JPS61222206A - Manufacture of oxide permanent magnet - Google Patents

Manufacture of oxide permanent magnet

Info

Publication number
JPS61222206A
JPS61222206A JP60062137A JP6213785A JPS61222206A JP S61222206 A JPS61222206 A JP S61222206A JP 60062137 A JP60062137 A JP 60062137A JP 6213785 A JP6213785 A JP 6213785A JP S61222206 A JPS61222206 A JP S61222206A
Authority
JP
Japan
Prior art keywords
powder
mixed
magnetic field
aluminum stearate
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062137A
Other languages
Japanese (ja)
Inventor
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP60062137A priority Critical patent/JPS61222206A/en
Publication of JPS61222206A publication Critical patent/JPS61222206A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide high performance magnet characteristics in wet molding in magnetic field, by pressurizing and molding in magnetic field slurry in which oxide magnet powder particles are coated with a given amount of aluminum stearate, are mixed, and dispersed in liquid, and by firing the slurry. CONSTITUTION:Slurry in which oxide magnet powder is coated with aluminum stearate below 4.5wt% (not including 0wt%) serving as adhesive lubricant, is mixed, and is dispersed in liquid, is pressured and molded in magnetic field, and is fired to result in an anisotropic oxide magnet. For example, magnetic powder in which SrCO3 and Fe2O3 are mixed by a mol ratio of 1:5.8, are tentatively fired at 1,250 deg.C, and are pulverized, is mixed in a warm toluene solution in which aluminum stearate powder of 1.5wt% against 100wt% of the magnet powder is mixed, and is dried. This powder which is coated and mixed with aluminum stearate is pulverized in a ball mill using ethyl alcohol as a dispersing agent. After sully formed in this way is pressured and molded into a disk shape in magnetic field, it is fired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は酸化物永久磁石の製造方法に関し。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an oxide permanent magnet.

特に湿式磁界中成形に用いるフェライト磁石粉末の結着
性潤滑剤に関するものである。
In particular, it relates to a binding lubricant for ferrite magnet powder used in wet magnetic field molding.

〔従来の技術〕[Conventional technology]

磁界中で、マグネトブランバイト型構造を有するフェラ
イト磁石微粉末全配向させた異方性磁石の製造方法とし
て、乾式法と湿式法の二通夛が知られている。
Two methods, a dry method and a wet method, are known as methods for manufacturing an anisotropic magnet in which fine ferrite magnet powder having a magnetobrambite structure is completely oriented in a magnetic field.

乾式法は:フェライト磁石微粉末に結着剤として、ポリ
ビニルアルコール、酢酸ビニル、ショウノウ、デンプン
、パラフィンワックス等ヲ混合し、乾燥した粉末を磁界
中で加圧成形するものである。この方法は湿式法に比較
し、成形の所要時間が短く、装置が小さくてすみ、また
複雑な形状の成形にも適している等の長所を有している
。しかし、乾式磁場成形法においては。
The dry method involves mixing polyvinyl alcohol, vinyl acetate, camphor, starch, paraffin wax, etc. as a binder with fine ferrite magnet powder, and press-molding the dried powder in a magnetic field. This method has advantages over the wet method in that it requires less time for molding, requires smaller equipment, and is suitable for molding complex shapes. However, in the dry magnetic field forming method.

湿式法に比較し、フェライト磁石粉末の配向性は低く、
シたがって、磁石の性能が低くなるとい2欠点も有して
いる。また、フェライト磁石粉末(一般には2μm以下
)は成形性が悪いという欠点も合わせて考慮しなければ
ならない。
Compared to the wet method, the orientation of ferrite magnet powder is low,
Therefore, it also has two drawbacks: the performance of the magnet is low. In addition, the disadvantage that ferrite magnet powder (generally 2 μm or less) has poor moldability must also be taken into consideration.

