JPS61221679A - Light applied measuring instrument for zero-phase component - Google Patents

Light applied measuring instrument for zero-phase component

Info

Publication number
JPS61221679A
JPS61221679A JP6572085A JP6572085A JPS61221679A JP S61221679 A JPS61221679 A JP S61221679A JP 6572085 A JP6572085 A JP 6572085A JP 6572085 A JP6572085 A JP 6572085A JP S61221679 A JPS61221679 A JP S61221679A
Authority
JP
Japan
Prior art keywords
light
optical
wavelength
component
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6572085A
Other languages
Japanese (ja)
Inventor
Hajime Kaneda
金田 一
Kazuo Hisama
和生 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6572085A priority Critical patent/JPS61221679A/en
Publication of JPS61221679A publication Critical patent/JPS61221679A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To improve measurement precision by using and connecting polarization plane maintaining optical fibers, etc., in series by as many as phases and constituting a sensor head part. CONSTITUTION:Sensor heads 17u, 17v, and 17w are constituted by winding polarization plane maintaining optical fibers, etc., in a coil shape respectively. The heads 17u and 17v are connected in series through a fiber connection part 23u, a single polarization optical fiber 19, and a fiber connection part 22v and the heads 17u and 17w are connected in series through a connection part 23v, a fiber 20, and a connection part 22w to constitute the sensor head part. Further, the light output of an optical multiplexer 15 is made incident on the head 17u through a fiber 16 and a connection part 22u. Connections are made at the connection parts 22u, 22v, and 22w so that axes of propagation of polarized wave modes are aligned with one another and the connection parts 23u, 23v, and 23w make connection while the axes are slanted by 45 deg.. Consequently, a O-phase current component measured value outputted by a signal processing circuit 26 is improved in precision by correcting variation in the intensity of a light source and variation in loss on an optical transmission line.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は多相交流の零相成分を測定するための光応用
計測装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical application measuring device for measuring zero-phase components of multiphase alternating current.

〔従来の技術〕[Conventional technology]

第2図は、例えば、三菱電機技報(Vot!、57、N
010.1983)に開示された従来の電流測定用光応
用計測装置(磁界センサ)の構成図である。同図におい
て、lは光源駆動回路、2は光源である発光素子(以下
、LEDと略記する)、3は光ファイバ、4は光コネク
タ、5はセンサヘッドである。センサヘッド5は偏光子
6、磁気光学素子7、検光子8及びミラー9を具えてお
り、例えば、交流電動機等の電流測定部に配設される。
Figure 2 shows, for example, Mitsubishi Electric Technical Report (Vot!, 57, N
010.1983) is a configuration diagram of a conventional optical application measuring device for current measurement (magnetic field sensor). In the figure, l is a light source drive circuit, 2 is a light emitting element (hereinafter abbreviated as LED) as a light source, 3 is an optical fiber, 4 is an optical connector, and 5 is a sensor head. The sensor head 5 includes a polarizer 6, a magneto-optical element 7, an analyzer 8, and a mirror 9, and is arranged, for example, in a current measuring section of an AC motor or the like.

12は受光素子であって、光コネクタ10及び光ファイ
バ11を通してセンサヘッド5の出射光を受ける。13
は光受信回路であって、受光素子12の出力を直流成分
Vdと交流成分Vaに分離して割算回路14に供給する
A light receiving element 12 receives the light emitted from the sensor head 5 through the optical connector 10 and the optical fiber 11. 13
is an optical receiving circuit which separates the output of the light receiving element 12 into a DC component Vd and an AC component Va and supplies them to the division circuit 14.

