JPS61222186A - Piezoelectric ceramic for electromechanical transduction element - Google Patents

Piezoelectric ceramic for electromechanical transduction element

Info

Publication number
JPS61222186A
JPS61222186A JP60062969A JP6296985A JPS61222186A JP S61222186 A JPS61222186 A JP S61222186A JP 60062969 A JP60062969 A JP 60062969A JP 6296985 A JP6296985 A JP 6296985A JP S61222186 A JPS61222186 A JP S61222186A
Authority
JP
Japan
Prior art keywords
phase
ferroelectric phase
ferroelectric
displacement
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062969A
Other languages
Japanese (ja)
Inventor
Shigeru Sadamura
定村 茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60062969A priority Critical patent/JPS61222186A/en
Publication of JPS61222186A publication Critical patent/JPS61222186A/en
Pending legal-status Critical Current

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

PURPOSE:To increase the quantity of displacement extremely by using a substance capable of taking either phase of a ferroelectric phase, a non-ferroelectric phase or the coexistent phase of the ferroelectric phase and the non-ferroelectric phase when applied voltage is brought to 0. CONSTITUTION:The titled piezoelectric ceramics consist of a substance having properties in which phase transformation is generated by applying voltage within the range of a working temperature and the length of a crystallographic axis and/or the unit cell volume of a crystal changes while either phase of a ferroelectric phase, a non- ferroelectric phase or the coexistent phase of the ferroelectric phase and the non- ferroelectric phase can be taken. Ceramics composed of (Pb0.85Sr0.15)(Zr0.51Ti0.34Zn0.0125 Ni-0.0378Nb0.20)O3 are processed in 10mm length and 0.35mm thickness, chromium-gold are evaporated onto both upper and lower surfaces and an electrode is shaped, the ceramics are polarized are treated, and the result of the measurement of P-E characteristics at a time when voltage is applied to the ceramics is displayed in the graph 5 and the result of the measurement of strain (DELTAl/l) in the longitudinal direction in the graph 6. According to the result, it is recognized that extremely large displacement is displayed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気・機械変換素子用圧電磁器に係り、特に変
位量が極めて大である電気・機械変換素子用圧電磁器に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a piezoelectric ceramic for an electromechanical transducer, and particularly to a piezoelectric ceramic for an electromechanical transducer whose displacement is extremely large.

〔従来の技術〕[Conventional technology]

電気・機械変換素子は高周波フィルタ、超音波遅延線、
光変調素子などの情報処理装置用各種素子に広く用いら
れている他、ガス点火装置、超音波発振子、圧電トラン
ス、圧電モータ等の動力的装置としても広く使用されて
いる。
Electrical/mechanical conversion elements include high frequency filters, ultrasonic delay lines,
In addition to being widely used in various elements for information processing devices such as optical modulation elements, they are also widely used in power devices such as gas igniters, ultrasonic oscillators, piezoelectric transformers, and piezoelectric motors.

而して、従来の電気#機械変換素子は強誘電体磁・器を
用いて、これにおける圧電効果を利用したものであるが
、動力的装置として用いる場合、一層大きな変位を有す
るものが期待されている。
Conventional electrical/mechanical transducers use ferroelectric ceramics/ceramics and take advantage of their piezoelectric effects, but when used as power devices, they are expected to have even larger displacements. ing.

また、近年、反強誘電体を用いた電気+11a械変換素
子及び常誘電体を用いた電気・機械変換素子が提案され
た(特開昭54−78993 (特公昭59−3643
9)、特開昭54−78994(特公昭59−3644
0))、これらの電気・機械変換素子は、反強誘電体磁
器板又は常誘電体磁器板と基板等とを貼り合せて成るも
のであり。
In addition, in recent years, an electrical +11a mechanical conversion element using an antiferroelectric material and an electrical/mechanical conversion element using a paraelectric material have been proposed (JP-A-54-78993 (JP-A-59-3643).
9), Japanese Patent Publication No. 54-78994 (Japanese Patent Publication No. 59-3644)
0)) These electrical/mechanical conversion elements are made by bonding an antiferroelectric ceramic plate or a paraelectric ceramic plate to a substrate or the like.

外部電界を零にしたときに残留分極が少ないか又は零で
あるようにしたものである。
The residual polarization is small or zero when the external electric field is reduced to zero.