これに対して、湿式法はフェライト磁石粉末に分散媒と
して、水、ポリビニルアルコール水溶液、アルコール等
を加え、懸濁させ、金型中で磁界中にて磁石粉末粒子を
整列し、成形するものである。この方法は、加圧成形中
に分散媒を金型外に排出する必要があシ、このため成形
に要する時間が長くなる。強制的排液によシ成形時間の
短縮を計ると、成形装置が、乾式法に比べ大がかシなも
のとなる。また、成形圧力を大きくすると、成形体に亀
裂がはいり易い、複雑な形状の成形体が得難い等の欠点
を有している。しかしながら、湿式磁場成形法では、乾
式法では得られないような高い性能の異方性フェライト
磁石が製造できる。
On the other hand, the wet method involves adding water, polyvinyl alcohol aqueous solution, alcohol, etc. as a dispersion medium to ferrite magnet powder, suspending it, aligning the magnet powder particles in a magnetic field in a mold, and molding. be. In this method, it is necessary to discharge the dispersion medium out of the mold during pressure molding, which increases the time required for molding. If the molding time is shortened by forced drainage, the molding equipment will be much more robust than in the dry method. In addition, when the molding pressure is increased, there are disadvantages such as the molded product is prone to cracks and it is difficult to obtain a molded product with a complicated shape. However, the wet magnetic field forming method can produce anisotropic ferrite magnets with high performance that cannot be obtained by the dry method.

このように、従来、フェライト磁石粉末の成形性と磁場
配向性に関しては相反する傾向を示しておυ、成形性が
良く、シかもフェライト粉末の配向を阻害しないような
結着剤を使用することは、工業上非常に重要なことであ
る。
As described above, conventionally, the moldability of ferrite magnet powder and the magnetic field orientation have shown contradictory tendencies, and it is important to use a binder that has good moldability and does not inhibit the orientation of the ferrite powder. is of great industrial importance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、湿式磁場成形において、更に高性能の
磁石特性を得ることにある。
An object of the present invention is to obtain even higher performance magnetic properties in wet magnetic field forming.

〔問題点を解決するための手段〕[Means for solving problems]

湿式磁場成形において、フェライト磁石粉末の表面被覆
剤として、結着性も有するステアリン酸アルミニウムが
、磁石の高性能化に非常に有益であるばかシでな、<、
粉末の成形性の改善(湿式法に−おける成形密度の向上
、圧粉体形状の多様化等)にも効果のあることも9種々
研究を重ねた結果判明した。
In wet magnetic field forming, aluminum stearate, which also has binding properties, is extremely useful as a surface coating agent for ferrite magnet powder to improve the performance of the magnet.
As a result of nine different types of research, it has been found that this method is also effective in improving the moldability of powder (improving compaction density in wet methods, diversifying the shapes of green compacts, etc.).

乾式磁場成形用フェライト磁石粉末の結着剤として、特
公昭47−21197号公報では、ステアリン酸系統の
M’ CCHs (CH2)+aCOt ) (但し1
M′はいて述べている。ここでCa、 Ba、 Sr、
 PbはFeとの酸化物において、マグネトブランバイ
ト型の結晶構造(MO*6Fez03. M=Ca、 
Ba、 Sr、 Pb)を有するものであシ、化学的に
このステアリン酸金属塩のみに限定されるものである。
As a binder for ferrite magnet powder for dry magnetic field forming, Japanese Patent Publication No. 47-21197 discloses stearic acid-based M' CCHs (CH2)+aCOt) (However, 1
M' is included. Here, Ca, Ba, Sr,
Pb has a magnetobrambite crystal structure (MO*6Fez03. M=Ca,
It has Ba, Sr, Pb), and is chemically limited only to this metal stearate.

これに対して9本発明は湿式磁場成形法における磁石特
性の向上に関するものであシ22種々研究た結果、磁石
粉末の潤滑剤として、上記ステアリン酸金属塩の発想と
は異なるステアリン酸アルミニウムをフェライト磁石粉
末粒子に4.5重量%以下(0重量%を含まず)で被覆
混合することにより、より高性能な異方性酸化物磁石の
製造を可能にすることを見い出したものである。
On the other hand,9 the present invention relates to improvement of magnet properties in wet magnetic field forming method.22 As a result of various studies, aluminum stearate, which is different from the concept of metal stearate mentioned above, was used as a lubricant for magnet powder as a ferrite. It has been discovered that by coating and mixing magnet powder particles with 4.5% by weight or less (excluding 0% by weight), it is possible to manufacture an anisotropic oxide magnet with higher performance.