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

LED2が出射した所定波長の光は光ファイバ3、光コ
ネクタ4を経由してセンサヘッド5内の偏光子6に導か
れる。偏光子6は入射した光の直線偏光波を通過させる
。この直線偏光波は磁気光学素子7内を伝播する間に、
導体を流れる被測定電流が作る交流磁界Hによりその偏
光面が回転する。この回転角ψは、一般に、 ψ−Vr・H・l・・・・・・・・・・・・・■と表わ
せる。ここで、Eは光路長、Vγは磁気光学素子7のか
ウエルデ定数であって波長依存性を持つ、検光子8は直
線偏光波の回転角ψに応じた光強度Pの光信号を作る。
Light of a predetermined wavelength emitted by the LED 2 is guided to a polarizer 6 in the sensor head 5 via an optical fiber 3 and an optical connector 4. The polarizer 6 passes linearly polarized waves of incident light. While this linearly polarized light wave propagates within the magneto-optical element 7,
The plane of polarization is rotated by the alternating current magnetic field H generated by the current to be measured flowing through the conductor. This rotation angle ψ is generally represented as ψ -VR / H / L ・. Here, E is the optical path length, Vγ is the Weld constant of the magneto-optical element 7, which has wavelength dependence, and the analyzer 8 generates an optical signal with a light intensity P corresponding to the rotation angle ψ of the linearly polarized light wave.

この光強度Pは、李流磁界H=Ho−s i nωt 
(但し、Hoは被測定で1界の最大振幅、ωは角周波数
である)とすると、P” (Po/2)  (1−2V
r−Ho−s ina+t)・ ・ ・ ・ ・ ・■ となり、光強度Pは1(o−sinωtに比例する。
This light intensity P is determined by the Lee current magnetic field H=Ho−s i nωt
(However, Ho is the maximum amplitude of one field under measurement, and ω is the angular frequency.) Then, P" (Po/2) (1-2V
r-Ho-sina+t)・・・・・・・■, and the light intensity P is proportional to 1 (o-sinωt).

但し、偏光子6と検光子8の偏光通過方向の相対角度は
45”とする。ここで、POは磁気光学素子7への入射
光強度である。
However, the relative angle of the polarized light passing direction between the polarizer 6 and the analyzer 8 is 45''. Here, PO is the intensity of light incident on the magneto-optical element 7.

なお、第3図(a)にPOの時間的変化を、同図(b)
に光強度Pの時間的変化を示す。
In addition, Fig. 3(a) shows the temporal change in PO, and Fig. 3(b) shows the temporal change in PO.
shows the temporal change in light intensity P.

検光子8が出射した光信号はミラー9で光路変更され光
コネクタ10及び光ファイバ11を経由して受光素子1
2に導かれ、ここで電気信号に変換され、該電気信号(
アナログ信号)は光受信回路13に供給される。電気信
号は光受信回路13で直流成分Vdと交流成分Vaとに
分離され、割算回路14が(Va/Vd)を演算するこ
とにより、LED出力強度、光フアイバ伝送損失、光コ
ネクタ損失等の変動の影響を除去して、この電圧比を計
測値として出力する。
The optical signal emitted by the analyzer 8 is changed in optical path by a mirror 9 and sent to the light receiving element 1 via an optical connector 10 and an optical fiber 11.
2, where it is converted into an electrical signal, and the electrical signal (
(analog signal) is supplied to the optical receiving circuit 13. The electrical signal is separated into a DC component Vd and an AC component Va by the optical receiver circuit 13, and the division circuit 14 calculates (Va/Vd) to calculate LED output intensity, optical fiber transmission loss, optical connector loss, etc. After removing the influence of fluctuations, this voltage ratio is output as a measured value.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、電力配電系統の監視・制御を行う場合には、
地絡事故時や断線事故時の電圧・電流の零相成分を測定
する必要があるが、上記した光応用計測装置を用いる場
合には、例えば、3相交流系統の場合、各相の電tix
u、ゴv、Iwを計測する3台の光応用計測装置を必要
とする。
By the way, when monitoring and controlling the power distribution system,
It is necessary to measure the zero-sequence component of voltage and current at the time of a ground fault or disconnection fault, but when using the above-mentioned optical measurement equipment, for example, in the case of a three-phase AC system, the
Three optical measurement devices are required to measure u, gov, and Iw.

