JPS6122230B2 - - Google Patents

Info

Publication number
JPS6122230B2
JPS6122230B2 JP58117708A JP11770883A JPS6122230B2 JP S6122230 B2 JPS6122230 B2 JP S6122230B2 JP 58117708 A JP58117708 A JP 58117708A JP 11770883 A JP11770883 A JP 11770883A JP S6122230 B2 JPS6122230 B2 JP S6122230B2
Authority
JP
Japan
Prior art keywords
air
raw
amount
air compressor
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58117708A
Other languages
Japanese (ja)
Other versions
JPS608689A (en
Inventor
Kazunori Kiritani
Toshiaki Oonishi
Haruo Ura
Shoji Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
Original Assignee
KYODO SANSO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO filed Critical KYODO SANSO
Priority to JP58117708A priority Critical patent/JPS608689A/en
Publication of JPS608689A publication Critical patent/JPS608689A/en
Publication of JPS6122230B2 publication Critical patent/JPS6122230B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、空気分離装置における原料空気圧
縮機の運転方法に関する。 従来、空気分離装置における原料空気圧縮機の
運転は、酸素の生産量に応じて吸入ベーンを手動
操作し原料空気量を調整していた。 しかし、この方法では、酸素生産量の減少に伴
い原料空気圧縮機吸入量を減少させた場合、原料
空気圧縮機の効率が低下していた。 上記欠点の改善策として、原料空気圧縮機に回
転数制御を採用することが考えられるが、この場
合には原料空気圧縮機のサージング防止のため吸
入ベーン制御を併用する必要があり、効率の向上
はあまり望めない。 又、原料空気圧縮機の処理能力の余剰分を、他
の圧縮空気使用設備に供給する方法が考えられる
が、一般に圧縮空気使用設備の圧縮空気使用量は
激しく変動するため原料空気圧縮機吸入量を一定
に保つことができず、他の圧縮空気使用設備と共
用することは困難であつた。 この発明は、かかる現状に鑑み、空気分離装置
における原料空気圧縮機を、圧縮空気使用量変動
が激しい他の圧縮空気使用設備との共用を可能に
し、原料空気圧縮機吸入量を一定に保つことので
きる原料空気圧縮機の運転方法を提案するもので
ある。 すなわち、この発明は、空気分離装置の原料空
気圧縮機と水洗塔の間より分岐導入した原料空気
の一部を冷却したのち空気昇圧機で所定圧力に昇
圧して圧縮空気使用設備に供給する圧縮空気使用
量の変動を圧力検出器により検出し、その検出信
号をフイードバツクして空気昇圧機の容量調整を
行ない、この容量調整に対応して原料空気圧縮機
出側において圧縮空気使用設備へ分岐する圧縮空
気量及び酸素プラント側への原料空気量をそれぞ
れ流量検出器で検出し、その検出信号を原料空気
圧縮機の吸入ベーン操作器にフイードバツクして
原料空気圧縮機吸入量を調整し、原料空気圧縮機
吸入量が常に設定値を保つよう制御することを要
旨とする。 次に、この発明の実施例を図面について説明す
る。 空気分離装置において、原料空気圧縮機1と酸
素プラント2を結ぶ配管において、原料空気圧縮
機1と水洗塔(図面省略)との間で導管14を分
岐させ、プレクーラ3、吸入バツフアタンク4、
空気昇圧機5、吐出バツフアタンク6、アフター
クーラ7を経て圧縮空気使用設備8に配管接続す
る。 そして、アフタークーラ7の出側に圧力検出器
9を設け、検出した圧縮空気圧力はシーケンスユ
ニツト10を介して空気昇圧機5にフイードバツ
クし空気昇圧機5の容量調整ができるように設け
る。又プレクーラ3の入側及び水洗塔の入側に、
それぞれ流量検出器11,12を設け、その検出
信号を原料空気圧縮機1の吸入ベーン操作器15
にフイードバツクし原料空気圧縮機吸入量を加減
できるようにする。そして、圧縮空気使用設備8
の入側に予備空気圧縮機13を設置する。 今、原料空気圧縮機1に例えば吸入量56500N
m3/Hrで原料空気を吸入し、このうち酸素プラ
ント2へは例えば流量46500Nm3/Hrで、又圧縮
空気使用設備へは流量10000Nm3/Hrで、それぞ
れ導入する。 導管14に導入された原料空気は5Kg/m3Gの
圧力を有し、プレクーラ3で冷却され吸入バツフ
アタンク4を経て空気昇圧機5で6Kg/m3Gの圧
力に昇圧されたのち、吐出バツフアタンク6を経
てアフタークーラ7で再び冷却され圧縮空気使用
設備8へ送られる。その間圧力検出器9で流通す
る圧縮空気の圧力が測定されており、圧縮空気使
用設備8での圧縮空気使用量変化に伴い空気圧力
が変動した場合は、圧力検出器9でその変動が検
出され、その検出信号はシーケンスユニツト10
を経て空気昇圧機5に入力し、ここで、基準値と
比較して容量調整が行われる。 この容量調整に対応して、流量検出器11,1
2でそれぞれの流量を検出し、その検出信号を吸
入ベーン操作器15に入力し、ここで原料空気の
吸入基準値と比較して、吸入量が基準値となるよ
う吸入ベーンを操作し、原料空気圧縮機吸入量を
加減するのである。 なお、原料空気圧縮機1の吸入ベーンが全開で
原料空気量の設定値を増加させた場合、圧縮空気
使用量に無関係に空気昇圧機5は空気量調整を行
い原料空気量を確保する。一方、圧縮空気使用設
備への供給量が減少するため、圧力検出器9で検
出した圧力低下を信号として予備空気圧縮機13
を稼動して圧力低下を補なう。 又、原料空気圧縮機1の吸入弁がサージング限
界に達し、なおかつ圧縮空気の使用量あるいは空
気分離用原料空気量が減少したとき、吸入弁はサ
ージング限界開度を保持し、そして導管14の途
中に設けた放風弁を作動させれば、サージングを
防止できる。 酸素プラント2のリバーシング熱交換器の切換
え中は、原料空気圧縮機の吸入弁開度及び空気昇
圧機容量が保持されるよう熱交換器の三方弁から
信号を受けるようにする。 次に、この発明の実施により、原料空気
56500Nm3/Hrのうち10000Nm3/Hrを他の圧縮空
気使用設備へ流して共用した場合の空気圧縮機の
効率を、共用しない場合に比較して試験した結果
を表に示す。
The present invention relates to a method of operating a feed air compressor in an air separation device. Conventionally, when operating a feed air compressor in an air separation device, the amount of feed air was adjusted by manually operating a suction vane according to the amount of oxygen produced. However, with this method, when the intake amount of the feed air compressor is reduced due to a decrease in the amount of oxygen produced, the efficiency of the feed air compressor is reduced. A possible solution to the above drawback is to adopt rotation speed control for the raw air compressor, but in this case, it is necessary to use suction vane control to prevent surging of the raw air compressor, which improves efficiency. I can't hope for much. Another possible method is to supply the excess processing capacity of the raw air compressor to other compressed air using equipment, but since the amount of compressed air used by compressed air equipment generally fluctuates dramatically, the intake amount of the raw air compressor It was difficult to keep the pressure constant, and it was difficult to share the air with other equipment that uses compressed air. In view of the current situation, this invention makes it possible to share the feed air compressor in an air separation device with other compressed air using equipment where the amount of compressed air used fluctuates rapidly, and to maintain the intake amount of the feed air compressor at a constant level. This paper proposes a method of operating a raw material air compressor that allows for That is, this invention cools a part of the feed air that is branched in between the feed air compressor and the water washing tower of an air separation device, and then boosts the pressure