[発明が解決しようとする問題点] 上記従来の電気争機械変換素子に用いられている誘電体
は、いずれも、変位量が小さく、より変位量が大きく動
力的な装置として用いるに好適なものが期待される。
[Problems to be Solved by the Invention] All of the dielectrics used in the above-mentioned conventional electromechanical conversion elements have a small amount of displacement, and have a larger amount of displacement and are suitable for use as a dynamic device. There is expected.

例えば、特公昭59−36439号公報に係る電気・機
械変換素子は、同号公報第4頁第7欄最下行ないし第8
欄第4行に記載の様に、従来の強誘電体磁器による場合
に比べ変位量は小さくその感度も小さい。
For example, the electro-mechanical conversion element disclosed in Japanese Patent Publication No. 59-36439 is as follows:
As described in the fourth line of the column, the amount of displacement is smaller and the sensitivity is smaller than in the case of conventional ferroelectric ceramics.

また特公昭59−36440号公報に係る電気・機械変
換素子も、強誘電体によるものに比べ変位量が小さく、
その感度が小さい(同号公報第4頁第7欄第15行ない
し第19行)。
Furthermore, the electromechanical transducer disclosed in Japanese Patent Publication No. 59-36440 also has a smaller amount of displacement than that made of ferroelectric material.
Its sensitivity is low (page 4, column 7, lines 15 to 19 of the same publication).

即ち、特公昭59−36439.36440号に係るも
のは、いずれも印加電界をOにしたときの誘電体の残留
変位をできる限り小さくしようと試みたものであって、
電気機械結合係数icpの小さなものを提供しようとす
るものである。而して、圧電体に電界Eを加えた場合の
ひずみをSとすると、圧電定数dは dmi=asi /aEm (ただし isl〜6.鳳−1〜3) と表され、この圧電定数dmiは、多くの場合、電気機
械結合係数にと1次の関係にある。そのため、特公昭5
9−36439.36440号の如く、kを小さくした
場合には圧電定数が小さくなり、従って、同一電界を印
加した場合の変位も小さなものとならざるを得ないので
ある。
That is, all of the methods disclosed in Japanese Patent Publication No. 59-36439.36440 attempt to minimize the residual displacement of the dielectric when the applied electric field is O.
This is intended to provide a small electromechanical coupling coefficient icp. Therefore, if the strain when an electric field E is applied to the piezoelectric material is S, then the piezoelectric constant d is expressed as dmi=asi/aEm (where isl~6.Otori-1~3), and this piezoelectric constant dmi is , which in many cases has a linear relationship with the electromechanical coupling coefficient. Therefore, the special public
As in No. 9-36439.36440, when k is made small, the piezoelectric constant becomes small, and therefore the displacement when the same electric field is applied must also become small.

[問題点を解決しようとするための手段]上記問題点を
解決するために、本発明は。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides the following.

使用温度範囲で電圧を印加することによって相変態を起
こし結晶軸の長さ及び/又は結晶の単位胞体積が変化す
ると共に、印加電圧がOのときに強誘電体相、非強銹電
体相及び強誘電体相と非強誘電体相との共存相のいずれ
の相をもとり得る性質を有する物質からなることを特徴
とする電気・機械変換素子用圧電磁器、 を要旨とするものである。
By applying a voltage within the operating temperature range, a phase transformation occurs and the length of the crystal axis and/or the unit cell volume of the crystal changes, and when the applied voltage is O, a ferroelectric phase and a non-ferroelectric phase change. and a piezoelectric ceramic for an electrical/mechanical transducer element, characterized in that it is made of a material that has the property of having either of the coexisting phases of a ferroelectric phase and a non-ferroelectric phase.

以下本発明について、さらに詳細に説明する。The present invention will be explained in more detail below.

本発明の電気・機械変換素子用圧電磁器は、印加電圧が
0のときに強誘電体相、非強誘電体相及び強誘電体相と
非強誘電体相との共存相のいずれの相をもとり得る。
The piezoelectric ceramic for electromechanical conversion elements of the present invention exhibits any of the following phases: a ferroelectric phase, a non-ferroelectric phase, and a coexistence phase of a ferroelectric phase and a non-ferroelectric phase when the applied voltage is 0. You can get it.