〔実施例〕〔Example〕

以下に、この発明の実施例について示す。 Examples of the present invention will be shown below.

実施例1 炭酸ストロンチウム(SrCO3)と酸化第二鉄(F’
20g)をモル比で1:5.8の割合で混合し。
Example 1 Strontium carbonate (SrCO3) and ferric oxide (F'
20g) at a molar ratio of 1:5.8.

12501:’で2時間仮焼成し、ボールミルで約0.
8μmに微粉砕した。この粉末を乾燥し、実験用粉末と
した。
12501:' for 2 hours and a ball mill to reduce the temperature to about 0.
It was finely ground to 8 μm. This powder was dried and used as an experimental powder.

上記粉末に、磁石粉末に対しステアリン酸アルミニウム
粉末が0〜5Wt、チ(即ち1重量%)になるように調
合した温トルエン溶液を混合し。
The above powder was mixed with a warm toluene solution prepared so that the aluminum stearate powder was 0 to 5 Wt (i.e., 1% by weight) relative to the magnet powder.

乾燥した。このステアリン酸アルミニウムを被覆混合し
た粉末を、エチルアルコールを分散媒トシて、ボールミ
ルにて3分間解砕し・た。
Dry. The mixed powder coated with aluminum stearate was crushed in a ball mill for 3 minutes with ethyl alcohol added as a dispersion medium.

この泥漿を約10KOeの磁界中で直径20■。This slurry was heated to a diameter of 20 mm in a magnetic field of about 10 KOe.

高さ10mの円盤状に、試料圧0.6tOn/crIL
2 で成形した後、  1220t:’で1時間本焼成
を行ない磁気特性について調べた。
Sample pressure 0.6tOn/crIL in a disk shape with a height of 10m
After molding at 1220 t:' for 1 hour, the magnetic properties were investigated.

その結果を第1図に示す。ステアリン酸アルミニウムの
被覆混合量が0〜4.5vrt、% (Oを含まず)で
、無被覆の粉末よシも高いエネルギー積の磁石が得られ
た。エネルギー積(BH)maxの増加は残留磁束密度
Brの向上に対応しており。
The results are shown in FIG. When the aluminum stearate coating was mixed in an amount of 0 to 4.5 vrt,% (O not included), a magnet with a higher energy product than the uncoated powder was obtained. An increase in the energy product (BH) max corresponds to an increase in the residual magnetic flux density Br.

Brの向上はステアリン酸アルミニウム被覆による結晶
粒子のC面配向度向上に対応している。
The improvement in Br corresponds to the improvement in the degree of C-plane orientation of crystal grains due to aluminum stearate coating.

また、ステアリン酸アルミニウムの混合量増加にともな
うBrの低下と、保磁力BHCの増加はF@の一部がh
tで置換されるためと考えられる。
In addition, a decrease in Br and an increase in coercive force BHC with an increase in the amount of aluminum stearate mixed are due to the fact that part of F@ is h
This is thought to be because it is replaced by t.

実施例2 実施例1で作製した実験用Srフェライト磁石粉末に、
ステアリン酸アルミニウム粉末を1.5wt0%添加し
、約150Cにて混合した後、冷却した。このステアリ
ン酸アルミニウムを被覆混合した粉末をボールミルにて
、アルキルエーテル系非イオン界面活性剤をQ、3wt
1%溶解した水溶液を分散媒として3分間解砕した。
Example 2 In the experimental Sr ferrite magnet powder produced in Example 1,
1.5wt0% of aluminum stearate powder was added, mixed at about 150C, and then cooled. This powder coated with aluminum stearate was mixed with Q, 3wt of alkyl ether type nonionic surfactant in a ball mill.
Disintegration was carried out for 3 minutes using a 1% aqueous solution as a dispersion medium.

