JPS61220271A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS61220271A
JPS61220271A JP60059410A JP5941085A JPS61220271A JP S61220271 A JPS61220271 A JP S61220271A JP 60059410 A JP60059410 A JP 60059410A JP 5941085 A JP5941085 A JP 5941085A JP S61220271 A JPS61220271 A JP S61220271A
Authority
JP
Japan
Prior art keywords
battery
salt
active material
electrode active
solid electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059410A
Other languages
Japanese (ja)
Inventor
Kazumi Naito
一美 内藤
Takashi Ikezaki
隆 池崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Hitachi Ltd filed Critical Showa Denko KK
Priority to JP60059410A priority Critical patent/JPS61220271A/en
Publication of JPS61220271A publication Critical patent/JPS61220271A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Abstract

PURPOSE:To lengthen the life of a battery as a built-in power supply for an electronic appliance of low power consumption, by using a salt-type electroconductive high-molecular substance as a depositive electrode active material. CONSTITUTION:A hydrochloric salt of polycarbazole, which is a salt-type electronconductive high-molecular substance, is used as a positive electrode active material. An outer frame is tightened on the hydrochloric salt pinched between a lithium leaf as a negative electrode active material and a carbon paper as a collector so that a solid-electrolyte battery is constructed. When the battery is discharged through a fixed external resistance of 100kOMEGA, the battery works at a constant voltage of 2.8V for 90hr, the ratio of the discharge capacity to a theoretical capacity is 94% and the energy density is 352whr per 1kg of polymer. The life of the battery is thus lenghtened.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、単位重量あたりの電池容量に優れた固体電解
質電池に関し、更に詳しくは、消費電流及び消費電力の
低い電卓、電子ウォッチ等の電子機器の内蔵電源として
利用した場合に、電池寿命の著しい増大がはかれる固体
電解質電池に関する。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a solid electrolyte battery that has excellent battery capacity per unit weight, and more specifically to a solid electrolyte battery that has low current consumption and power consumption, such as calculators and electronic watches. The present invention relates to a solid electrolyte battery that significantly increases battery life when used as a built-in power source for electronic equipment.

(ロ)従来の技術 近年、耐漏液性に優れた電池を開発することを目的にい
くつかの固体電解質電池が提案されている。しかしなが
ら、固体電解質電池は、正極活物質中に沃素又は臭素な
どを保持し、この沃素又は臭素を負極活物質と反応させ
ることを主機構としているため、得られる電池容量は、
沃素又は臭素の分子量が高いことが必然的に制約となっ
て、自から限界があり、ある値以上の電池容量を得るこ
とは事実上不可能であった。
(b) Prior Art In recent years, several solid electrolyte batteries have been proposed with the aim of developing batteries with excellent leakage resistance. However, the main mechanism of solid electrolyte batteries is to retain iodine or bromine in the positive electrode active material and to react this iodine or bromine with the negative electrode active material, so the resulting battery capacity is
The high molecular weight of iodine or bromine inevitably poses a limitation, and it has been virtually impossible to obtain a battery capacity above a certain value.

(ハ)本発明の解決しようとする問題点本発明者らは、
前記したように、従来の固体電解質電池がその電池容量
に自から限界のあった点に鑑み、単位重量当りの電池容
量が極めて高い固体電解質電池を開発すべく鋭意研究を
進めた結果、塩型電導性高分子を用いることによって、
かかる目的を達成し得ることを見出し、本発明をするに
至った。
(c) Problems to be solved by the present invention The inventors
As mentioned above, in view of the fact that conventional solid electrolyte batteries had their own limitations in battery capacity, we conducted intensive research to develop a solid electrolyte battery with an extremely high battery capacity per unit weight, and as a result, we developed a salt-type battery. By using conductive polymers,
The inventors have discovered that such objects can be achieved and have come up with the present invention.

(ニ)問題点を解決するための手段及びその作肚 即ち、本発明に従えば、塩型電導性高分子を正極活物質
として成る前記問題を解決した、固体電解質電池が提供
される。
(d) Means for solving the problems and their construction, that is, according to the present invention, there is provided a solid electrolyte battery that solves the above problems and is composed of a salt-type conductive polymer as a positive electrode active material.