強誘電体とは、周知の如く自発分極の方向が外部電界の
極性の反転により反転するものであり、第2図に模式的
に゛示す如き、ヒステリシスループ形のP(分極) −
E C電界)特性を有する。
As is well known, a ferroelectric material is one in which the direction of spontaneous polarization is reversed by the reversal of the polarity of an external electric field, and it has a hysteresis loop type P (polarization) as schematically shown in Figure 2.
E C electric field) characteristics.

図示の如く強誘電体においては、E+以上又は−E I
以下の電界を印加することにより自発分極が反転し状態
21から23へ又は23から21へと変化する。そして
、任意の電界Eを印加したのちE=0としても、誘電体
は状態22又は24の状態即ち、自発分極を有した強誘
電体として存在する。
As shown in the figure, in a ferroelectric material, E+ or more or -E I
By applying the following electric field, the spontaneous polarization is reversed and the state changes from 21 to 23 or from 23 to 21. Even if E=0 after applying an arbitrary electric field E, the dielectric exists in state 22 or 24, that is, as a ferroelectric having spontaneous polarization.

また、反強誘電体とは、結晶の格子が互いに反平行で絶
対値が等しい自発分極をもつような二つの副格子から成
っていて、かつ外部電界によってこの二つの自発分極は
平行にし得る0反強誘電体のP−E特性は、第3図に模
式的に示す如きダブルヒステリシスループとなる。
Furthermore, an antiferroelectric material is composed of two sublattices whose crystal lattices are antiparallel to each other and have spontaneous polarizations of equal absolute value, and these two spontaneous polarizations can be made parallel by an external electric field. The P-E characteristic of the antiferroelectric material is a double hysteresis loop as schematically shown in FIG.

図示の如く1反強誘電体においては、絶対値が83以上
の電界を印加することにより状s31又は33となり、
分極が現われ、絶対値がE2以下の印加電界においては
分極は現われない、その履歴により状態31.32又は
33のいずれかとなる。そして、任意の電界Eを印加し
ている状態でE=Qとすると、誘電体はP=0の状態と
なり、自発分極を示さない。
As shown in the figure, in a single antiferroelectric material, by applying an electric field with an absolute value of 83 or more, the state becomes s31 or 33,
Polarization appears, but no polarization appears in an applied electric field whose absolute value is less than E2, and depending on the history, either state 31, 32 or 33 will result. If E=Q with an arbitrary electric field E being applied, the dielectric will be in a state of P=0 and will not exhibit spontaneous polarization.

さらに、常誘電体とは、結晶格子が立方体からなるもの
で、第4図に模式的に示す如く印加電界の変化によって
相変態が生じなく、また、もともと自発分極がないため
、その配向もあり得ない。
Furthermore, a paraelectric substance has a cubic crystal lattice, and as shown schematically in Figure 4, phase transformation does not occur due to changes in the applied electric field, and since it does not originally have spontaneous polarization, its orientation is also variable. I don't get it.

従って、電界を印加しても分極は極めて小さいものであ
る。
Therefore, even if an electric field is applied, polarization is extremely small.

ここでいう非強誘電体とは上述の反強誘電体と常誘電体
の総称である。
The term "nonferroelectric material" as used herein is a general term for the above-mentioned antiferroelectric material and paraelectric material.

第1図は本発明の誘電体のP−E特性を示すヒステリシ
スループである。
FIG. 1 is a hysteresis loop showing the P-E characteristics of the dielectric of the present invention.

本発明の電気・機械変換素子用圧電磁器は、印加電圧が
Oのときに強誘電体相、非強誘電体相及び強誘電体相と
非強誘電体相との共存相のいずれの相をもとり得る。即
ち、本発明に係る磁器組成物は、絶対値がE5以実の電
界を印加することにより、状ill又は14の強誘電体
相をとり分極を示す、この状態でE=0とすると状態1
2又は15をとり、自発分極が残留し強誘電体相を維持
する。状態12において−E4〜−E5の電界を印加す
る又は状態15においてE4〜E5の電界を印加すると
、P=0となり分極を示さない状態13.16、即ち、
非強誘電相となる。しかも状態13又は16のときにE
=OとするとP=0の状態を保存したまま原点0に到り
、非強誘電体相を維持する。
The piezoelectric ceramic for electromechanical transducer of the present invention exhibits any phase among the ferroelectric phase, the non-ferroelectric phase, and the coexistence phase of the ferroelectric phase and the non-ferroelectric phase when the applied voltage is O. You can get it. That is, by applying an electric field with an absolute value of E5 or higher, the ceramic composition according to the present invention assumes a ferroelectric phase of state 1 or 14 and exhibits polarization.If E=0 in this state, state 1 is obtained.
2 or 15, the spontaneous polarization remains and the ferroelectric phase is maintained. When an electric field of -E4 to -E5 is applied in state 12 or an electric field of E4 to E5 is applied in state 15, P=0 and no polarization is shown in state 13.16, that is,
It becomes a non-ferroelectric phase. Moreover, in state 13 or 16, E
=O, the state of P=0 is maintained and the origin 0 is reached, maintaining the non-ferroelectric phase.

