen

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Food Science & Technology (AREA)
  • Communicable Diseases (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

【発明の詳細な説明】 本発明はHBsAgに対する検出用試薬に関する。
更に詳しくは、血漿又は血清の免疫グロブリン
(IgG)、又はこれらを分画して得られる精製グ
ロブリンから、B型肝炎に関係しているHBsAg
対する特異抗体(以下抗HBsと記す)が集中して
いることを新規に見いだした電気泳動的に「スロ
ウ(Slow)」の免疫グロブリン画分を、既知の分
画技術によつて選択的に収得し、この「スロウ」
の免疫グロブリン画分を粒状担体に感作させるこ
とによつて非特異的凝集の少ない逆受身抗体凝集
反応用HBsAg検出試薬を製することに関するもの
である。 HBsAgはヒト血清中などに存在し、いわゆる輸
血肝炎ウイルスないし同ウイルスに密接な関係を
持つ物質と考えられ、輸血肝炎の予防対策上、輸
血すべき血液のHBsAgの有無を検出することは、
現に広く行われている重要な臨床検査法である。
従来、血清中のHBsAgは抗HBs血清を用いるウク
テルロニー(Ouchterlony)法、カウンター・エ
レクトロフオレーシス(Counter―
electrophoresis)、補体結合反応、感作血球凝集
阻止反応などで判定されて来た。しかしながら、
これらの従来法は判定に長時間を要し、手技も煩
雑であつた。最近、抗HBsグロブリンを吸着させ
たラテツクスを検査すべき血清に混合し、数分間
軽く振盪することによつてHBsAgを含む血清にお
いては、ラテツクスの凝集が起き、HBsAgを含ま
ない血清では起きないので、両者の区別が可能で
あるとの報告があり、その原理によつて作製した
HBsAg検出試薬が市販れている。しかし、この試
薬にも次のような欠点があり、少なくとも前記の
諸検査法に代りうるものではないと考えられる。
他の方法よりも特に鋭敏ではなく、他の方法で
明らかにHBsAgを含むと判定される血清でも、し
ばしば陰性と判定される。原因不明の非特異的
凝集反応によつてHBsAgを含まないヒト血清が陽
性と判定されることがある。 このように、簡便迅速、かつ正確にHBsAgを検
出しうる検出法はいまだ存在せず、したがつてこ
のようなHBsAg検出方法並びに検出剤の確立が要
望されていた。本発明者らは、このような技術的
背景の下に、濃度の高い抗HBsグロブリンの取得
方法を検討し、その結果、目的とする特異抗体、
抗HBsを得、これを粒状担体に感作させて得られ
る試薬は、従来にない非特異的凝集の少ない逆受
身担体凝集反応用HBsAg検出試薬であることを見
いだし本発明に到達した。 本発明は、抗HBs陽性の血漿又は血清より得ら
れる免疫グロブリンから、電気泳動的にγ位(特
に好ましくは、より塩基性の高いγ位)に属する
「スロウIgG」を分取し、HBsAgに対する特異抗
体(抗HBs)を取得し、HBsAgに対する特異抗体
によつて感作された粒状担体からなる特異性
HBsAg検出用試薬を提供するものである。一般に
免疫グロブリンIgG)は電気泳動的に主として
γ位に属するとはいえ、一部はα位にまで及んで
おり、α,β位に属するものは「フアーストIg
G(FastIgG)」、γ位に属するものは「スロウIg
G(Slow IgG)」と呼ばれている。 例えば、本発明者らの知見によれば、破傷風抗
体はスロウIgGの中でも、最も塩基性部分に抗
体価の高いことを見いだしている(第23回輸血学
会発表)。 このように、抗体は電気泳動的に見た場合で
も、その種類によつて特異的に局在しており、フ
アーストIgGに抗体活性の集中するものもあ
る。 一方抗HBsに関しては現在までその活性の電気
