JPS61221782A - 4-color forming element color display method - Google Patents

4-color forming element color display method

Info

Publication number
JPS61221782A
JPS61221782A JP6305185A JP6305185A JPS61221782A JP S61221782 A JPS61221782 A JP S61221782A JP 6305185 A JP6305185 A JP 6305185A JP 6305185 A JP6305185 A JP 6305185A JP S61221782 A JPS61221782 A JP S61221782A
Authority
JP
Japan
Prior art keywords
color
spectral distribution
distribution
color display
spectral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6305185A
Other languages
Japanese (ja)
Inventor
中村 貞男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6305185A priority Critical patent/JPS61221782A/en
Publication of JPS61221782A publication Critical patent/JPS61221782A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 並置された微小な3色発光カラー表示素子の集合によっ
て1種々の色を発色する方法が現在の一般的な発光式カ
ラー表示装置の発色方法である。
DETAILED DESCRIPTION OF THE INVENTION The current general method for color emitting type color display devices is to emit one variety of colors by a collection of minute three-color emitting color display elements arranged side by side.

その3色発光素子を4色発光素子にすることによって、
3色法よりも原名に忠実な分光分布の発色を可能にする
ことにより、質のよいカラー表示と。
By changing the three-color light-emitting element to a four-color light-emitting element,
By enabling color development with a spectral distribution that is more faithful to the original name than the three-color method, it achieves high-quality color display.

カラー表示の調整を容易にすることを本発明の目的とす
る。
It is an object of the present invention to facilitate adjustment of color display.

第1図は発光カラー表示素子の400すツメ−トルから
700ナノメートルまでの波長についての発光エネルギ
ーの分布を示す分光分布図であり。
FIG. 1 is a spectral distribution diagram showing the distribution of luminescent energy for wavelengths from 400 meters to 700 nanometers of a light-emitting color display element.

実線は白色の分光分布であって、100バーtシトの横
線で示されている。第1図には破線で、白色の分光分布
を3分割した長方形の分光分布が記入されている。3色
法の場合の赤・緑・青の分光分布の模式図である。3色
の分光分布がすべて100バーtシト発色すると白色に
なることを示している。第2図には、実線で白色の、破
線で本発明の4色法の場合の赤・黄・緑・青の分光分布
が示されている。第2図と比較すると、3色法の緑の分
光分布部分を2分割して、緑と黄の分光分布にしている
。第3図は赤色を3色法で発色する場合について、実線
で実際の赤色の分光分布を。
The solid line is the white spectral distribution, which is indicated by a horizontal line of 100 bart. In FIG. 1, a rectangular spectral distribution obtained by dividing the white spectral distribution into three is drawn with broken lines. It is a schematic diagram of the spectral distribution of red, green, and blue in the case of a three-color method. This shows that when the spectral distribution of all three colors is developed at 100 bart, the color becomes white. In FIG. 2, the solid line indicates white, and the broken line indicates the spectral distribution of red, yellow, green, and blue in the case of the four-color method of the present invention. Comparing with FIG. 2, the green spectral distribution part of the three-color method is divided into two to create green and yellow spectral distributions. Figure 3 shows the actual spectral distribution of red as a solid line when red is produced using the three-color method.

破線で3色法による発色を示している。赤色は3色法で
近似度のよい分光分布の発色ができることを示している
0分割された分光分布、第3図の場合には3色の分光分
布のそれぞれの強弱によって種々の色が発色できるのが
発光カラー素子による発色方法である。
The broken lines indicate color development using the three-color method. Red is a zero-divided spectral distribution, which shows that the three-color method can produce a color with a spectral distribution that is highly approximated. In the case of Figure 3, various colors can be produced depending on the strengths and weaknesses of each of the three color spectral distributions. This is a coloring method using light-emitting color elements.

第4図はオレシジ色を3色法で発色した場合を。Figure 4 shows the case where Oreshiji color is developed using the three-color method.

第5図は本発明の4色法で発色した場合を示している。FIG. 5 shows the case where colors are developed using the four-color method of the present invention.

第4図と第5図の実線は実際の才レシジ色の分光分布で
あり、破線はそれぞれ3色法と4色法による発色状態を
示している。4色法のほうが分、光分布の近似度がよい
。色彩学では必ずしも分光分布が一致しなくても1色度
値が等しくなるように調整されると同じ色を知覚する能
力が眼にあるとされていて、メタメリズムという術語で
説明される。第4図の3色法の破線の分光分布でも。
The solid lines in FIGS. 4 and 5 show the spectral distribution of actual colors, and the broken lines show the coloring states by the three-color method and the four-color method, respectively. The four-color method provides a better approximation of the light distribution. In colorism, it is said that the eye has the ability to perceive the same color even if the spectral distributions do not necessarily match when the chromaticity values are adjusted to be the same, and this is explained by the term metamerism. Also the spectral distribution of the broken line of the three-color method in Figure 4.