、上記センサヘッドの構成は部品点数が多くて複雑であ
るので、多数接続してセンサヘッド部を構成すると高価
になる上、これらを結合処理する信号処理装置を必要と
するので、装置費用が高価になると云う問題があるり、
更に、零相成分は電気的に非常に低レベルであるので、
計測精度としては高精度なものが要求されるが、上記従
来の構成では、上記0式に含まれる光学定数が波長依存
性を持つので、光源の温度環境が変動するとその出射光
のスペクトル変動が測定誤差要因となり、上記測定精度
に対する要求を満足させることは難しいという問題があ
った。
The configuration of the sensor head described above is complicated with a large number of parts, so connecting a large number of parts to form the sensor head becomes expensive.In addition, a signal processing device is required to combine and process these parts, so the equipment cost is high. There is a problem that it becomes
Furthermore, since the zero-phase component has a very low electrical level,
High measurement accuracy is required, but in the conventional configuration described above, the optical constants included in the above equation 0 have wavelength dependence, so if the temperature environment of the light source changes, the spectrum of the emitted light will fluctuate. This causes a measurement error, and there is a problem in that it is difficult to satisfy the above-mentioned requirements for measurement accuracy.

この発明は上記問題を解消するためになされたもので、
従来に比して測定精度を顕著に高めることができ、しか
も装置費用を安価にすることができる光応用零相成分計
測装置を得ることを目的とする。
This invention was made to solve the above problem.
It is an object of the present invention to obtain an optical application zero-phase component measuring device that can significantly improve measurement accuracy compared to the conventional one and can reduce the cost of the device.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は上記問題を目的を達成するためになされたも
ので、光源として波長の異なる2組の光源を用い、多相
交流の各相測定部位に配設されるセンサヘッドとして偏
波面保存光ファイバもしく介し直列に接続してセンサヘ
ッド部となし、該センサヘッド部の光出力を電気信号に
変換して該電気信号を交流成分と直流成分に分離し、信
号処理回路により、第1波長光及び第2波長光に対応す
る2つの直流成分を変動パラメータとして無負荷時光強
度対応分を演算させ、第1波長光もしくは第2波長光に
対応する交流成分から高周波成分を除去してこれを無負
荷時光強度対応分を用い補正させる構成としたものであ
る。
This invention was made in order to solve the above-mentioned problem, and uses two sets of light sources with different wavelengths as light sources, and uses a polarization-maintaining optical fiber as a sensor head disposed at each phase measurement site of multiphase alternating current. Alternatively, the light output of the sensor head is converted into an electrical signal, the electrical signal is separated into an alternating current component and a direct current component, and a signal processing circuit generates a first wavelength light. Then, the two DC components corresponding to the second wavelength light are used as fluctuation parameters to calculate the light intensity corresponding to the no-load state, and the high frequency component is removed from the AC component corresponding to the first wavelength light or the second wavelength light. The configuration is such that correction is performed using the amount corresponding to the light intensity during load.

〔作用〕[Effect]