泳動的な分布は不明であり、特に抗原抗体反応に
おける特異性という観点からの分布は全く不明で
あつた。 発明者らは、この事を解決すべく、高度免疫抗
HBs陽性のヒト血漿を用いて、研究を重ね、抗
HBsがスロウIgGに局在しており、特に電気泳
動的に塩基性の高いγ位に集中していることを初
めて見いだした。更にこの抗体画分を粒状担体に
感作して、抗原一抗体反応による抗体の凝集反応
を行う時、従来の方法で得た抗体を感作したもの
に比べ、極めて特異性の高い反応を示すことを見
いだした。 免疫グロブリンは周知のように血漿又は血清を
出発物として、エタノール分画法、硫安分画法、
リバノール分画法、イオン交換クロマトグラフイ
ー法、又は等電点分画法、更にはこれらの方法の
組合せによつて得られる。 一般に免疫グロブリンは電気泳動に対する挙動
を異にする画分に区別され、易動度によつて、α
,β,β,γ,γなどの画分が知られ
ている。これらのα位、β位及びγ位、それぞれ
の分画法としては陽イオン交換クロマトグラフイ
ー法〔イムノケミストリー
(Immunochemistry),101(1967)〕、陰イオ
ン交換クロマトグラフイー法〔トランスフユージ
ヨン(Trans fussion),146(1966)〕及びブ
ロツク電気泳動法〔電気泳動実験法、p.303、電
気泳動学会編(文光堂)〕等電点分画法〔生物物
理化学14,(3),21,209,(1969)〕などが公知で
ある。 本発明においては、ヒトの抗HBs陽性の血漿又
は血清から常法に従つて得られた免疫グロブリン
を、公知の方法によつて分画し、γ―位(γ
γ)画分、好ましくはγからなる塩基性のよ
り大きい画分を得るのである。 前記の公知の分画法のうち、用いる試薬、操作
及び条件において最も好ましい分画法はイオン交
換クロマトグラフイー法である。しかし、免疫吸
着法も、必要とされる高度に精製されたHBsAg
用いること及び製品の多少の特異性並びに抗体価
の減弱を予期するならば、用いることができる。 イオン交換クロマトグラフイー法による分画の
条件は、各担体によつて選択的であるけれども、
いずれにせよ、分画されたフラクシヨンの中から
抗HBsの集中した電気泳動的にスロウIgGに局
在する画分を、分取すればよいのである。例え
ば、陽イオン交換体を用いた時は0.2〜0.005M、
PH4〜7のリン酸緩衝液で平衡化した担体に免疫
グロブリンを吸着させ、塩濃度を上げながら免疫
グロブリンを溶出させる。溶出液の中から、上記
の目的とする抗体を含む画分を吟味し、分取す
る。又、陰イオン交換体を用いる時は、0.1〜
0.005M、PH7〜10のリン酸緩衝液で担体を平衡
化して、免疫グロブリンを吸着、塩濃度を上げつ
つ分別溶出させる。 かくして得られたγ―グロブリンのスロウ画分
は、次いで粒状担体に感作させることによつて
HBsAg検出用試薬が提供される。 粒状担体としては、従来公知のラテツクス樹脂
類、ゴム類、無機吸着剤及び動物(例えばヒツ
ジ、モルモツト、O型の人、ニワトリなど)の赤
血球をホルマリン、グルタールアルデヒドなどで
固定したものを用いてもよい。 このような粒状担体は約20μ以下、特に5〜15
μ程度のものを使用するのが有利である。 これらの粒状担体は、一般に水性溶媒に浮遊さ
せて使用するのがよい。水性溶媒としては、例え
ば、水、生理食塩水、各種緩衝液(例えばグリシ
ン緩衝液、ホウ酸緩衝液)などが挙げられる。 通常約0.3〜1%(容量)程度になるように粒
状担体を水性溶媒に浮遊させ、PH約7.0〜8.9、特
に7.2〜8.0適度に調整するのが好ましい。 このような粒状担体に抗体を感作させる処理は
自体公知の方法に準じて行うことができる。粒状
担体と抗体とを水性溶媒(例えば水、生理食塩
水、各種緩衝液など)中で接触させるのがよく、
一般に抗体含有液と上記粒状担体浮遊液とを混合
することによつて行われる。本感作処理は一般
に、PH約4.5〜8.6、約20〜37℃の温度で行うのが