本発明に係る固体電解質電池において正極活物質として
使用される塩型電導性高分子としては、電導性を有する
主鎖に塩形成性基質が側鎖として結合している高分子化
合物又は導電性を有する主鎖中に塩形成性基質が含まれ
ている高分子化合物の塩(ここで、主鎖中に、炭素数6
以下のアルキル基、炭素数6以下のアルコキシ基、アミ
ノ基、ハロゲン基、フェニル基が一つ以上置換されてい
ても何等支障はない)をあげることができる、かかる電
導性高分子の具体例としては、ポリカルバゾール、ポリ
フェノチアジン、ポリキノリン、ポリアニリン、ポリピ
リジン、ポリピラジン、ポリピリジニウム、ポリアセチ
レンカルボン酸ジメチルアミン、ポリ−α−ピロリン、
ポリ−α−ピロレニン、ポリベンゾ−α−ビロリン等の
塩酸塩、フッ酸塩、塩素イオン塩、フッ素イオン塩、ク
ロロアルキル塩又はフルオロアルキル塩を挙げることが
できる。かかる導電性高分子の代表例としては、ポリカ
ルバゾールの塩酸塩、ポリフェノチアジンのフッ酸塩、
ポリキノリンのクロロメチル塩、ポリアニリンのフッ酸
塩、ポリピリジンの塩酸塩、ポリピリジニウムの塩素イ
オン塩、ポリ−α−ピロリン塩酸塩、ポリ−α−ピロレ
ニンのフン酸塩、ポリベンゾ−α−ピロリンの塩酸塩を
挙げることができる。
The salt-type conductive polymer used as the positive electrode active material in the solid electrolyte battery according to the present invention is a polymer compound in which a salt-forming substrate is bonded as a side chain to a main chain having conductivity, or a conductive A salt of a polymer compound containing a salt-forming substrate in its main chain (herein, a salt having 6 carbon atoms in its main chain)
As specific examples of such conductive polymers, the following alkyl groups, alkoxy groups having 6 or less carbon atoms, amino groups, halogen groups, and phenyl groups may be substituted with one or more without any problem. is polycarbazole, polyphenothiazine, polyquinoline, polyaniline, polypyridine, polypyrazine, polypyridinium, polyacetylenecarboxylic acid dimethylamine, poly-α-pyrroline,
Examples include hydrochloride, hydrofluoride, chloride ion salt, fluoride ion salt, chloroalkyl salt, and fluoroalkyl salt of poly-α-pyrorenine, polybenzo-α-viroline, and the like. Typical examples of such conductive polymers include polycarbazole hydrochloride, polyphenothiazine fluoride,
Chloromethyl salt of polyquinoline, fluoride of polyaniline, hydrochloride of polypyridine, chloride ion salt of polypyridinium, poly-α-pyrroline hydrochloride, fluoride of poly-α-pyrorenine, hydrochloride of polybenzo-α-pyrroline can be mentioned.

本発明に従った固体電解質電池の構成は正極活物質とし
て前記塩型電導性高分子を使用することを除けば、従来
公知のものと同じであるが、負極活物質としてアルカリ
金属(例えば、リチウム、ナトリウム)もしくはアルカ
リ土類金属(例えば、カルシウム)又はアルカリ金属の
合金(例えば、リチウムアルミニウム合金)を使用する
のが、電池電圧が高いので好ましい。
The structure of the solid electrolyte battery according to the present invention is the same as that of conventionally known ones except that the salt-type conductive polymer is used as the positive electrode active material, but an alkali metal (for example, lithium) is used as the negative electrode active material. , sodium) or alkaline earth metals (eg, calcium) or alloys of alkali metals (eg, lithium aluminum alloys) are preferred because of their high cell voltages.

本発明に従った固体電解質電池は上記正極活物質及び負
極活物質を用いて常法に従って製作することができる。
The solid electrolyte battery according to the present invention can be manufactured using the above-mentioned positive electrode active material and negative electrode active material according to a conventional method.