この発明では、信号処理回路により計測値が波長変動補
償されるので、実質上、波長変動に左右されない精度の
高い計測値が得られ、多相交流の各相測定部位に配置さ
れるセンサヘッドを直列にしてlの光源部と1の受信部
との間に挿入する構成とすると共にセンサヘッドとして
光ファイバのコイルを使用したので、センサヘッド部の
構成が簡単となり、従って、装置がコンパクトになり、
装置費用も安価となる。
In this invention, since the measured value is compensated for wavelength fluctuation by the signal processing circuit, it is possible to obtain a highly accurate measured value that is virtually unaffected by wavelength fluctuation, and the sensor head disposed at each phase measurement site of a polyphase alternating current can be used. Since the sensor head is inserted in series between the light source section 1 and the receiver section 1, and an optical fiber coil is used as the sensor head, the structure of the sensor head section is simple, and the device is therefore compact. ,
The equipment cost is also low.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す構成図である。同図
において、2a及び2bは、例えば、Aj!−Ga−A
s系LEDであって、それぞれ波長λa及λbの光信号
を出力する。両LED2a及び2bが出力する光は光合
成器15で合成される、17u、17v及び17wはセ
ンサヘッドであって、2つの直交偏波モードを伝播する
偏波面保存光ファイバもしくは単一モード光ファイバを
コイル状に巻回してなり、センサヘッド17uとセンサ
ヘッド17vはファイバ接続部23u、単一定偏波光フ
ァイバ19、ファイバ接続部22Vを介して直列に接続
され、センサヘッド17vと17wはファイバ接続部2
3v1単一定偏波光ファイバ20及びファイバ接続部2
2wを介し直列に接続されてセンサヘッド部を構成して
おり、単一定偏波光ファイバ16及びファイバ接続部2
2Uを介してセンサヘッド17uに光合成器15の光出
力が入射する。18u、18v及び18wは3相交流の
各相電流1u、Iv及びIwが流れる導体でって、それ
ぞれセンサヘッド17u、17V及び17wの中心を通
っている。上記センサヘッド部で光強度変調された光出
力はファイバ接続部23c及び単一定偏波光ファイバ2
1を介して光分波器24に供給される。光分波器24は
入射した光を波長λaの光と波長λbの光とに分波して
それぞれを受光素子12a及び12bに供給する。受光
素子12aが出力する電圧信号は光受信回路13aで直
流成分Vdaと交流成分Vaとに分離され、交流成分V
aはローパスフィルタ25処理回路26の演算内容につ
いては後述する。ファイバ接続部22u、22v、22
wでは偏波モードが伝播する軸を一致させて接続し、フ
ァイバ接続部 23u、23v、23wは上記軸を45
度傾けて接続しである。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 2a and 2b are, for example, Aj! -Ga-A
These are s-based LEDs, and output optical signals with wavelengths λa and λb, respectively. The light output from both LEDs 2a and 2b is combined by a light combiner 15. 17u, 17v, and 17w are sensor heads that connect polarization-maintaining optical fibers or single-mode optical fibers that propagate two orthogonal polarization modes. The sensor head 17u and the sensor head 17v are connected in series via the fiber connection part 23u, the single polarization optical fiber 19, and the fiber connection part 22V, and the sensor heads 17v and 17w are connected to the fiber connection part 2.
3v1 single polarization optical fiber 20 and fiber connection 2
2w to form a sensor head section, and a single polarization optical fiber 16 and a fiber connection section 2.
The light output of the light combiner 15 enters the sensor head 17u via 2U. 18u, 18v, and 18w are conductors through which three-phase AC currents 1u, Iv, and Iw flow, and they pass through the centers of the sensor heads 17u, 17V, and 17w, respectively. The light intensity modulated light output by the sensor head is transmitted to the fiber connection part 23c and the single polarization optical fiber 2.
1 to the optical demultiplexer 24. The optical demultiplexer 24 demultiplexes the incident light into light with a wavelength λa and light with a wavelength λb, and supplies each to the light receiving elements 12a and 12b. The voltage signal output by the light receiving element 12a is separated into a DC component Vda and an AC component Va by the optical receiver circuit 13a, and the AC component V
The calculation contents of the low-pass filter 25 processing circuit 26 will be described later. Fiber connection parts 22u, 22v, 22
At w, the axes through which the polarization mode propagates are aligned and connected, and at the fiber connection parts 23u, 23v, and 23w, the axes are connected at 45
It is connected at an angle.

なお、「偏波保存光ファイバとは、2つの直交偏波モー
ドの両方を伝播するものを云い、単一定偏波光ファイバ
とは2つの偏波モードのうちの一方偏波モードのみを伝
播するもの」を云う。
Furthermore, "polarization-maintaining optical fiber" refers to one that propagates both two orthogonal polarization modes, and "single polarization-maintaining optical fiber" refers to one that propagates only one of the two polarization modes. ”

次に、この装置の動作について説明する。Next, the operation of this device will be explained.