好ましい。 このようにして得られるHBsAg検出用試薬は、
特異反応性が極めて高く、HBsAgを検出する際の
大きな利益をもたらすものであり、輸血後肝炎の
防止、肝炎患者の予後推定、治療効果の判定に極
めて有効であるといえる。 以下に、本発明を実施例によつて更に具体的に
説明する。 実施例 抗HBs陽性のヒト血漿1から出発て、コーン
のエタノール分画法に従つて、粗製免疫グロブリ
ン画分8.2gを得た。このもののPHA法(受身赤
血球凝集反応法)での抗HBsの抗体価は、1%溶
液で測定する時、1:8000であつた。 次にこの免疫グロブリン1gを0.01Mリン酸緩衝
液(PH6.0)に対して1夜透析後、同じ緩衝液で
平衡化したCM―セルロース(Serva社製)のカ
ラム(径3cm長さ30cm)に載せて吸着させ、平衡
化に用いたと同じ緩衝液で十分洗浄した。 次に、0.01M、PH6.0のリン酸緩衝液と、
0.01M、PH6.0のリン酸緩衝液にNaClを0.4M加え
た溶液を用いて濃度勾配溶出を行つた。 初期に溶出してくる画分はフアーストIgG画
分、後期に溶出てくるのがスロウIgG画分、そ
の中間がミドルIgG(Middle IgG)画分とし
て確認された。それぞれプールした後、必要に応
じて減圧濃縮して、1%濃度に統一し、PHA法
で抗HBsの抗体価を測定したところ、フアースト
gG画分では1:64にすぎないが、スロウIg
画分では1:64000を示し、8倍に精製された。 分取した各画分の1%液を用いて免疫電気泳動
を行うと、抗HBs活性の集中したスロウIgG画
分は免疫グロブリンの内でも最も陰極側へ泳動さ
れ、フアーストIgG画分は最も陽極側へ泳動さ
れた。ミドルIgG画分は両者の中間的位置に泳
動された。 上記のCM―セルロースで分画したスロウIg
画分、フアーストIgG画分及び上記で示した粗
製免疫グロブリンを出発原料として、アフイニテ
イクロマトグラフイー法〔フオツクス サング
(vox Sang)、29,319,(1975)〕で精製したIg
G〔アフイニテイIgG(affinity IgG)〕とを
用いて、その一定量をグルタールアルデヒド処理
した緬羊赤血球に感作し、得られた試薬の特異性
を比較した。 すなわち緬羊赤血球をリン酸緩衝化生理食塩水
で4回洗浄し、これを5%濃度の懸濁液する。 これにグルタールアルデヒドの2.5%溶液を20
%の割合で加え、室温にて60分間反応を行い、次
いで上記の生理食塩水で4回洗浄して未反応のグ
ルタールアルデヒドを除くと固定化赤血球が得ら
れる。 この固定化赤血球を5%濃度の懸濁液とし、以
下今井らの方法〔医学のあゆみ、78、759―760,
(1970)〕に準じて各種免疫グロブリンを感作し
た。 表1は抗体感作赤血球の特異性を調べるために
成人血清2605人について陽性及び精製HBsAgを用
いた凝集阻止反応による偽陽性の有無についてま
とめたものである。フアーストIgG画分で感作
したものは偽陽性が707人と極めて高く、免疫グ
ロブリンの中でもフアーストIgG画分中にはこ
のような非特異的反応の原因となる成分が集めら
れていることが分かる。一方、従来のアフイニテ
イクロマトグラフイーで精製したIgGで感作し
たものは、偽陽性が11人であつたが、スロウIg
Gを用いた場合はこれより更に著しく改善され、
約1/3にまで少なくなつた。 このように除去したフアーストIgG画分は非
特異反応が高く、スロウIgG画分では非特異反
応性が、その約1/57になることから、免疫グロ
ブリンをスロウIgG画分と、フアーストIgG画
分とに分画する方法の有効性が明らかである。更
に同様に従来技術で高度精製された抗HBs画分
も、スロウIgGとフアーストIgGとに分画する
ことの有効性を示唆するものである。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detection reagent for HB s A g .