さらに、状s14又は15のときに E4よりも僅かに小さい電界(E 4−ΔE)もしくは
E5よりも僅かに大きい電界(E 5+ΔE)を印加し
、次いでE=0とした場合。
Furthermore, when an electric field slightly smaller than E4 (E4-ΔE) or an electric field slightly larger than E5 (E5+ΔE) is applied at state s14 or s15, and then E=0.

あるいは 状態11又は12のときに−E4よりも僅かに大きい電
界(−E4+ΔE)もしくは−E5よりも僅かに小さな
電界(−E5−ΔE)を印加し。
Alternatively, in state 11 or 12, an electric field slightly larger than -E4 (-E4+ΔE) or slightly smaller than -E5 (-E5-ΔE) is applied.

次いでE=0とした場合には、第1図中、破線矢印で示
される如き経路を経てE=0となり、強誘電相と非強誘
電相とが共存した相をとるのである。
Next, when E=0, E=0 follows a path as shown by the broken line arrow in FIG. 1, and a phase in which a ferroelectric phase and a non-ferroelectric phase coexist is assumed.

一般に、誘電体に電界を印加した場合の誘電体の変位は
、電歪による変形、相変態による変形。
Generally, when an electric field is applied to a dielectric, the displacement of the dielectric is caused by electrostriction or phase transformation.

自発分極の配向による変形、d−E(d:圧電定数)項
による変形の四つの要素に分類することができ、このう
ちの1又は2以上の要素によって変位が生ずる。(なお
電歪はすべのの誘電体において生ずる。) 本発明に係る圧電磁器は相変態による変形及び自発分極
の配向による変形が相乗されて大きな変形が生ずる。
It can be classified into four elements: deformation due to the orientation of spontaneous polarization and deformation due to the dE (d: piezoelectric constant) term, and displacement is caused by one or more of these elements. (Electrostriction occurs in all dielectric materials.) In the piezoelectric ceramic according to the present invention, large deformation occurs due to the combination of deformation due to phase transformation and deformation due to the orientation of spontaneous polarization.

即ち、第1図の説明において詳述した通り1本発明に係
る圧電磁器においては、強誘電体相、非強誘電体相1強
誘電体相と非強誘電体相との共存−相との間で相互に変
態し、これによって変位が生ずる。そして、相変態によ
り、a軸、b軸、a軸の1又は2以上の長さが変化した
り、軸長に変化はないものの軸交叉角度α、β、γが変
化して結晶の単位胞体積が変化し、これによって変位が
生ずる。
That is, as detailed in the explanation of FIG. 1, in the piezoelectric ceramic according to the present invention, the ferroelectric phase, the non-ferroelectric phase, the coexistence of the ferroelectric phase and the non-ferroelectric phase; There is a mutual transformation between them, which causes displacement. Due to phase transformation, the length of one or more of the a-axis, b-axis, and a-axis changes, or the axis crossing angles α, β, and γ change, even though the axial length does not change, resulting in a change in the unit cell of the crystal. The volume changes and this causes a displacement.

