JPS6122229B2 - - Google Patents

Info

Publication number
JPS6122229B2
JPS6122229B2 JP58087271A JP8727183A JPS6122229B2 JP S6122229 B2 JPS6122229 B2 JP S6122229B2 JP 58087271 A JP58087271 A JP 58087271A JP 8727183 A JP8727183 A JP 8727183A JP S6122229 B2 JPS6122229 B2 JP S6122229B2
Authority
JP
Japan
Prior art keywords
air
blast furnace
pressure
stage
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58087271A
Other languages
Japanese (ja)
Other versions
JPS59212676A (en
Inventor
Yoshiaki Sugano
Toshihide Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP58087271A priority Critical patent/JPS59212676A/en
Publication of JPS59212676A publication Critical patent/JPS59212676A/en
Publication of JPS6122229B2 publication Critical patent/JPS6122229B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04551Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production
    • F25J3/04557Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the metal production for pig iron or steel making, e.g. blast furnace, Corex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/24Multiple compressors or compressor stages in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/40Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being air

Description

【発明の詳細な説明】 本発明は全低圧式空気分離装置の効率的な運転
方法に関し、特に減量運転に当つても原料空気圧
縮機の動力経済性を維持すると共に更に付加価値
を高めることのできる運転方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an efficient operating method for a total low-pressure air separation device, and in particular to a method for maintaining the power economy of a feed air compressor even during reduced operation and further increasing added value. This is about how you can drive.

製鉄所では転炉において多量の純酸素を使用す
るので、転炉工場の付近には酸素製造設備が1系
列又は複数系列建設され、必要量の高純度酸素を
いつでも供給できる様に配慮されている。又酸素
製造設備としては大容量製造に適した全低圧式空
気分離装置が一般に採用されており、該装置では
原料空気を圧縮した後冷却して液体空気となし、
更にこの液体空気を酸素の沸点(−183℃)と窒
素の沸点(−195.8℃)の差を利用して精留し、
高純度の酸素と窒素が製造されている。尚原料空
気の圧縮に当つては処理量及び設備コストの兼ね
合いの面から通常、2段式の空気圧縮機が採用さ
れている。
Steelworks use large amounts of pure oxygen in their converters, so one or more lines of oxygen production equipment are built near the converter plant to ensure that the required amount of high-purity oxygen can be supplied at any time. . In addition, as oxygen production equipment, a total low pressure air separation device suitable for large-capacity production is generally adopted, and in this device, raw air is compressed and then cooled to become liquid air.
Furthermore, this liquid air is rectified using the difference between the boiling point of oxygen (-183℃) and the boiling point of nitrogen (-195.8℃).
High purity oxygen and nitrogen are produced. In order to compress the raw material air, a two-stage air compressor is usually used in view of the balance between throughput and equipment cost.

ところで種々の理由により粗鋼量を減産する必
要にせまられることがある。そして粗鋼量減産体
制に入れば、転炉の稼動率も低下するので純酸素
の需要量も当然減少し、それに見合う原料空気は
不要となる。ところが空気圧縮機が定容量形であ
る場合には入口側の原料空気量を絞ることは所定
の圧縮圧を確保する必要から無理であり、吐出側
の被圧縮空気について過剰分をそのまま放出して
おり、空気圧縮機の動力経済性の低下が問題視さ
れる。この問題に対しては例えば遠心式ターボ形
圧縮機のような容量可変型のものを採用して切換
運転可能とすることによつて設備的な一面では一
見解決できそうであるが、その為に多額の投資を
要し、ランニングコストの高騰につながるので、
現実に採用することは不利である。
However, for various reasons, it may be necessary to reduce the amount of crude steel produced. If the production of crude steel is reduced, the operating rate of the converter will also decrease, so the demand for pure oxygen will naturally decrease, and there will be no need for feedstock air to meet the demand. However, if the air compressor is a fixed displacement type, it is impossible to reduce the amount of raw air on the inlet side because it is necessary to ensure a specified compression pressure, and the excess compressed air on the discharge side is simply released. Therefore, the reduction in power economy of air compressors is seen as a problem. At first glance, this problem seems to be solved from a facility perspective by adopting a variable capacity type, such as a centrifugal turbo compressor, and making it possible to switch operation. This requires a large amount of investment and leads to a rise in running costs.
It is disadvantageous to actually adopt it.