More specifically, specific antibodies against HBsAg related to hepatitis B (hereinafter referred to as anti - HBs ) are obtained from plasma or serum immunoglobulin ( IgG ) or purified globulin obtained by fractionating these. We selectively obtained electrophoretically "slow" immunoglobulin fractions, which were newly found to have a concentration of
The present invention relates to the production of an HB s Ag detection reagent for reverse passive antibody agglutination reaction with less nonspecific agglutination by sensitizing a particulate carrier with an immunoglobulin fraction of the present invention. HB s A g exists in human serum and is thought to be a so-called transfusion hepatitis virus or a substance closely related to the same virus. As a preventive measure against transfusion hepatitis, it is important to check the presence or absence of HB s A g in the blood to be transfused. To detect,
It is an important clinical testing method that is currently widely used.
Conventionally, HBsAg in serum has been determined by the Ouchterlony method using anti- HBs serum, or by counter electrophoresis (Counter-electrophoresis) .
electrophoresis), complement fixation reaction, and sensitized hemagglutination inhibition reaction. however,
These conventional methods require a long time for determination and require complicated procedures. Recently, when latex adsorbed with anti- HBs globulin was mixed with serum to be tested and gently shaken for several minutes, agglutination of the latex occurred in serum containing HBsAg , and HBsAg was removed . It has been reported that it is possible to distinguish between the two because it does not occur with serum that does not contain it, and it was created using this principle.
HBsAg detection reagents are commercially available. However, this reagent also has the following drawbacks, and it is considered that it cannot at least replace the various testing methods described above.
It is not particularly sensitive than other methods, and sera that clearly contain HBsAg by other methods often test negative. Human serum that does not contain HBsAg may be determined to be positive due to an unspecified nonspecific agglutination reaction. As described above, there is still no detection method that can simply, quickly, and accurately detect HB s A g , and there has been a demand for the establishment of such a HB s A g detection method and detection agent. Based on this technical background, the present inventors investigated a method for obtaining high-concentration anti -HBs globulin, and as a result, the objective specific antibody,
We have discovered that a reagent obtained by obtaining anti- HBs and sensitizing it to a granular carrier is a detection reagent for HBsAg for reverse passive carrier agglutination reactions that causes less nonspecific agglutination than ever before, and has thus arrived at the present invention. did. The present invention involves electrophoretically separating "slow I g G" belonging to the γ position (particularly preferably the more basic γ position) from immunoglobulin obtained from anti- HBs positive plasma or serum. , a specific antibody (anti- HBs ) against HBsAg is obtained, and the specificity consists of a particulate carrier sensitized with the specific antibody against HBsAg .