今、センサヘッドのファイバの長さをlとすると、ファ
ラデー効果による偏光面の回転角θは前0式で表される
が、との場合にファイバ上に発生する磁界は、ファイバ
径をRとすると、H=1/2π・R・・・・・・・■ である。ファイバ接続部23u、23v及び23Wでは
各々ファイバ軸を45度傾けて出力側の単一定偏波光フ
ァイバと接続しているため、交流電流1=Io・sin
ωtとすると、■式と0式から・・・・・・・■ が導かれる。Vγは波長依存性を有しているので、B″
=−1o−1/π・Rとすると、■式は、P”(Po/
2) ・(1+Vr、B、sinωt)・・・・・・・
■ となる。
Now, if the length of the fiber of the sensor head is l, the rotation angle θ of the plane of polarization due to the Faraday effect is expressed by the equation 0 above, but the magnetic field generated on the fiber in the case of is Then, H=1/2π·R·····■. In the fiber connection parts 23u, 23v, and 23W, the fiber axes of each are inclined by 45 degrees and connected to the single polarization optical fiber on the output side, so the alternating current 1=Io・sin
If ωt, then...■ is derived from the formula ■ and the formula 0. Since Vγ has wavelength dependence, B″
= -1o-1/π・R, then the formula ■ becomes P"(Po/
2) ・(1+Vr, B, sinωt)・・・・・・・
■ It becomes.

センサヘッド17u、17v及び17wの被測定電流I
u、Iv及びIwを下記0式で表すと、Iu=Iou−
sin ω t lv=Iov−sin (ωt+φv)   ・−−■
Iw=Iow−sin (ωt+φW)但し、φy w
 2π/3、φw=4π/3センサヘッド17u、17
v及び17wは単一定偏波光ファイバで直列に接続され
ているため、受光素子12aS12bに到達する光強度
は、Q−Qe (1+Vr−Bu−s ina+t)X
 (1+Vr−By−s in (ωt+φV))x 
(1+Vy−13w、s i n (act+φW))
で表される。但し、Qeは電流時の光強度でありBu=
−1ou11/rtR。
Measured current I of sensor heads 17u, 17v and 17w
When u, Iv and Iw are expressed by the following 0 formula, Iu=Iou-
sin ω t lv=Iov−sin (ωt+φv) ・−−■
Iw=Iow-sin (ωt+φW) However, φy w
2π/3, φw=4π/3 sensor head 17u, 17
Since v and 17w are connected in series with a single polarization optical fiber, the light intensity reaching the light receiving element 12aS12b is Q-Qe (1+Vr-Bu-s ina+t)X
(1+Vr-By-s in (ωt+φV))x
(1+Vy-13w, sin (act+φW))
It is expressed as However, Qe is the light intensity at the time of current, and Bu=
-1ou11/rtR.

B Y =  I Ov・1/ πR。B Y = I Ov・1/πR.

Bw=−1ow、j?/πRである。Bw=-1ow,j? /πR.

この、■式は、周波数の観点から下記のように書き直す
ことができる。
This equation (2) can be rewritten from the viewpoint of frequency as follows.

Q=Qe  (FO+F1+F2+F3)l HI l
■但し、 F1=Vr  (Bu−s inωt+By−s in
  (ωt+φv)  +Bw−s in (ωt+φ
W)F2=−登(Bu−Bvcos (2ωt+φV)
+Bv・Bwcos  (2ait) +BwIBucos  (2ωt+φW)〕であり、上
記F1が3相交流の零相電圧成分100=■u+■v+
■Wl・・・・・−・■に相当する。ローパスフィルタ
25は2ω、3ωに相当する高周波成分F2とF3を遮
断する。
Q=Qe (FO+F1+F2+F3)l HI l
■However, F1=Vr (Bu-s inωt+By-s in
(ωt+φv) +Bw−s in (ωt+φ
W) F2=-Ten (Bu-Bvcos (2ωt+φV)
+Bv・Bwcos (2ait) +BwIBucos (2ωt+φW)], and the above F1 is the zero-sequence voltage component of three-phase AC 100=■u+■v+
■Wl...--Corresponds to ■. The low-pass filter 25 blocks high frequency components F2 and F3 corresponding to 2ω and 3ω.