本発明者等は上記の事情に着目し、2段式空気
圧縮機の構造を特に変更することなく、全低圧式
空気分離装置(以下単に空気圧縮機という)の減
量運転に見合うだけの上記被空気圧縮機を有効利
用することにより動力経済性を維持する方向で
種々検討を行なつたところ、該被圧縮空気機を高
炉熱風用原料空気の一部として利用すれば単に動
力経済性のみならず高炉送風系統でのエネルギー
回収効率を高め得ることを知見し、更に検討を重
ねた結果、本発明を完成するに至つた。しかして
この様な本発明に係る空気分離装置における減量
運転方法とは、酸素需要量の減少に見合うだけの
減少すべき原料空気を、空気分離装置における2
段式空気圧縮機の吐出側から1段及び2段抽気を
行なうと共に、1段抽気は低圧側高炉送風管内
に、又2段抽気は高圧側高炉送風管に夫々供給す
る様にした点に要旨を有するものである。
The present inventors focused on the above-mentioned circumstances, and without making any particular changes to the structure of the two-stage air compressor, the inventors of the present invention have developed the above-mentioned load that is commensurate with the reduced operation of the total low-pressure air separation device (hereinafter simply referred to as the air compressor). We have conducted various studies to maintain power economy through effective use of air compressors, and have found that if the compressed air compressor is used as part of the raw material air for blast furnace hot air, it will not only improve power economy. It was discovered that the energy recovery efficiency in the blast furnace ventilation system could be improved, and as a result of further studies, the present invention was completed. However, the reduction operation method for an air separation device according to the present invention is such that the amount of raw material air to be reduced is reduced to correspond to the reduction in oxygen demand.
The main points are that 1st and 2nd stage bleed air is performed from the discharge side of the stage air compressor, and 1st stage bleed air is supplied to the low pressure side blast furnace blast pipe, and 2nd stage bleed air is supplied to the high pressure side blast furnace blast pipe. It has the following.

以下実施例図面を参照しつつ本発明の構成及び
作用効果を説明するが、下記実施例は単に一代表
例であつて本発明を限定する性質のものではな
く、前・後記の趣旨に沿つて2段式空気圧縮機の
配設数や1段抽気又は2段抽気系統と高炉送風系
統の接続及びその制御形式等について適当に設計
変更することは、全て本発明の技術的範囲に属す
る。
The configuration and effects of the present invention will be explained below with reference to the drawings, but the following examples are merely representative examples and do not limit the present invention. Appropriate design changes in the number of two-stage air compressors, the connection between the first-stage or second-stage bleed air system and the blast furnace blowing system, and the type of control thereof, all belong to the technical scope of the present invention.