この泥漿を約10KOeの磁界中で直径20M。This slurry was heated to a diameter of 20M in a magnetic field of about 10KOe.

高さ10mの円盤状に、試料圧0.3 t oTV/c
r!L2で成形した後、  1210t:’で1時間本
焼成を行ない磁気特性について調べた。その結果を表1
に示す。
Sample pressure 0.3 t oTV/c in a disk shape with a height of 10 m
r! After molding at L2, main firing was performed at 1210 t:' for 1 hour, and the magnetic properties were examined. Table 1 shows the results.
Shown below.

表  1 Srフェライト磁石粉末をステアリン酸アルミニウムで
被覆することにより、磁石の配向度が向上し、 Brが
増加した結果+  (BH)maxの著しい向上が実現
された。
Table 1 By coating Sr ferrite magnet powder with aluminum stearate, the degree of orientation of the magnet was improved, and as a result of increasing Br, a significant improvement in (BH)max was realized.

以上、実施例1と実施例2で明らかなように。As mentioned above, as is clear from Example 1 and Example 2.

ストロンチウムフェライト微粉末にステアリン酸アルミ
ニウムを0〜4.5wtJ(Oを含まず)被覆混合し、
これを液中に分散させた泥漿を磁界中で加圧成形するこ
とによりて、異方性が高く。
strontium ferrite fine powder is coated and mixed with aluminum stearate from 0 to 4.5 wtJ (not including O),
By press-molding a slurry in which this is dispersed in a liquid in a magnetic field, it has high anisotropy.

高性能の酸化物永久磁石を製造することができる。尚、
実施例においては、ステアリン酸アルミニウムを被覆混
合した粉末を液中に分散させる方法として9分散媒とし
てエチルアルコールとアルキルエーテル系非イオン界面
活性剤の水溶液の使用についてのみ述べているが、粉末
の分散性を低下しないものであれば、特に限定されるも
のでない。本実施例では、ステアリン酸アルミニウムの
撥水性を低下させるため界面活性剤の使用と1表面張力
の小さいエチルアルコールによる分散を行なったもので
ある。
High performance oxide permanent magnets can be manufactured. still,
In the examples, only the use of an aqueous solution of ethyl alcohol and an alkyl ether nonionic surfactant as a dispersion medium is described as a method for dispersing powder coated with aluminum stearate in a liquid. There is no particular limitation as long as it does not reduce the properties. In this example, in order to reduce the water repellency of aluminum stearate, a surfactant was used and ethyl alcohol, which has a low surface tension, was used for dispersion.

上記実施例では、ストロンチウムフェライト磁石につい
てのみ述べたが9本発明は、フェライト磁石の磁界中配
向性の向上に関する結着性潤滑剤の効果において実現さ
れるものであるから、これのみに限定されることなく、
同系統の磁石材料であるバリウム、ストロンチウム、カ
ルシウム、鉛等の1種又は2種以上を含むマグネトブラ
ンバイト型構造を有する異方性磁石についても適用でき
るものである。
In the above embodiments, only strontium ferrite magnets have been described; however, since the present invention is realized through the effect of a cohesive lubricant on improving the orientation of ferrite magnets in a magnetic field, it is limited thereto. without any
The present invention can also be applied to anisotropic magnets having a magnetobrambite structure containing one or more of the same type of magnet materials such as barium, strontium, calcium, and lead.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、異方性が高く、高
性能の異方性酸化物永久磁石を得ることができる。
As explained above, according to the present invention, it is possible to obtain a high-performance anisotropic oxide permanent magnet with high anisotropy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1において、ストロンチウムフェライ
ト磁石粉末に対するステアリン酸アルミニウム被覆混合
量と磁石特性の関係を示した図である。 第1図
FIG. 1 is a diagram showing the relationship between the amount of aluminum stearate coating mixed into the strontium ferrite magnet powder and the magnet properties in Example 1. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、酸化物磁石粉末に、結着性潤滑剤として4.5重量
%以下(0重量%を含まず)ステアリン酸アルミニウム
を被覆混合し、これを液中に分散させた泥漿を磁界中で
加圧成形後、焼成することにより、異方性酸化物磁石を
得ることを特徴とする酸化物永久磁石の製造方法。
1. Oxide magnet powder is coated with 4.5% by weight or less (not including 0% by weight) of aluminum stearate as a binding lubricant, and a slurry made by dispersing this in a liquid is added in a magnetic field. A method for producing an oxide permanent magnet, which comprises obtaining an anisotropic oxide magnet by pressing and then firing.
JP60062137A 1985-03-28 1985-03-28 Manufacture of oxide permanent magnet Pending JPS61222206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062137A JPS61222206A (en) 1985-03-28 1985-03-28 Manufacture of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062137A JPS61222206A (en) 1985-03-28 1985-03-28 Manufacture of oxide permanent magnet