即ち、例えば負極集電体と外装を兼ねた5US304製
のコイン状受器に負極リチウム箔を入れ、塩型電導性高
分子を所定殿入れる。
That is, for example, a negative electrode lithium foil is placed in a coin-shaped receiver made of 5US304 that serves as a negative electrode current collector and an exterior, and a salt-type conductive polymer is placed in a predetermined amount.

正極集電体としてカーボン紙を使用し負極集電体である
コイン状受器との分離を確実にするためエポキシ樹脂で
モールドした後、5US304製のコイン状の上蓋をか
ぶせ、かしめることによって目的の固体電解質電池製作
することができる。
Carbon paper is used as the positive electrode current collector, and after molding with epoxy resin to ensure separation from the coin-shaped receiver that is the negative electrode current collector, a coin-shaped top cover made of 5US304 is covered and caulked. solid electrolyte batteries can be manufactured.

(ホ)実施例 以下実施例及び比較例に従って本発明を更に詳しく説明
するが、本発明の範囲を以下の例に限定するものでない
ことはいうまでもない。
(e) Examples The present invention will be explained in more detail according to the following Examples and Comparative Examples, but it goes without saying that the scope of the present invention is not limited to the following Examples.

実施例1 塩型電導性高分子であるポリカルバゾールの塩酸塩2O
n+g (0,1mmol)を正極活物質として使用し
た。
Example 1 Hydrochloride 2O of polycarbazole, a salt-type conductive polymer
n+g (0.1 mmol) was used as positive electrode active material.

負極活物質としてのリチウム箔と集電体としてのカーボ
ン紙の間に、上記ポリカルバゾールの塩酸塩を正極活物
質として外枠でかしめることによりはさみ、固体電解質
電池を形成した。この固体電解質電池は外部抵抗100
にΩで定抵抗放電した時、2.8■の平坦な電池電圧で
90時間作動した。
The polycarbazole hydrochloride was sandwiched between lithium foil as a negative electrode active material and carbon paper as a current collector by caulking it with an outer frame as a positive electrode active material to form a solid electrolyte battery. This solid electrolyte battery has an external resistance of 100
It operated for 90 hours at a flat battery voltage of 2.8 Ω when discharged at a constant resistance of Ω.

理論容量に対する放出容量は94%であり、エネルギー
密度は352 whr/ kgポリマーであった。
The discharge capacity relative to the theoretical capacity was 94% and the energy density was 352 whr/kg polymer.

実施例2〜6 実施例1で使用したポリカルバゾールの塩酸塩の代りに
、第1表で示した塩型電導性高分子を使用した以外は実
施例1と同様にして固体電解質電池を製作した。
Examples 2 to 6 Solid electrolyte batteries were produced in the same manner as in Example 1, except that the salt-type conductive polymer shown in Table 1 was used instead of the polycarbazole hydrochloride used in Example 1. .

得られた固体電解質電池の性能は第1表に示す通りであ
った。
The performance of the obtained solid electrolyte battery was as shown in Table 1.

比較例1 実施例1で使用したポリカルバゾールの塩酸塩の代りに
、塩型電導性高分子では無い、ポリビニルピリジンの沃
素錯体20mg (沃素含有量71%)を使用して固体
電解質電池を製作した。
Comparative Example 1 Instead of the polycarbazole hydrochloride used in Example 1, a solid electrolyte battery was manufactured using 20 mg of an iodine complex of polyvinylpyridine (71% iodine content), which is not a salt-type conductive polymer. .

得られた固体電解質電池の性能は第1表に示す通りであ
った。
The performance of the obtained solid electrolyte battery was as shown in Table 1.

(以下余白) 実施例7 実施例1でリチウム濱の代りに、カルシウム塊から切り
出した箔を使用した以外は実施例1と同様に固体電解質
電池を作った。外部抵抗100にΩで定抵抗放電したと
ころ2.6vの平坦な電池電圧で95時間作動した。理
論容量に対する放出容量は99%であり、エネルギー密
度は345 iv)+r/ kgポリマーであった。
(The following is a blank space) Example 7 A solid electrolyte battery was produced in the same manner as in Example 1 except that a foil cut from a calcium block was used instead of the lithium strip. When a constant resistance discharge was performed at an external resistance of 100Ω, the battery operated for 95 hours at a flat battery voltage of 2.6V. The discharge capacity relative to the theoretical capacity was 99% and the energy density was 345 iv) + r/kg polymer.