第1図は本発明に係る減量運転方法を示す線図
的系統図であり、イは空気分離装置系統、ロは高
炉送風系統を夫々示している。又図示の空気分離
装置系統イは3系列から成るものを示しており、
1a,1b,1cは2段式空気圧縮機(以下空気
圧縮機という)、2a,2b,2cは各空気圧縮
機1a,1b,1cの駆動用モータ3a,3b,
3cは原料空気の供給側ライン、4a,4b,4
cは各空気圧縮機1a,1b,1cにより約4.8
Kg/cm2Gまで2段で圧縮された原料空気の吐出側
ライン、5a,5b,5cは分離装置である。又
6a,6b,6cは吐出側ライン4a,4b,4
cから分岐されたラインで、ライン6b,6cは
途中でライン6aに合流せしめている。8a,8
b,8cは各ライン6a,6b,6cに設けられ
たバルブである。従つてこれらのバルブ6a〜6
cの開度調整により適当量の2段抽気(圧力は約
4.8Kg/cm2G)がライン6a内を流れる様になさ
れている。更に9a,9b,9cは各空気圧縮機
1a,1b,1cの1段圧縮終了部を起点として
延設されたラインでライン9b,9cは途中でラ
イン9aに合流せしめている。10a,10b,
10cは各ライン9a,9b,9cに設けられた
バルブである。従つてこれらのバルブ9a〜9c
の開度調整により適当量の1段抽気(圧力は約
1.7Kg/cm2G)がライン9a内に流れ込む。
FIG. 1 is a diagrammatic system diagram showing the reduction operation method according to the present invention, in which A shows the air separation system and B shows the blast furnace ventilation system. In addition, the air separation device system A shown in the figure is composed of three systems.
1a, 1b, 1c are two-stage air compressors (hereinafter referred to as air compressors), 2a, 2b, 2c are driving motors 3a, 3b, for each air compressor 1a, 1b, 1c,
3c is the raw air supply line, 4a, 4b, 4
c is approximately 4.8 for each air compressor 1a, 1b, 1c
The discharge side lines 5a, 5b, and 5c for raw air compressed in two stages to Kg/cm 2 G are separation devices. Also, 6a, 6b, 6c are discharge side lines 4a, 4b, 4
Lines 6b and 6c branch from line c, and join line 6a midway. 8a, 8
b, 8c are valves provided in each line 6a, 6b, 6c. Therefore, these valves 6a-6
By adjusting the opening of c, an appropriate amount of two-stage extraction (pressure is approx.
4.8Kg/cm 2 G) flows through the line 6a. Furthermore, lines 9a, 9b, and 9c extend from the end of the first-stage compression of each air compressor 1a, 1b, and 1c, and the lines 9b and 9c join the line 9a midway. 10a, 10b,
10c is a valve provided in each line 9a, 9b, 9c. Therefore, these valves 9a to 9c
An appropriate amount of first-stage extraction (pressure is approx.
1.7Kg/cm 2 G) flows into line 9a.

一方高炉送風系統ロにおいて、11aは高圧で
操業される高炉(以下高圧高炉という)、20b
は該高圧高炉11aに送るべき熱風を形成させる
ための熱風炉であり、該熱風炉20aには圧力約
3〜5Kg/cm2Gの空気を送るための高炉送風管
(以下高圧側高炉送風管という)12aが接続さ
れる。更に該高圧側高炉送風管12aの根本側は
送風機13aに接続されている。14aは送風機
13aに大気を供給する大気ライン、15aは送
風機13aを駆動するタービン、16aは該ター
ビン15aに蒸気を供給する蒸気ラインである。
即ち送風機13aは蒸気タービン15aによつて
駆動され、大気ライン14aから供給された常圧
の空気を約3〜5Kg/cm2Gまで圧縮して高圧側高
炉送風管12a内に送れるようになつている。
On the other hand, in the blast furnace ventilation system B, 11a is a blast furnace operated at high pressure (hereinafter referred to as high pressure blast furnace), 20b
is a hot blast furnace for forming hot air to be sent to the high pressure blast furnace 11a, and a blast furnace blast pipe (hereinafter referred to as high pressure side blast furnace blast pipe) for sending air at a pressure of about 3 to 5 kg/cm 2 G is a hot blast furnace for forming hot air to be sent to the high pressure blast furnace 11a. ) 12a is connected. Further, the base side of the high-pressure blast furnace blast pipe 12a is connected to a blower 13a. 14a is an atmospheric line that supplies the air to the blower 13a, 15a is a turbine that drives the blower 13a, and 16a is a steam line that supplies steam to the turbine 15a.
That is, the blower 13a is driven by a steam turbine 15a, and is capable of compressing normal pressure air supplied from the atmospheric line 14a to approximately 3 to 5 kg/cm 2 G and sending it into the high pressure side blast furnace blast pipe 12a. There is.