to a predetermined pressure with an air booster and supplies the compressed air to equipment that uses compressed air. Fluctuations in the amount of air used are detected by a pressure detector, and the detection signal is fed back to adjust the capacity of the air booster, and in response to this capacity adjustment, a branch is made to the compressed air usage equipment at the outlet side of the raw air compressor. The amount of compressed air and the amount of raw material air to the oxygen plant side are detected by flow rate detectors, and the detection signals are fed back to the intake vane operator of the raw material air compressor to adjust the intake amount of the raw material air compressor. The gist is to control the compressor suction amount so that it always maintains the set value. Next, embodiments of the invention will be described with reference to the drawings. In the air separation device, in the piping connecting the raw air compressor 1 and the oxygen plant 2, a conduit 14 is branched between the raw air compressor 1 and a water washing tower (not shown), and a precooler 3, a suction buffer tank 4,
It is connected via piping to compressed air usage equipment 8 via an air booster 5, a discharge buffer tank 6, and an aftercooler 7. A pressure detector 9 is provided on the outlet side of the aftercooler 7, and the detected compressed air pressure is fed back to the air booster 5 via the sequence unit 10, so that the capacity of the air booster 5 can be adjusted. Also, on the inlet side of the precooler 3 and the inlet side of the water washing tower,
Flow rate detectors 11 and 12 are provided respectively, and their detection signals are sent to the suction vane operator 15 of the raw air compressor 1.
Feedback can be provided to adjust the intake amount of the raw air compressor. And compressed air usage equipment 8
A preliminary air compressor 13 is installed on the inlet side of the air compressor. Now, for example, the suction amount for raw air compressor 1 is 56500N.
Raw material air is sucked in at a rate of m 3 /Hr, and is introduced into the oxygen plant 2 at a flow rate of 46,500 Nm 3 /Hr, and into the compressed air using equipment at a flow rate of 10,000 Nm 3 /Hr, respectively. The raw material air introduced into the conduit 14 has a pressure of 5 kg/m 3 G, is cooled by a pre-cooler 3, passes through a suction buffer tank 4, is boosted to a pressure of 6 kg/m 3 G by an air booster 5, and then is transferred to a discharge buffer tank. 6, is cooled again by an aftercooler 7, and sent to a compressed air usage facility 8. During this time, the pressure of the compressed air flowing through is measured by the pressure detector 9, and if the air pressure fluctuates due to changes in the amount of compressed air used by the compressed air usage equipment 8, the pressure detector 9 detects the fluctuation. , the detection signal is sent to the sequence unit 10
The air is inputted to the air booster 5 via the air pump 5, where it is compared with a reference value and the capacity is adjusted. Corresponding to this capacity adjustment, the flow rate detectors 11, 1
2, the respective flow rates are detected, and the detection signals are input to the suction vane operating device 15, where they are compared with the suction reference value of raw material air, and the suction vanes are operated so that the suction amount becomes the reference value. It adjusts the intake amount of the air compressor. Note that when the intake vane of the raw material air compressor 1 is fully opened and the set value of the raw material air amount is increased, the air booster 5 adjusts the air amount to ensure the raw material air amount regardless of the amount of compressed air used. On the other hand, since the supply amount to the equipment using compressed air decreases, the pressure drop detected by the pressure detector 9 is used as a signal to send the backup air compressor 13
to compensate for the pressure drop. Further, when the suction valve of the raw air compressor 1 reaches the surging limit and the amount of compressed air used or the amount of raw air for air separation decreases, the suction valve maintains the surging limit opening, and the opening in the middle of the conduit 14 is reduced. Surging can be prevented by operating the air release valve installed in the During switching of the reversing heat exchanger of the oxygen plant 2, a signal is received from the three-way valve of the heat exchanger so that the suction valve opening of the raw air compressor and the air booster capacity are maintained. Next, by implementing this invention, the raw air
The table shows the results of a test comparing the efficiency of an air compressor when 10000Nm 3 /Hr of the 56500Nm 3 /Hr is shared with other compressed air using equipment compared to when it is not shared.