実線のオレンジ色を眼は知覚するとされている。It is said that the eye perceives the solid orange color.

それに従ってテレじ画像も3色法で十分な色が出るとさ
れている。テレビスタジオで十分な照明条件で制作され
た画像の場合には精度のよい発色ができるようであるが
、ニュース現場からの画像には赤みや緑みの強い色をよ
く見ることがある。第4図のオレンジ色の例では、実際
の色の分光分布はちょうと3色法の緑分光分布部分を縦
に2分割した形であるのに対して、3色法による発色で
は実際の色の分光分布を横に切断した形の分布で近似せ
ざるを得ない、十分な照明条件のスタジオでは微妙な調
整が可能であるが、照明条件の悪い所では調整がくずれ
やすく、赤や緑が強すぎる部分が生じてそれらの色を見
ることになる。メタメリズムによると9分光分布が違っ
ても色度値が等しくなるように調節されれば、同じ色を
知覚する機能を眼はもっているのであるが、逆に分光分
布が等しいと眼は確実に同じ色を見る。技術的にはこの
点に重点をおくほうが発色の調整が容易である。
Accordingly, the three-color method is said to produce sufficient colors for television images. Images produced in television studios under sufficient lighting conditions seem to be able to produce accurate colors, but images from news sites often have strong reddish or greenish colors. In the example of orange in Figure 4, the actual spectral distribution of the color is just vertically divided into two parts of the green spectral distribution part of the three-color method, whereas the actual color produced by the three-color method is The spectral distribution of the spectral distribution must be approximated by a distribution in the form of a horizontal cut.In a studio with sufficient lighting conditions, delicate adjustments are possible, but in places with poor lighting conditions, the adjustment tends to be distorted, and red and green There will be parts that are too strong and you will see those colors. According to metamerism, if the chromaticity values are adjusted to be the same even if the spectral distributions are different, the eyes have the ability to perceive the same color, but conversely, if the spectral distributions are equal, the eyes will definitely perceive the same colors. see color Technically, it is easier to adjust color development by focusing on this point.

第5図の4色法のほうが第4図の3色法より分光分布の
近似度がよく、その点ですぐれている。
The four-color method shown in FIG. 5 approximates the spectral distribution better than the three-color method shown in FIG. 4, and is superior in that respect.

さらに本発明の4色法の分光分布の分割を第2図のよう
に行りた理論特性を説明する。第6図は人の眼の視感度
分布であり、[の感度の高い部分は3色法の緑分光分布
部分に相当する。そのためこの部分を縦に分割する分光
分布になるオレンジ色の発色の検討は重要な例題である
。眼の視感度の高い部分に分光分布値が高い値をもつ、
赤から才し、/ジ、黄を経て緑にいたる色は同様の影響
を受けやすい。本発明の4色法の特徴は3色法の緑分光
分布部分、すなわち眼の視感度の高い部分を黄と緑の分
光分布部分に2分割して4色分光分布にする点にある。
Furthermore, the theoretical characteristics of dividing the spectral distribution of the four-color method of the present invention as shown in FIG. 2 will be explained. FIG. 6 shows the visibility distribution of the human eye, and the highly sensitive part corresponds to the green spectral distribution part of the three-color method. Therefore, it is an important example to study the development of orange color, which has a spectral distribution that vertically divides this area. The spectral distribution value is high in the part of the eye with high visibility,
Colors from red through yellow to green are susceptible to similar effects. The feature of the four-color method of the present invention is that the green spectral distribution part of the three-color method, that is, the part where the visibility of the eye is high, is divided into two parts, yellow and green, to obtain a four-color spectral distribution.

このようにして実際の色の分光分布に近い分布形状が得
ら飢る発色法は、3色法に次いで発光素子によるカラー
表示装置のコストが低く、技術的に正確な発色と9発色
の調整を容易にする特徴がある。
In this way, a color distribution shape close to the actual color spectral distribution can be obtained.The color display method, which uses light-emitting elements, has the lowest cost next to the three-color method, and is technically accurate in color generation and nine-color adjustment. There are features that make it easier.

第1図から第5図に破線で記入した長方形分光分布は説
明の便利さから利用される模式図であり。
The rectangular spectral distributions drawn with broken lines in FIGS. 1 to 5 are schematic diagrams used for convenience of explanation.