Claims (1)

【特許請求の範囲】 1)塩型電導性高分子を正極活物質として成ることを特
徴とする固体電解質電池。 2)塩型電導性高分子を正極活物質とし、アルカリ金属
もしくはアルカリ土類金属又はアルカリ金属の合金を負
極活物質として成ることを特徴とする固体電解質電池。
[Claims] 1) A solid electrolyte battery comprising a salt-type conductive polymer as a positive electrode active material. 2) A solid electrolyte battery comprising a salt-type conductive polymer as a positive electrode active material and an alkali metal, an alkaline earth metal, or an alkali metal alloy as a negative electrode active material.
JP60059410A 1985-03-26 1985-03-26 Solid electrolyte battery Pending JPS61220271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059410A JPS61220271A (en) 1985-03-26 1985-03-26 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059410A JPS61220271A (en) 1985-03-26 1985-03-26 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS61220271A true JPS61220271A (en) 1986-09-30

Family

ID=13112476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059410A Pending JPS61220271A (en) 1985-03-26 1985-03-26 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS61220271A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346291A (en) * 2013-07-10 2013-10-09 肖辉 Carbon nano-paper-based in-situ loaded ferroferric oxide lithium-ion battery negative electrode and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141875A (en) * 1981-02-25 1982-09-02 Yuasa Battery Co Ltd Solid electrolyte battery
JPS581973A (en) * 1981-03-04 1983-01-07 Yuasa Battery Co Ltd Solid electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141875A (en) * 1981-02-25 1982-09-02 Yuasa Battery Co Ltd Solid electrolyte battery
JPS581973A (en) * 1981-03-04 1983-01-07 Yuasa Battery Co Ltd Solid electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346291A (en) * 2013-07-10 2013-10-09 肖辉 Carbon nano-paper-based in-situ loaded ferroferric oxide lithium-ion battery negative electrode and preparation method thereof

Similar Documents

Publication Publication Date Title
US3791867A (en) Rechargable nonaqueous battery
CA1177886A (en) Laminar electrical cells and batteries
EP0762527A1 (en) Rechargeable lithium battery having a specific electrolyte
JPH0460304B2 (en)
US4060676A (en) Metal periodate organic electrolyte cells
AU593980B2 (en) Electrolyte for lithium-sulfur dioxide electrochemical cell
CA2405746A1 (en) Electrochemical element with ceramic particles in the electrolyte layer
JPH09270273A (en) Polysulfide, carbon electrode material, and association method
JPS61220271A (en) Solid electrolyte battery
US4128702A (en) Cell with N,N-bis (substituted phenyl)-4,4- dipyridinium salt depolarizer
US3904432A (en) Metal permanganate and metal periodate organic electrolyte cells
WO1995030248A2 (en) Water activated chemical current source
EP0049140B1 (en) A cathode for a solid state cell and a solid state cell including such a cathode
US10211464B2 (en) Electrochemical cell aluminum-manganese
US5030528A (en) Mixed solvent electrolytes for ambient temperature secondary lithium cells
JPH05258753A (en) Nonaqueous electrolyte lithium battery
US3708344A (en) Organic depolarizer
Fey Li/SO2 rechargeable batteries
Hishinuma et al. Zinc—iodine secondary cell using 6-nylon or poly (ether) based electrode. Basic research for industrial use of the secondary cell
JPS58137975A (en) Nonaqueous electrolyte secondary battery
US20060019169A1 (en) Separators for electochemical devices having an Ionically conductive solid compound therein
JP2993272B2 (en) Reversible electrode
JPH01296572A (en) Battery
JPS60200461A (en) Solid alkaline metal-halogen battery
JPS62160671A (en) Nonaqueous solvent secondary battery