【表】 この発明は、他の圧縮空気使用設備の圧縮空気
使用量が変動した場合でも原料空気圧縮機を効率
よく運転できるようにしたため、空気分離装置の
原料空気圧縮機を他の圧縮空気使用設備と共用す
ることが可能となり、酸素生産量が低減した場合
でも原料空気圧縮機は効率よく運転され、酸素製
造原単位の向上が可能となると共に、圧縮空気の
原単位をも向上させることができる。又、空気分
離装置の酸素減量限界は原料空気圧縮機サージン
グポイントによつて決定されていたが、他の圧縮
空気使用設備に供給できるため、従来に比べ酸素
減量限界の拡大が可能となる。
[Table] This invention enables the feed air compressor to operate efficiently even when the amount of compressed air used by other compressed air using equipment fluctuates. This allows the compressor to be shared with other equipment, allowing the raw air compressor to operate efficiently even when oxygen production decreases, making it possible to improve the oxygen production unit and also the compressed air unit. can. Further, the oxygen reduction limit of the air separation device was determined by the raw air compressor surging point, but since it can be supplied to other compressed air using equipment, the oxygen reduction limit can be expanded compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例における装置の系
統図である。 図中、1…原料空気圧縮機、2…酸素プラン
ト、3…プレクーラ、4…吸入バツフアタンク、
5…空気昇圧機、6…吐出バツフアタンク、7…
アフタークーラ、8…圧縮空気使用設備、9…圧
力検出器、10…シーケンスユニツト、11,1
2…流量検出器、13…予備空気圧縮機、14…
導管、15…吸入ベーン操作器、16…放風弁。
FIG. 1 is a system diagram of an apparatus in an embodiment of the present invention. In the figure, 1... Raw air compressor, 2... Oxygen plant, 3... Precooler, 4... Suction buffer tank,
5...Air booster, 6...Discharge buffer tank, 7...
Aftercooler, 8... Compressed air usage equipment, 9... Pressure detector, 10... Sequence unit, 11, 1
2...Flow rate detector, 13...Preliminary air compressor, 14...
Conduit, 15... Suction vane operator, 16... Air discharge valve.