実際の分光分布は長方形でなく、1頂点をもつ山形にな
ることが多い。その山形の分光分布の例として、それぞ
れの分光分布部分は、赤は620ブノメートル、黄は5
70fツメ−トル、緑は520ナノメートル、青は45
0ナノメートルに頂点をもつ分光分布を例にあげること
ができる。
The actual spectral distribution is often not rectangular but mountain-shaped with one vertex. As an example of the mountain-shaped spectral distribution, each spectral distribution part is 620 bnm for red and 5 bnm for yellow.
70f meters, green is 520 nanometers, blue is 45 nanometers
An example of this is a spectral distribution with a peak at 0 nanometers.

本発明の応用分野は、微小4色発光カラー表示素子を多
数用いて多色表示するカラー表示装置。
The field of application of the present invention is a color display device that displays multiple colors using a large number of small four-color emitting color display elements.

テレビ、とデオ、計算機のカラー表示部がある。There is a color display for the TV, video and calculator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第5図までは発光カラー表示素子の発光エネ
ル千−の分布である分光分布図である。 第2図と第5図は本発明の4色発光カラー素子による発
色法の場合の発色例を示す分光分布図である。第1図、
第3図、第4図は現在一般的に利用される3色発光カラ
ー表示素子の場合の発色例を示す分光分布図であり1本
発明との比較のための図例である。第6図は本発明の理
論特性を説明するための人の眼の視感度分布図である。
FIGS. 1 to 5 are spectral distribution diagrams showing the distribution of luminescent energy of a light-emitting color display element. FIGS. 2 and 5 are spectral distribution diagrams showing examples of color development in the case of the color development method using the four-color emitting color element of the present invention. Figure 1,
FIGS. 3 and 4 are spectral distribution diagrams showing examples of color development in the case of three-color emitting color display elements commonly used at present, and are examples for comparison with the present invention. FIG. 6 is a visual sensitivity distribution diagram of the human eye for explaining the theoretical characteristics of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 発光カラー表示素子を複数個並置して、カラー情報を表
示するカラー表示装置において、4色発光素子をもつこ
とを特徴とするカラー表示方法。
1. A color display method for displaying color information by arranging a plurality of light emitting color display elements in parallel, the color display device having four color light emitting elements.
JP6305185A 1985-03-27 1985-03-27 4-color forming element color display method Pending JPS61221782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6305185A JPS61221782A (en) 1985-03-27 1985-03-27 4-color forming element color display method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6305185A JPS61221782A (en) 1985-03-27 1985-03-27 4-color forming element color display method

Publications (1)

Publication Number Publication Date
JPS61221782A true JPS61221782A (en) 1986-10-02

Family

ID=13218144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305185A Pending JPS61221782A (en) 1985-03-27 1985-03-27 4-color forming element color display method

Country Status (1)

Country Link
JP (1) JPS61221782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747015B2 (en) 2002-10-28 2010-06-29 Qdesign Usa, Inc. Techniques of imperceptibly altering the spectrum of a displayed image in a manner that discourages copying

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747015B2 (en) 2002-10-28 2010-06-29 Qdesign Usa, Inc. Techniques of imperceptibly altering the spectrum of a displayed image in a manner that discourages copying

Similar Documents

Publication Publication Date Title
CN100596207C (en) Ambient light derived form video content by mapping transformations through unrendered color space
EP1443491A1 (en) Image displaying method and image displaying device
CN101720045B (en) Method of hue/brightness conversion in laser-displayed color gamut expansion
KR0151127B1 (en) Multicolor filter for producing purer white across a display device
CN101965735A (en) The optimal spatial that is used for multi-primary display distributes
CN1906951A (en) Ambient light derived by subsampling video content and mapped through unrendered color space
JP2007515662A (en) Multiple primary color display system and display method using multiple primary colors
CN101378515A (en) Method for transferring video signal colors and television set
JPH1091083A (en) Method and device for displaying color
CN110324476B (en) Method for representing color generation performance of mobile phone screen
US20020163526A1 (en) Color management filters
JPS61221782A (en) 4-color forming element color display method
CN109346015A (en) A kind of color display based on energy saving thought
JPWO2019078288A1 (en) Viewer for color calibration and color calibration set using it
CN102630020B (en) Transmission method of color computer generated hologram color information
CN112637579A (en) Method and system for correcting Micro LED depth color
JPS6169091A (en) Matrix type liquid crystal color display
Someya et al. 19.3: laser TV: ultra‐wide gamut for a new extended color‐space standard, xvYCC
CN107134244A (en) Display device and display system
CN206712980U (en) Display device and display system
Hunt Color reproduction and color vision modeling
JPH05232579A (en) Liquid crystal projection device
Hunt Perceptual factors affecting colour order systems
JPS59210481A (en) Color liquid crystal display unit
CN115691404A (en) Display method of multi-color-domain-mode LED display screen