Publications (1)

Publication Number Publication Date
JPS61222206A true JPS61222206A (en) 1986-10-02

Family

ID=13191393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062137A Pending JPS61222206A (en) 1985-03-28 1985-03-28 Manufacture of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS61222206A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592672A1 (en) * 1992-04-24 1994-04-20 TDK Corporation Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
US5945028A (en) * 1992-04-24 1999-08-31 Tdk Corporation Hexagonal system ferrite particles and their production process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0592672A1 (en) * 1992-04-24 1994-04-20 TDK Corporation Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
EP0592672A4 (en) * 1992-04-24 1994-09-14 Tdk Corp Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
EP0719745A2 (en) * 1992-04-24 1996-07-03 TDK Corporation Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
EP0719745A3 (en) * 1992-04-24 1996-09-25 Tdk Corp Method of producing anisotropic ferrite magnet, anisotropic ferrite magnet, hexagonal ferrite particles, and method for producing them
US5945028A (en) * 1992-04-24 1999-08-31 Tdk Corporation Hexagonal system ferrite particles and their production process
US6132635A (en) * 1992-04-24 2000-10-17 Tdk Corporation Process for the production of anisotropic ferrite magnets and anisotropic ferrite magnets as well as hexagonal system ferrite particles and their production process

Similar Documents

Publication Publication Date Title
US4063970A (en) Method of making permanent magnets
CN113651608A (en) Dry-pressing permanent magnetic ferrite and preparation method and application thereof
JPS61222206A (en) Manufacture of oxide permanent magnet
CN114409392B (en) High-remanence-ratio low-loss composite hexagonal ferrite material and preparation method thereof
JP3201782B2 (en) Manufacturing method of dust core
JPS61215254A (en) Manufacture of oxide permanent magnet
JPS61261262A (en) Manufacture of oxide permanent magnet
KR20040023795A (en) Method for the production of ferrite magnets
JPH0684263B2 (en) Method for producing anisotropic oxide permanent magnet
JPS6214081B2 (en)
TWI691471B (en) Method of fabricating modified ferrite magnetic powder and ferrite magnet
JPH05175023A (en) Magnet particle, magnet powder and bonded magnet
RU2791957C1 (en) Method for manufacturing anisotropic barium hexaferrite
JP2823604B2 (en) Method for producing anisotropic ferrite magnet
JPH0247812A (en) Amorphous alloy dust core and its manufacture
JPS6022484B2 (en) Manufacturing method of oxide permanent magnet
US4125473A (en) Polycrystalline ferrimagnetic garnet having a narrow gyromagnetic resonance line width and a low magnetic moment
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPH01117002A (en) Manufacture of oxide permanent magnet
JPS63233508A (en) Dust core excellent in frequency characteristic
JPH09312211A (en) Oxide permanent magnet and manufacture thereof
JPS6297115A (en) Magnetic head
JPH0450725B2 (en)
JPS63306603A (en) Material composition of permanent magnet