Claims (1)

【特許請求の範囲】[Claims] 1 空気分離装置の原料空気圧縮機と水洗塔の間
より分岐導入した原料空気の一部を冷却したのち
空気昇圧機で所定圧力に昇圧して圧縮空気使用設
備に供給する圧縮空気使用量の変動を圧力検出器
により検出し、その検出信号をフイードバツクし
て空気昇圧機の容量調整を行ない、この容量調整
に対応して原料空気圧縮機側において圧縮空気使
用設備へ分岐する圧縮空気量及び酸素プラント側
への原料空気量をそれぞれ流量検出器で検出し、
その検出信号を原料空気圧縮機の吸入ベーン操作
器にフイードバツクして原料空気圧縮機吸入量を
調整し、原料空気圧縮機吸入量が常に設定値を保
つよう制御することを特徴とする空気分離用原料
空気圧縮機の運転方法。
1. Fluctuations in the amount of compressed air used after cooling a part of the raw air introduced between the raw air compressor of the air separation equipment and the water washing tower, increasing the pressure to a predetermined pressure with an air booster, and supplying it to the compressed air usage equipment. is detected by a pressure detector, and the detection signal is fed back to adjust the capacity of the air booster, and in response to this capacity adjustment, the amount of compressed air that is branched to the compressed air usage equipment on the raw material air compressor side and the oxygen plant are adjusted. Detect the amount of raw material air to each side with a flow rate detector,
For air separation, the detection signal is fed back to the suction vane operating device of the raw air compressor to adjust the intake amount of the raw air compressor so that the intake amount of the raw air compressor is always maintained at a set value. How to operate a raw air compressor.
JP58117708A 1983-06-28 1983-06-28 Method of operating raw-material air compressor for separating air Granted JPS608689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117708A JPS608689A (en) 1983-06-28 1983-06-28 Method of operating raw-material air compressor for separating air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117708A JPS608689A (en) 1983-06-28 1983-06-28 Method of operating raw-material air compressor for separating air

Publications (2)

Publication Number Publication Date
JPS608689A JPS608689A (en) 1985-01-17
JPS6122230B2 true JPS6122230B2 (en) 1986-05-30

Family

ID=14718339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117708A Granted JPS608689A (en) 1983-06-28 1983-06-28 Method of operating raw-material air compressor for separating air

Country Status (1)

Country Link
JP (1) JPS608689A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0552376B1 (en) * 1991-08-05 1999-01-13 Nippon Shokubai Co., Ltd. Production of polymer hydroxylated at both terminals, composition containing said polymer and its use, and polymer derived from said composition and its use
US7975490B2 (en) * 2008-07-28 2011-07-12 General Electric Company Method and systems for operating a combined cycle power plant

Also Published As

Publication number Publication date
JPS608689A (en) 1985-01-17

Similar Documents

Publication Publication Date Title
JP2789548B2 (en) Multi-stage membrane control device and method
US11673815B2 (en) System and method for the treatment of water by reverse osmosis or nanofiltration
JPS6122230B2 (en)
JPH07284637A (en) Membrane module system
JPS60129103A (en) Apparatus for preparing extremely pure water
CN210065982U (en) Novel high-pressure cavity air inlet and outlet device
JPS59199004A (en) Material separation apparatus by semipermeable membrane
JPS60235604A (en) Reverse osmotic membrane separation device
JPS58131193A (en) Method of controlling ph of supplied or condensed water in drum-type boiler by injection of hydrazine
US4040801A (en) Method and apparatus for rapid adjustment of process gas inventory in gaseous diffusion cascades
JPH02180667A (en) Coating material circulating apparatus
CN216997679U (en) Nitrogen recovery system
JPH057751A (en) Apparatus for preparing carbonated water
JPS607989A (en) Production apparatus for extremely pure water
JPH0420836Y2 (en)
JP3368480B2 (en) Compressor control method and device
JP2021088760A (en) Recycling facility of circulation water and recycling method of circulation water
JPH04116296A (en) Compressor
JPS61180813A (en) Driving device for condensate booster pump
JPH06317290A (en) Pressure boosting device
JPS63158398A (en) Feeder for town gas
JPH0450500A (en) Controller of compressor
JPH0791608A (en) Condensate recovery device
JPH0675720B2 (en) Sludge concentration method at low flow rate
JPH02149704A (en) Control method of steam turbine