ここで、波長λaに対するウエルデ定数Vγa、波長λ
bに対するウエルデ定数4vγbで表わし光強度Qeに
相当する直流電圧(無負荷時光強度対応分)をVeとす
ると、 Vda= ・・・・・・・[相] Vd b= ・・・・・・・■ が成立する。但し、光受信回路13aと13bの増幅利
得は波長λaとλbに対するウェルデ定数が同一になる
ように利得調整されているものとする。
Here, the Weld constant Vγa for the wavelength λa, the wavelength λ
Expressed by the Weld constant 4vγb for b, and assuming that the DC voltage corresponding to the light intensity Qe (corresponding to the no-load light intensity) is Ve, Vda= ......[Phase] Vd b= ...... ■ holds true. However, it is assumed that the amplification gains of the optical receiving circuits 13a and 13b are adjusted so that the Weld constants for the wavelengths λa and λb are the same.

01式と0式から、上記Veは、 (、λ3 −  αlb > となる。VTa&Vybは波長λa1λbについて予め
測定しておけばよい。一方、 ■a=Ve−Vra (Bu、rina+t=+Bv−
sin(ωt+φU) +Bw−s l n ((1) t+φW)〕 ・・・
・・0である。
From equations 01 and 0, the above Ve becomes (, λ3 − αlb >. VTa & Vyb can be measured in advance for wavelengths λa1λb. On the other hand, ■a=Ve−Vra (Bu, rina+t=+Bv−
sin(ωt+φU) +Bw−s l n ((1) t+φW)] ・・・
... is 0.

信号処理回路26は上記[相]式を円演算て、零相電流
成分V a / V c”V r aを算出する。この
Ve×vγaは波長変動補償係数であり、信号処理回路
26の出力である零相電流成分計測値は、光源の強度変
動分、光伝送路における損失変動分が補正された精度の
高い計測値となる。勿論、波長λbに対する交流成分か
ら高周波成分を除去した値をVeXVγbで補正するよ
うにしてもよい。
The signal processing circuit 26 calculates the zero-sequence current component V a /V c''V r a by performing a circular operation on the above [phase] formula. This Ve×vγa is a wavelength fluctuation compensation coefficient, and the output of the signal processing circuit 26 The zero-phase current component measurement value is a highly accurate measurement value that has been corrected for intensity fluctuations in the light source and loss fluctuations in the optical transmission line.Of course, the value obtained by removing the high frequency component from the AC component for wavelength λb is The correction may be made using VeXVγb.

なお、上記実施例例では、受光素子と光受信回路を2組
づつ設けているが、受光素子と光受信回路を1組にして
2波長供用とし、LED2aと2bとを交互に発光させ
る構成としてもよい。
In the above embodiment, two sets each of the light receiving element and the light receiving circuit are provided, but the light receiving element and the light receiving circuit may be combined into one set to serve two wavelengths, and the LEDs 2a and 2b may be configured to emit light alternately. Good too.

また、上記実施例は3相交流の場合について説明したが
、この発明は3相以外の多相交流の場合に実施して同様
の効果を得ることができる。
Furthermore, although the above embodiment has been described in the case of three-phase alternating current, the present invention can be implemented in the case of polyphase alternating current other than three-phase, and similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明した通り、多相交流回路の各相測定
部位に配されるセンサヘッドを直列に接続してセンサヘ
ッド部を構成し、これを光源部と受信部の間に挿入し、
センサヘッドとして光ファイバのコイルを用いいている
ので、構成が簡素となって装置費用を安価にすることが
でき、その上、波長の異なる光源を使用し計測値を波長
変動補償する構成としたので、零相成分の測定精度を顕
著に高めることができる。
As explained above, the present invention configures a sensor head section by connecting sensor heads arranged at each phase measurement site of a polyphase AC circuit in series, and inserts this between a light source section and a receiving section.
Since an optical fiber coil is used as the sensor head, the configuration is simple and the equipment cost can be reduced.In addition, the system uses light sources with different wavelengths to compensate for wavelength fluctuations in the measured values. Therefore, the measurement accuracy of the zero-phase component can be significantly improved.