又11bは低圧で操業される高炉(以下低圧高
炉という)、20bは熱風炉であり、該熱風炉2
0bには圧力約1.5〜2.0Kg/Gの空気を送るため
の高炉送風管(以下低圧側高炉送風管という)1
2bが接続される。圧送を行なうための機器の構
成については上記高圧々送の場合と同様であり、
13bは送風機、14bは大気ライン、15bは
蒸気タービンである。送風機13a,13bは、
高圧高炉11a及び低圧高炉11bの操業に応じ
て適宜切換えて又は同時に駆動される。又17は
ボイラ、18はボイラ17で発生せしめた蒸気を
貯留するレシーバである。そして蒸気タービン1
5a,15bの駆動用に消費された蒸気分だけ差
し引いた、レシーバ18内の残りの蒸気は全てラ
イン16bから発電用タービン19に供給され電
力回収が行なわれる。21は発電機である。
Further, 11b is a blast furnace operated at low pressure (hereinafter referred to as a low pressure blast furnace), 20b is a hot blast furnace, and the hot blast furnace 2
0b is a blast furnace blast pipe (hereinafter referred to as the low pressure side blast furnace blast pipe) 1 for sending air at a pressure of approximately 1.5 to 2.0 Kg/G.
2b is connected. The configuration of the equipment for pressure feeding is the same as in the case of high pressure pressure feeding,
13b is a blower, 14b is an atmospheric line, and 15b is a steam turbine. The blowers 13a and 13b are
Depending on the operation of the high-pressure blast furnace 11a and the low-pressure blast furnace 11b, they are switched as appropriate or driven simultaneously. Further, 17 is a boiler, and 18 is a receiver for storing steam generated by the boiler 17. and steam turbine 1
All remaining steam in the receiver 18 after deducting the amount of steam consumed for driving 5a and 15b is supplied to the power generation turbine 19 from the line 16b to recover electric power. 21 is a generator.

更に空気分離装置イにおけるライン6a及び9
aは夫々高炉送風系統ロにおける高圧側高炉送風
管12a及び低圧側高炉送風管12bと接続され
ている。
Furthermore, lines 6a and 9 in air separation device A
A is connected to a high pressure side blast furnace blast pipe 12a and a low pressure side blast furnace blast pipe 12b in the blast furnace ventilation system B, respectively.

上記の様に構成された空気分離装置系統イ及び
高炉送風系統ロにおいては、空気分離装置の減量
運転が開始されると、酸素製造量の減少に見合う
だけの減少すべき原料空気はすべて各空気圧縮機
1a,1b,1cの吐出側から1段抽気又は2段
抽気となつて夫々ライン9a又はライン6aから
低圧側高炉送風管12b内又は高圧側高炉送風管
12a内に供給される。この場合、1段抽気の圧
力は約1.7Kg/cm2Gであり、低圧側高炉送風管1
2b内の許容送風圧範囲(1.5〜2.0Kg/cm2G)を
満足するので、1段抽気は低圧高炉熱風用空気原
料の一部を担うことができる。その結果、1段抽
気の増加分に応じて送風機13bの回転数を落す
ことができ、レシーバ18からタービン15bへ
の蒸気供給量が減少する。従つてその減少した分
だけ発電用タービン19に供給される蒸気量が増
加するので、発電量が増加する。
In the air separation system A and the blast furnace blower system B configured as described above, when the reduction operation of the air separation equipment is started, all the raw material air that should be reduced to correspond to the reduction in the amount of oxygen produced is From the discharge side of the compressors 1a, 1b, 1c, the air is supplied as first-stage or second-stage bleed air from line 9a or line 6a, respectively, into the low-pressure blast furnace blast pipe 12b or the high-pressure blast furnace blast pipe 12a. In this case, the pressure of the first stage bleed air is approximately 1.7Kg/cm 2 G, and the pressure of the blast furnace air pipe 1 on the low pressure side
Since the permissible blowing pressure range (1.5 to 2.0 Kg/cm 2 G) in 2b is satisfied, the first stage bleed air can serve as a part of the air raw material for low pressure blast furnace hot air. As a result, the rotational speed of the blower 13b can be reduced in accordance with the increase in the first-stage bleed air, and the amount of steam supplied from the receiver 18 to the turbine 15b is reduced. Therefore, since the amount of steam supplied to the power generation turbine 19 increases by the amount of the decrease, the amount of power generation increases.