また、発明者らの研究によれば、本発明に係る磁器組成
物においては、例えば正方晶系の場合結晶格子のa軸と
a軸との比C/ aの1からの域離度がしばしば、通常
の反強誘電体相を構成する結晶の1からの黍離度よりも
大きいことが認められた。このようにC/ aの1から
の黍離の大きい結晶は、C/ aが1に近いものよりも
相変態による変形あるいは自発分極の配向による変位が
大きい。
Further, according to the inventors' research, in the ceramic composition according to the present invention, for example, in the case of a tetragonal system, the ratio C/a of the a-axis to the a-axis of the crystal lattice often has a degree of deviation from 1. , it was recognized that the degree of delamination from 1 of the crystals constituting the normal antiferroelectric phase was greater. In this way, a crystal with a large deviation of C/a from 1 has a larger deformation due to phase transformation or a larger displacement due to the orientation of spontaneous polarization than one with a C/a close to 1.

これに対し、強誘電体においては印加電界の変化により
、自発分極の反転又は配向は生じ得るが、相変態は生じ
ないので、それだけ変位が小さいものとなる。
On the other hand, in a ferroelectric material, although spontaneous polarization reversal or orientation may occur due to changes in the applied electric field, phase transformation does not occur, so the displacement is correspondingly smaller.

また、反強誘電体においては印加電界の変化により、自
発分極の反転又は配向、並びに反強誘電体相と強誘電体
相との間の相変態が生ずる。しかしながら1反強誘電体
相及びこの相変態により生ずる強誘電体相は1通常、C
/ aが1に近く、それだけ変位が小さいのである。
Furthermore, in antiferroelectric materials, changes in the applied electric field cause reversal or orientation of spontaneous polarization and phase transformation between the antiferroelectric phase and the ferroelectric phase. However, the antiferroelectric phase and the ferroelectric phase resulting from this phase transformation are usually C
/a is close to 1, and the displacement is that much smaller.

すか、常話雷体においでl+ 印加雷児の麿イI−によ
って相変態が生じなく、またそもそも自発分極もないか
らその配向もあり得なく、従って変位は極めて小さい。
In the ordinary lightning body, no phase transformation occurs due to the I- of the I+ applied to the lightning, and since there is no spontaneous polarization in the first place, its orientation is impossible, and therefore the displacement is extremely small.

このような、使用温度範囲で電圧を印加することによっ
て相変態を起こし結晶軸の長さ及び/又は結晶の単位胞
体積が変化すると共に、印加電圧が0のときに強誘電相
、非強誘電相及び強誘電相と非強誘電相との共存相のい
ずれの相をもあり得る性質を有する物質としては、次の
ようなものが挙げられる。
By applying a voltage within the operating temperature range, a phase transformation occurs and the length of the crystal axis and/or the unit cell volume of the crystal changes, and when the applied voltage is 0, the ferroelectric phase and non-ferroelectric phase change. Examples of substances that have the property of having either phase or a coexisting phase of a ferroelectric phase and a non-ferroelectric phase include the following.

(PbO,924LaO,07B) (Zro、7oT
io、ao)o、5szoa(PbO,91BLa0.
084)(Zr0.85Ti0.35)0.97903
(Pbo、5sSro、ts)(Zro、5tTio、
34Zno、ot25旧0.0375NbO,1G)0
3 (Pb0.85SrO,15)(ZrO,50TiO,
35旧0.05Nb0.10)03(”)0.85Sr
0.15)(ZrO,55TiO03ONiO,05N
b0.10)03(Pbo、esSro、ts)(Zr
o、5tTio、atZno、ot2s旧0.0375
Nb0.1G)3 (’bO,85srO,15) (ZrQ、5QTiQ
、35旧0.05NbO,1G)03コ(7)ようなう
ちで、(Pbo、52aLao、o7e)(ZrO07
0Tio、3o)o、5st03は、とりわけソノ変位
が大きく、好適である。
(PbO, 924LaO, 07B) (Zro, 7oT
io, ao) o, 5szoa (PbO, 91BLa0.
084) (Zr0.85Ti0.35)0.97903
(Pbo, 5sSro, ts) (Zro, 5tTio,
34Zno, ot25 old 0.0375NbO, 1G) 0
3 (Pb0.85SrO, 15) (ZrO, 50TiO,
35 old 0.05Nb0.10)03(”)0.85Sr
0.15) (ZrO,55TiO03ONiO,05N
b0.10) 03 (Pbo, esSro, ts) (Zr
o, 5tTio, atZno, ot2s old 0.0375
Nb0.1G)3 ('bO,85srO,15) (ZrQ,5QTiQ
, 35 old 0.05NbO, 1G) 03ko (7), (Pbo, 52aLao, o7e) (ZrO07
0Tio, 3o)o, and 5st03 have particularly large solenoid displacements and are suitable.