【図面の簡単な説明】 第1図はこの発明の一実施例を示す構成図、第2図は従
来の光応用計測装置の構成図、第3図は光強度の時間的
変化を示す図である。 図において、2a、2b−光源、12a、12b −受
光素子、13a、13b−光受信回路、15−光合成器
、24−光分波器、16〜21−単一定偏波光ファイバ
、17u〜17W・−センサヘッド、22u 〜22w
及び23 u 〜23 W−ファイバ接続部、と4=六
色分4日叱1.25−ローパスフィルタ、26・・・−
信号処理回路。 なお、図中、同一符号は同一または相当部分を示す。
[Brief Description of the Drawings] Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a block diagram of a conventional optical applied measurement device, and Fig. 3 is a diagram showing temporal changes in light intensity. be. In the figure, 2a, 2b - light source, 12a, 12b - light receiving element, 13a, 13b - optical receiving circuit, 15 - optical combiner, 24 - optical demultiplexer, 16 - 21 - single polarization optical fiber, 17u - 17W. -Sensor head, 22u ~ 22w
and 23 u ~ 23 W - fiber connection, and 4 = 6 colors 4 days filter 1.25 - low pass filter, 26...-
signal processing circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)出射光が第1波長を持つ光源と該波長とは異なる
第2波長を有する光源を具えた光源部、これらの光源が
出射する光が導かれ該光を被測定交流に依存して光強度
変調するセンサヘツド部、上記センサヘツド部の出射光
を受光する受光素子、該受光素子が出力する電気信号を
直流成分と交流成分に分離して該受光素子が受光した第
1波長光に対応する直流成分と交流成分及び第2波長光
に対応する直流成分を出力する光受信回路、上記2つの
直流成分とローパスフイルタにより高周波成分が除去さ
れた上記交流成分とが入力される信号処理回路を具え、
上記センサヘツド部は2つの直交偏波モードを伝播する
偏波面保存光フアイバもしくは単一モード光フアイバを
コイル状に巻回してなり多相交流の各相測定部位に配置
されて単一定偏波光フアイバを介し順次直列接続された
複数のセンサヘツドからなり、上記信号処理回路が2つ
の上記直流成分を変動パラメータとして無負荷時光強度
対応分を演算し、上記交流成分を該無負荷時光強度対応
分とフアイバウエルデ定数を用い補正することを特徴と
する光応用零相成分計測装置。
(1) A light source unit comprising a light source whose emitted light has a first wavelength and a light source whose emitted light has a second wavelength different from the wavelength; A sensor head section that modulates light intensity, a light receiving element that receives the light emitted from the sensor head section, and an electric signal outputted by the light receiving element that is separated into a DC component and an AC component that correspond to the first wavelength light received by the light receiving element. an optical receiving circuit that outputs a DC component, an AC component, and a DC component corresponding to the second wavelength light, and a signal processing circuit that receives the two DC components and the AC component from which a high frequency component has been removed by a low-pass filter. ,
The sensor head section is made by winding a polarization-maintaining optical fiber or a single-mode optical fiber into a coil that propagates two orthogonal polarization modes. The signal processing circuit calculates the no-load light intensity corresponding to the two DC components as a fluctuation parameter, and calculates the no-load light intensity corresponding to the AC component and the fiber output. An optical application zero-phase component measuring device characterized by performing correction using a de-constant.
(2)センサヘツド部への入射光及び出射光は単一定偏
波光フアイバを通して伝播され、センサヘツド入力側と
単一定偏波光フアイバとは軸を一致させて、また、セン
サヘツド部出力側と単一定波向光フアイバとは軸を45
度傾けて接続されていることを特徴とする特許請求の範
囲第1項記載の光応用零相成分計測装置。
(2) The incident light and the output light to the sensor head section are propagated through a single constant polarization optical fiber, and the axes of the input side of the sensor head and the single constant polarization optical fiber are aligned, and the output side of the sensor head section and the single constant wave direction are aligned. The axis of optical fiber is 45
2. The optical zero-phase component measuring device according to claim 1, wherein the device is connected at an angle.
(3)信号処理回路は、第1波長λa、第2波長λb第
1波長λa及びλbに対する光受信回路の直流出力をそ
れぞれVda、Vdb、光受信回路の交流出力をVa、
第1波長λa、第2波長λb第1波長λa及びλbに対
するウエルデ定数をそれぞれVγa、Vγbとしたとき
、下記式の無負荷時光強度対応分Ve: (V^2γa・Vab−V^2γb・Vdb)/(V^
2γa−V^2γb)を演算し、Va/Vγ、a・Ve
を演算して多相交流零相成分を算出することを特徴とす
る特許請求の範囲第1項〜第2項記載の光応用零相成分
計測装置。
(3) The signal processing circuit sets the DC outputs of the optical receiving circuit to Vda and Vdb, respectively, to the first wavelength λa and the second wavelength λb, and the AC outputs of the optical receiving circuit to Va and Vdb, respectively.
First wavelength λa, second wavelength λb When the Weld constants for the first wavelengths λa and λb are Vγa and Vγb, respectively, the no-load light intensity corresponding Ve: (V^2γa・Vab−V^2γb・Vdb )/(V^
2γa-V^2γb), Va/Vγ, a・Ve
The optical application zero-phase component measuring device according to any one of claims 1 to 2, characterized in that the multi-phase alternating current zero-phase component is calculated by calculating the following.
JP6572085A 1985-03-27 1985-03-27 Light applied measuring instrument for zero-phase component Pending JPS61221679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6572085A JPS61221679A (en) 1985-03-27 1985-03-27 Light applied measuring instrument for zero-phase component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6572085A JPS61221679A (en) 1985-03-27 1985-03-27 Light applied measuring instrument for zero-phase component