一方2段抽気の圧力は約4.8Kg/cm2Gであり、
高圧側高炉送風管12a内の許容送風圧範囲(3
〜5Kg/cm2G)を満足するので、2段抽気は高圧
高炉熱風用空気原料の一部を担うことができる。
従つてこの場合にも上述の低圧送風系統で得られ
た作用効果を享受できるが、高圧故にタービン1
5aを駆動するための蒸気量の減少効果が大き
く、発電用タービン19及び発電機21による発
電効果は更に高まる。
On the other hand, the pressure of the second stage bleed air is approximately 4.8Kg/cm 2 G,
Allowable blast pressure range in the high pressure side blast furnace blast pipe 12a (3
~5Kg/cm 2 G), the two-stage bleed air can serve as a part of the air raw material for high-pressure blast furnace hot air.
Therefore, in this case as well, the effects obtained with the above-mentioned low-pressure blowing system can be enjoyed, but due to the high pressure, the turbine 1
The effect of reducing the amount of steam for driving 5a is large, and the power generation effect by the power generation turbine 19 and the generator 21 is further enhanced.

本発明に係る空気分離装置の減量運転方法は以
上の様に構成されるので、下記に要約する特有の
効果を得ることができる。
Since the air separation device weight loss operation method according to the present invention is configured as described above, it is possible to obtain the unique effects summarized below.

本発明の実施に当つては、空気圧縮機に対し
て1段抽気配管及び2段抽気配管を付設するの
みであり、空気圧縮機そのものの構造をターボ
形圧縮機等のような容量可変型のものに変更又
は増設しなくてもよいので、改造費を大きく節
約することができる。
In carrying out the present invention, only a first-stage bleed pipe and a second-stage bleed pipe are attached to the air compressor, and the structure of the air compressor itself is replaced by a variable capacity type such as a turbo compressor. Since there is no need to change or add to the existing structure, the cost of remodeling can be greatly reduced.

減量運転に見合う原料空気(空気圧縮機吐出
側の被圧縮空気)の過剰分は製鉄所内の高炉送
風系統内で全て有効利用されるので、空気圧縮
機の動力経済性が損なわれることはない。
All the excess raw material air (compressed air on the discharge side of the air compressor) commensurate with the reduced operation is effectively used in the blast furnace blowing system in the steelworks, so the power economy of the air compressor is not impaired.

高炉送風系統内でのエネルギー(主として電
力)回収率を高めることができる。
The energy (mainly electric power) recovery rate within the blast furnace ventilation system can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る減量運転方法を例示する
線図的系統図である。 1a,1b,1c…空気圧縮機、5a,5b,
5c…分離装置、6a,6b,6c…2段抽気ラ
イン、9a,9b,9c…1段抽気ライン、12
a…高圧側高炉送風管、12b…低圧側高炉送風
管、イ…空気分離装置系統、ロ…高炉送風系統。
FIG. 1 is a diagrammatic system diagram illustrating the reduction operation method according to the present invention. 1a, 1b, 1c...air compressor, 5a, 5b,
5c... Separation device, 6a, 6b, 6c... 2nd stage bleed line, 9a, 9b, 9c... 1st stage bleed line, 12
a...High pressure side blast furnace blast pipe, 12b...Low pressure side blast furnace blast pipe, A...Air separation device system, B...Blast furnace blower system.

Claims (1)