The present invention provides a reagent for detecting HBsAg . In general, immunoglobulins (I g G) mainly belong to the γ position electrophoretically, but some of them extend to the α position, and those belonging to the α and β positions are called "first I g
G (Fast I g G)", those belonging to the γ position are "Slow I g
It is called ``G (Slow I g G)''. For example, according to the findings of the present inventors, it has been found that tetanus antibodies have the highest antibody titer in the basic portion of slow IgG (Presentation at the 23rd Society of Blood Transfusion). As described above, even when viewed electrophoretically, antibodies are localized specifically depending on their type, and some antibodies have antibody activity concentrated in the first IgG . On the other hand, with regard to anti- HBs , the electrophoretic distribution of its activity has been unknown until now, and in particular the distribution from the viewpoint of specificity in antigen-antibody reactions has been completely unknown. In order to solve this problem, the inventors developed a hyperimmune anti-
After repeated research using HBs - positive human plasma, anti-inflammatory
We have discovered for the first time that HBs is localized in slow IgG , and is particularly concentrated at the γ position, which is electrophoretically highly basic. Furthermore, when a particulate carrier is sensitized with this antibody fraction and an antibody agglutination reaction is performed through an antigen-antibody reaction, the reaction is extremely highly specific compared to sensitization with antibodies obtained by conventional methods. I found out. As is well known, immunoglobulin is produced using plasma or serum as a starting material, using ethanol fractionation, ammonium sulfate fractionation,
It can be obtained by ribanol fractionation, ion exchange chromatography, isoelectric focusing, or a combination of these methods. In general, immunoglobulins are divided into fractions with different electrophoretic behavior, and α
Fractions such as 2 , β 1 , β 2 , γ 1 and γ 2 are known. Fractionation methods for these α, β, and γ positions include cation exchange chromatography [Immunochemistry 4 , 101 (1967)] and anion exchange chromatography [Transfusion]. (Trans fusion) 6 , 146 (1966)] and block electrophoresis [Electrophoresis Experimental Methods, p. 303, edited by the Electrophoresis Society (Bunkodo)] and isoelectric focusing [Biophysical Chemistry 14 , (3) ), 21, 209, (1969)] are well known. In the present invention, immunoglobulin obtained from human anti- HBs positive plasma or serum according to a conventional method is fractionated by a known method, and the γ-position (γ 1 ,
γ 2 ) fraction, preferably a more basic fraction consisting of γ 2 . Among the above-mentioned known fractionation methods, the most preferred fractionation method in terms of the reagents, operations, and conditions used is ion exchange chromatography. However, immunoadsorption methods can also be used, provided one uses the highly purified HB s Ag required and anticipates some specificity of the product and attenuation of the antibody titer. Although the conditions for fractionation by ion exchange chromatography are selective depending on each carrier,
In any case, a fraction in which anti- HBs is concentrated and is electrophoretically localized in slow IgG can be collected from the fractionated fractions. For example, when using a cation exchanger, 0.2 to 0.005M;
Immunoglobulin is adsorbed onto a carrier equilibrated with a phosphate buffer solution of pH 4 to 7, and the immunoglobulin is eluted while increasing the salt concentration. From the eluate, the fraction containing the above-mentioned target antibody is examined and separated. Also, when using an anion exchanger, 0.1~
The carrier is equilibrated with a phosphate buffer of 0.005M and pH 7 to 10, and immunoglobulin is adsorbed and fractionated and eluted while increasing the salt concentration. The thus obtained slow fraction of γ-globulin is then sensitized to a particulate carrier.