Publications (1)

Publication Number Publication Date
JPS61221679A true JPS61221679A (en) 1986-10-02

Family

ID=13295133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6572085A Pending JPS61221679A (en) 1985-03-27 1985-03-27 Light applied measuring instrument for zero-phase component

Country Status (1)

Country Link
JP (1) JPS61221679A (en)

Similar Documents

Publication Publication Date Title
KR102159420B1 (en) Optical sensor
US8922194B2 (en) Master-slave fiber optic current sensors for differential protection schemes
CN108918940B (en) All-fiber current mutual inductance system with temperature compensation and method
JP4853474B2 (en) Photosensor and photocurrent / voltage sensor
JP2000515979A (en) Optical fiber device and method for precision current sensing
US6434285B1 (en) Fiber optic difference current sensor
CA2896654C (en) Apparatus and methods for feedback sensing in multi-cell power supplies
KR100310374B1 (en) Method and apparatus for measuring current with two opposite optical signals using Faraday effect
US6154022A (en) Optical measuring method and optical measuring device for measuring an alternating magnetic field having intensity normalization
JP2000501841A (en) Optical measuring method and optical measuring device for alternating current with normalized intensity
JPS61221679A (en) Light applied measuring instrument for zero-phase component
CA2923916C (en) Current transducer with offset cancellation
JP3308897B2 (en) Current measuring method and photocurrent sensor
JP2004020348A (en) Measuring instrument of measuring photoelectric voltage, method of measuring electric power or electric energy, and protection system for electric equipment
JP2009148113A (en) Bus line protecting relay system
JPH10221379A (en) Optical current transformer
JPS60253880A (en) Measurement of zero-phase voltage by optical application
JP3704583B2 (en) Optical fiber type current sensor
JPS61221678A (en) Light applied measuring instrument for zero-phase component
JPH0394179A (en) Fault point locating device
JPH0249472B2 (en)
JPH01276074A (en) Optical demodulator
JPH0283456A (en) Optical current transformer
JPS61186861A (en) Optical fiber applied sensor device
RU2224262C1 (en) Instrument current transformer