【特許請求の範囲】[Claims] 1 製鉄所の酸素製造設備として建設されている
全低圧式空気分離装置の減量運転に当り、酸素需
要量の減少に見合うだけの減少すべき減量空気
を、前記空気分離装置における2段式空気圧縮機
の吐出側から1段及び2段抽気を行なうと共に、
1段抽気は低圧側高炉送風管内に、又2段抽気は
高圧側高炉送風管内に夫々供給することを特徴と
する空気分離装置における減量運転方法。
1. When reducing the amount of air that is to be reduced in a total low-pressure air separation device that is being constructed as oxygen production equipment in a steelworks, the amount of air that should be reduced in proportion to the decrease in oxygen demand is reduced by a two-stage air compression system in the air separation device. In addition to performing first and second stage extraction from the discharge side of the machine,
A method for reducing the amount of air in an air separation device, characterized in that first-stage bleed air is supplied into a low-pressure side blast furnace blast pipe, and second-stage bleed air is supplied into a high-pressure side blast furnace blast pipe.
JP58087271A 1983-05-17 1983-05-17 Quantity-reduction operation method in air separator Granted JPS59212676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58087271A JPS59212676A (en) 1983-05-17 1983-05-17 Quantity-reduction operation method in air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58087271A JPS59212676A (en) 1983-05-17 1983-05-17 Quantity-reduction operation method in air separator

Publications (2)

Publication Number Publication Date
JPS59212676A JPS59212676A (en) 1984-12-01
JPS6122229B2 true JPS6122229B2 (en) 1986-05-30

Family

ID=13910096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58087271A Granted JPS59212676A (en) 1983-05-17 1983-05-17 Quantity-reduction operation method in air separator

Country Status (1)

Country Link
JP (1) JPS59212676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200014897A (en) * 2017-06-07 2020-02-11 사필로 소시에타 아지오나리아 화브리카 이탈리아나 라보라지온 옥치알리 에스. 피. 에이. Glasses with bio-sensor
US11109137B2 (en) 2017-04-04 2021-08-31 Sony Corporation Headphone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2898134B1 (en) * 2006-03-03 2008-04-11 Air Liquide METHOD FOR INTEGRATING A HIGH-FURNACE AND A GAS SEPARATION UNIT OF THE AIR

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11109137B2 (en) 2017-04-04 2021-08-31 Sony Corporation Headphone
KR20200014897A (en) * 2017-06-07 2020-02-11 사필로 소시에타 아지오나리아 화브리카 이탈리아나 라보라지온 옥치알리 에스. 피. 에이. Glasses with bio-sensor

Also Published As

Publication number Publication date
JPS59212676A (en) 1984-12-01

Similar Documents

Publication Publication Date Title
JP3341924B2 (en) Method of operating a gas turbine device and combined devices for producing energy and at least one air gas
JP2601631B2 (en) How to integrate air separation and gas turbine power generation
US6612113B2 (en) Integrated method of air separation and of energy generation and plant for the implementation of such a method
CN103250019B (en) Equipment and the method for air separation is carried out by low temperature distillation
EP3759322B9 (en) Systems and methods for power production using a carbon dioxide working fluid
JPH10244118A (en) Energy recovery system in vacuum/pressure swing adsorption device
JPS6177606A (en) Manufacture of oxygen as by-product from power production byturbine
KR20150001803A (en) Compressed-air energy-storage system
EP0926317A3 (en) Integrated air separation and combustion turbine process
JP6351895B1 (en) Nitrogen production method and nitrogen production apparatus
AU2010291532B2 (en) Method and device for treating a carbon dioxide-containing gas flow, wherein the energy of the vent gas (work and cold due to expansion) is used
CN101517202A (en) Compressor plant
CN102016468A (en) Method and device for producing air gases in a gaseous and liquid form with a high flexibility and by cryogenic distillation
JPS6122229B2 (en)
JP2008525173A (en) Integrated process and equipment for air compression, cooling and purification
CA1284586C (en) Air turbine cycle
US6089040A (en) Combined plant of a furnace and an air distillation device and implementation process
US4350019A (en) Gas expansion/compression train
JP2002155321A (en) Process and plant for supplying oxygen-enriched air into nonferrous metal manufacturing equipment
KR100694376B1 (en) Sub-zero air separation apparatus and an operating method of the same
JPH05272357A (en) Compressor and operating method thereof
JP2018172720A (en) Blowing method to furnace and blower
WO1989001091A1 (en) Exothermic chemical reaction processes
JPH05280305A (en) Combined cycle power generator
US11098643B2 (en) Method for exhaust waste energy recovery at the reciprocating gas engine-based polygeneration plant