A reagent for detecting HBsAg is provided. As particulate carriers, conventionally known latex resins, rubbers, inorganic adsorbents, and red blood cells of animals (e.g., sheep, guinea pigs, type O humans, chickens, etc.) fixed with formalin, glutaraldehyde, etc. are used. Good too. Such particulate carriers have a particle size of less than about 20μ, especially 5 to 15μ
It is advantageous to use something of the order of μ. These particulate carriers are generally preferably used suspended in an aqueous solvent. Examples of the aqueous solvent include water, physiological saline, and various buffer solutions (eg, glycine buffer, borate buffer), and the like. It is preferable to suspend the particulate carrier in an aqueous solvent in an amount of usually about 0.3 to 1% (by volume) and adjust the pH to about 7.0 to 8.9, particularly 7.2 to 8.0. Treatment for sensitizing such particulate carriers with antibodies can be carried out according to methods known per se. It is preferable to contact the particulate carrier and the antibody in an aqueous solvent (e.g., water, physiological saline, various buffer solutions, etc.),
Generally, this is carried out by mixing an antibody-containing solution and the above-mentioned particulate carrier suspension. This sensitization treatment is generally preferably carried out at a pH of about 4.5-8.6 and a temperature of about 20-37°C. The reagent for detecting HB s A g obtained in this way is
It has extremely high specific reactivity and provides great benefits in detecting HBsAg , and can be said to be extremely effective in preventing post-transfusion hepatitis , estimating the prognosis of hepatitis patients, and determining therapeutic efficacy. EXAMPLES Below, the present invention will be explained in more detail with reference to Examples. Example Starting from anti- HBs positive human plasma 1, 8.2 g of crude immunoglobulin fraction was obtained according to Cohn's ethanol fractionation method. The anti- HBs antibody titer of this product using the PHA method (passive hemagglutination assay) was 1:8000 when measured using a 1% solution. Next, 1 g of this immunoglobulin was dialyzed overnight against 0.01M phosphate buffer (PH6.0), and then a CM-cellulose (manufactured by Serva) column (3 cm in diameter and 30 cm in length) equilibrated with the same buffer. It was then adsorbed on the plate and thoroughly washed with the same buffer used for equilibration. Next, 0.01M PH6.0 phosphate buffer and
Concentration gradient elution was performed using a solution prepared by adding 0.4M NaCl to a 0.01M, PH6.0 phosphate buffer. The early eluting fraction was identified as the fast IgG fraction, the late eluting fraction as the slow IgG fraction, and the intermediate between them as the middle IgG fraction . After pooling each, they were concentrated under reduced pressure as necessary to standardize the concentration to 1%, and when the anti- HBs antibody titer was measured using the PHA method, it was only 1:64 in the first IgG fraction, but Slow I g G
The fraction showed 1:64000 and was purified 8 times. When immunoelectrophoresis is performed using a 1% solution of each fraction, the slow I g G fraction, in which anti- HBs activity is concentrated, migrates toward the cathode side among the immunoglobulins, and the fast I g G fraction has concentrated anti-HBs activity. The fraction migrated to the most anode side. The middle IgG fraction migrated to a position intermediate between the two. Slow I g G fractionated with the above CM-cellulose
Ig purified by affinity chromatography [vox Sang, 29, 319, (1975)] using the G fraction and the crude immunoglobulin shown above as starting materials.
G [affinity I g G ] was used to sensitize sheep erythrocytes treated with glutaraldehyde with a certain amount, and the specificity of the obtained reagents was compared. That is, sheep red blood cells are washed four times with phosphate buffered saline and suspended in a 5% concentration solution. Add 2.5% solution of glutaraldehyde to this
%, the reaction is carried out at room temperature for 60 minutes, and the unreacted glutaraldehyde is removed by washing four times with the above-mentioned physiological saline to obtain fixed red blood cells. This fixed red blood cell was made into a suspension with a concentration of 5%, and the method of Imai et al. [Igaku no Ayumi, 78 , 759-760,
(1970)] and sensitized with various immunoglobulins. Table 1 summarizes the presence or absence of positive sera from 2,605 adult sera and the presence or absence of false positives in agglutination inhibition reactions using purified HBsAg in order to investigate the specificity of antibody-sensitized red blood cells. Among those sensitized with the first I g G fraction, the number of false positives was extremely high (707), and among immunoglobulins, the first I g G fraction contains components that cause such non-specific reactions. I know that there is. On the other hand, in those sensitized with IgG purified by conventional affinity chromatography, there were 11 false positives ;
When G is used, the improvement is even more remarkable,
It has decreased to about 1/3. The fast I g G fraction removed in this way has a high non-specific reactivity, while the slow I g G fraction has about 1/57th of that non-specific reactivity. The effectiveness of the method of fractionation into a first I g fraction and a first I g fraction is clear. Furthermore, the anti- HBs fraction that was highly purified using conventional techniques also suggests the effectiveness of fractionating into slow IgG and fast IgG . 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 抗HBs陽性の血漿又は血清り得られる免疫グ
ロブリンから、電気泳動的に塩基性の高いγ位に
属する「スロウIgG」を分取して得たHBsAg
対する特異抗体によつて感作された粒状担体から
なる特異的HBsAg検出用試薬。
1. Using a specific antibody against HBsAg obtained by fractionating "slow IgG " which belongs to the electrophoretically more basic γ position from immunoglobulin obtained from anti -HBs positive plasma or serum. A specific HBsAg detection reagent consisting of a granular carrier that has been sensitized.