[作用] 本発明の電気−機械変換素子用圧電磁器は、電界の印加
により、共に大きな、相変態による変位と自発分極によ
る変位とが生じ得るものであり、この相乗により極めて
大きな変位が得られる。
[Function] The piezoelectric ceramic for an electro-mechanical transducer of the present invention is capable of producing both large displacements due to phase transformation and displacements due to spontaneous polarization upon application of an electric field, and an extremely large displacement can be obtained by the synergistic effect of these displacements. .

[実施例] 実施例1 (PbO,85SrO,15)(Zr0.51TiO0
34Z!10.0125NiQ、03?5NbO,1G
)03より成る磁器を長さ10mm厚さ0.35mmに
加工し、その上下両面にクロム−金を蒸着し電極を形成
した0分極処理後、この磁器に電圧を印加したときのP
−E特性の測定結果を第5図に示す、また、長さ方向(
横振動モータ)のひずみ(ΔfL/fL)の測定結果を
第6図に示す。
[Example] Example 1 (PbO, 85SrO, 15) (Zr0.51TiO0
34Z! 10.0125NiQ, 03?5NbO, 1G
)03 is processed to a length of 10 mm and a thickness of 0.35 mm, and after 0 polarization treatment in which electrodes are formed by vapor depositing chromium-gold on both the upper and lower surfaces, P when a voltage is applied to this porcelain.
The measurement results of -E characteristics are shown in Figure 5.
Figure 6 shows the measurement results of the strain (ΔfL/fL) of the transverse vibration motor.

以上結果から1本発明の電気・機械変換素子用圧電磁器
は極めて大きな変位を示すことが認められる。
From the above results, it is recognized that the piezoelectric ceramic for electromechanical conversion elements of the present invention exhibits extremely large displacement.

[効果] 以上の通り、本発明の電気・機械変換素子用圧電磁器は
、使用温度範囲で電圧を印加することによって相変態を
起こし結晶軸の長さ及び/又は結晶の単位胞体積が変化
すると共に、印加電圧がOのときに強誘電相゛、非強誘
電相及び強誘電相と非強誘電相との共存相のいずれの相
をもとり得る性質を有する物質からなるものであり、極
めて大きな変位を示す、そのため、VTRのヘッドの位
置決め装置、IC製造時のマスクの位置合せ装置、圧電
モータ、ドツトプリンタのワイヤドツト駆動装置、超音
波発振子、圧電トランスなどの各種の動力的な装置に用
いるに好適である。
[Effect] As described above, the piezoelectric ceramic for electromechanical transducer of the present invention undergoes phase transformation by applying a voltage within the operating temperature range, and the length of the crystal axis and/or the unit cell volume of the crystal changes. In addition, when the applied voltage is O, it is made of a substance that has the property of taking any of the following phases: ferroelectric phase, non-ferroelectric phase, and coexistence phase of ferroelectric phase and non-ferroelectric phase, and has an extremely large Therefore, it can be used in various dynamic devices such as VTR head positioning devices, mask alignment devices during IC manufacturing, piezoelectric motors, dot printer wire dot drive devices, ultrasonic oscillators, and piezoelectric transformers. suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る誘電体のP−E特性図、第2図は
強誘電体のP−E特性図、第3図は反強誘電体のP−E
特性図、第4図は常誘電体のp−E特性図である。 また、第5図ないし第6図の各図は実施例におけるP−
E特性および長さ方向のひずみ特性の測定結果を表わす
特性図である。
Fig. 1 is a P-E characteristic diagram of a dielectric material according to the present invention, Fig. 2 is a P-E characteristic diagram of a ferroelectric material, and Fig. 3 is a P-E characteristic diagram of an antiferroelectric material.
FIG. 4 is a p-E characteristic diagram of a paraelectric material. In addition, each figure in FIGS. 5 and 6 is a P-
FIG. 3 is a characteristic diagram showing measurement results of E characteristics and longitudinal strain characteristics.