JP7767881A 1981-05-22 1981-05-22 Hbsag detecting reagent Granted JPS5716357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7767881A JPS5716357A (en) 1981-05-22 1981-05-22 Hbsag detecting reagent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7767881A JPS5716357A (en) 1981-05-22 1981-05-22 Hbsag detecting reagent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8881976A Division JPS5917779B2 (en) 1976-07-26 1976-07-26 Method for producing specific antibody against HBsAg

Publications (2)

Publication Number Publication Date
JPS5716357A JPS5716357A (en) 1982-01-27
JPS6122262B2 true JPS6122262B2 (en) 1986-05-30

Family

ID=13640542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7767881A Granted JPS5716357A (en) 1981-05-22 1981-05-22 Hbsag detecting reagent

Country Status (1)

Country Link
JP (1) JPS5716357A (en)

Also Published As

Publication number Publication date
JPS5716357A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
Benedict et al. Physical properties of antibody to bovine serum albumin as demonstrated by hemagglutination
Lin et al. Characterization of four human pregnancy-associated plasma proteins
US4145406A (en) Specific binding - adsorbent assay method and test means
US4514505A (en) Monoclonal antibody mixtures and use thereof for enhanced sensitivity immunoassays
Moore et al. Interaction of platelet membrane receptors with von Willebrand factor, ristocetin, and the Fc region of immunoglobulin G
IL192289A (en) Immunoglobulin g (igg) concentrate having reduced levels of anti-a and anti-b antibodies
Lenkei et al. Methods for detection of anti-albumin autoantibodies in hepatic diseases
JPS60248619A (en) Purification of viii factor
US4560647A (en) Antibody/antigen determination method
IE47031B1 (en) Carrier-bound immunoglobulin fission product and its use in immunologic analyses
Harboe et al. Individual antigenic specificity of human macroglobulins: Localization of antigenic determinants and their use to demonstrate formation of hybrid molecules after reduction and reassociation
US4223002A (en) Isolation of alpha1 -fetoprotein
Beebe et al. Isolation and characterization of an acidic chemotactic factor from complement-activated human serum
US4132767A (en) Preparation of α-L antibody, purification of α-L antigen and reagent for detection of α-L antibody and α-L antigen
US4325866A (en) Protein, PP11, a process for its preparation and its use
Poon et al. Heterogeneity of human circulating anticoagulants against antihemophilic factor (factor VIII)
NORBHRG IgG complexes in serum of rheumatoid arthritis patients
Wallwork et al. The SIgA system and hypersensitivity in patients with cystic fibrosis
JPS5917779B2 (en) Method for producing specific antibody against HBsAg
JPS6122262B2 (en)
Fäldt et al. Heat production in different populations of human blood cells exposed to immune complexes in vitro: the importance of the Fc parts of immunoglobulins and the influence of active complement.
Faulk et al. Characterization of rabbit fast and slow 6· 6S IgG
Wells et al. Human anti-IgM iso-antibodies in subjects with selective IgA deficiency
US4476093A (en) Kit for preparing sample for use in endotoxin test
Moore et al. Purification and use of the C3d subunit of C3