Claims (1)

【特許請求の範囲】[Claims] (1)使用温度範囲で電圧を印加することによって相変
態を起こし結晶軸の長さ及び/又は結晶の単位胞体積が
変化すると共に、印加電圧が0のときに強誘電体相、非
強誘電体相及び強誘電体相と非強誘電体相との共存相の
いずれの相をもとり得る性質を有する物質からなること
を特徴とする電気、機械変換素子用圧電磁器。
(1) By applying a voltage within the operating temperature range, a phase transformation occurs and the length of the crystal axis and/or the unit cell volume of the crystal changes, and when the applied voltage is 0, the ferroelectric phase changes to the non-ferroelectric phase. 1. A piezoelectric ceramic for an electric/mechanical transducer, characterized in that it is made of a substance that has the property of having either a body phase or a coexisting phase of a ferroelectric phase and a non-ferroelectric phase.
JP60062969A 1985-03-27 1985-03-27 Piezoelectric ceramic for electromechanical transduction element Pending JPS61222186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062969A JPS61222186A (en) 1985-03-27 1985-03-27 Piezoelectric ceramic for electromechanical transduction element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062969A JPS61222186A (en) 1985-03-27 1985-03-27 Piezoelectric ceramic for electromechanical transduction element

Publications (1)

Publication Number Publication Date
JPS61222186A true JPS61222186A (en) 1986-10-02

Family

ID=13215677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062969A Pending JPS61222186A (en) 1985-03-27 1985-03-27 Piezoelectric ceramic for electromechanical transduction element

Country Status (1)

Country Link
JP (1) JPS61222186A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308897B1 (en) * 1999-03-12 2001-09-26 이재찬 piezoeletric device made of ferroelectric thin film for MEMS and its process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144764A (en) * 1984-08-07 1986-03-04 宇部興産株式会社 Electric distortion ceramic material for actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144764A (en) * 1984-08-07 1986-03-04 宇部興産株式会社 Electric distortion ceramic material for actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100308897B1 (en) * 1999-03-12 2001-09-26 이재찬 piezoeletric device made of ferroelectric thin film for MEMS and its process

Similar Documents

Publication Publication Date Title
Carl et al. On the origin of the maximum in the electromechanical activity in Pb (ZrxTi1− x) O3 ceramies near the morphotropic phase boundary
Kelly et al. Effect of composition on the electromechanical properties of (1‐x) Pb (Mg1/3Nb2/3) O3− XPbTiO3 ceramics
US5900274A (en) Controlled composition and crystallographic changes in forming functionally gradient piezoelectric transducers
Ravez The inorganie fluoride and oxyfluoride ferroelectrics
Hardtl Physics of ferroelectric ceramics used in electronic devices
Damjanovic Piezoelectric properties of perovskite ferroelectrics: unsolved problems and future research
Zhou et al. Rate dependence of soft PZT ceramics under electric field loading
US20030031622A1 (en) Perovskite materials for high temperature and high performance actuators and transducers
JPS59101601A (en) Bistable deflection element and manufacture thereof
Berlincourt Variation of electroelastic constants of polycrystalline lead titanate zirconate with thoroughness of poling
Mishra et al. Thermodynamic nature of phase transitions in Pb (Zr x Ti1− x) O3 ceramics near the morphotropic phase boundary. II. Dielectric and piezoelectric studies
Abe et al. Modification of ferroelectricity in heteroepitaxial (Ba, Sr) TiO3 films for non-volatile memory applications
Isupov Some aspects of the physics of piezoelectric ceramics
Kala Contribution to the study of tetragonal and rhombohedral phase coexistence in the PbZrO3–PbTiO3 system
JPS61222186A (en) Piezoelectric ceramic for electromechanical transduction element
JP2001354497A (en) Method for producing ferroelectric film
Wang The piezoelectric and dielectric properties of PZT–PMN–PZN
Stotz Shift of the morphotropic phase boundary in the PZT system under the influence of electric fields and uniaxial stresses
Haertling Compositional study of PLZT Rainbow ceramics for piezo actuators
US3536625A (en) Piezoelectric ceramic composition
JPS61230507A (en) Method for driving piezoelectric porcelain for electromechanical transducer element
Fukuhara et al. Morphotropic Phase Boundary in the Pb (ZrxTi1− x) O3 System
US3404296A (en) Transducer having a transition from a ferroelectric state to an antiferroelectric state
Heilig et al. Time dependence of mechanical depolarization in ferroelectric ceramics
JPH07172914A (en) Production of piezoelectric material