JPS6122018A - Enhancer for cancer immunotherapy - Google Patents

Enhancer for cancer immunotherapy

Info

Publication number
JPS6122018A
JPS6122018A JP59141081A JP14108184A JPS6122018A JP S6122018 A JPS6122018 A JP S6122018A JP 59141081 A JP59141081 A JP 59141081A JP 14108184 A JP14108184 A JP 14108184A JP S6122018 A JPS6122018 A JP S6122018A
Authority
JP
Japan
Prior art keywords
aspirin
cancer immunotherapy
salt
cancer
acetylsalicylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59141081A
Other languages
Japanese (ja)
Other versions
JPH047725B2 (en
Inventor
Tsunetaka Nakajima
中島 常隆
Masahiro Watanabe
正弘 渡辺
Masayuki Nishida
正行 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Tanabe Pharma Corp
Original Assignee
Green Cross Corp Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Green Cross Corp Japan filed Critical Green Cross Corp Japan
Priority to JP59141081A priority Critical patent/JPS6122018A/en
Publication of JPS6122018A publication Critical patent/JPS6122018A/en
Publication of JPH047725B2 publication Critical patent/JPH047725B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE:An ehnancer for cancer immunotherapy, containing at least one acetylsalicylic acid and a salt thereof as an active constituent, capable of exhibiting remarkable antitumor activity in use with an immunity activator, and useful for cancer immunotherapy without particular gstrointestinal disorder by intravenous injection. CONSTITUTION:An enhancer for cancer immunotherapy containing at least one selected from acetylsalicylic acid and a salt thereof as an active constituent. Attention is paid to the inhibitory action of the acetylsalicylic acid on synthesis of prostaglandin taking part in the immune response, and the use thereof in cancer immunotherapy is found to enhance the antitumor effect as compared with the simple administration. In particular, aspirin-DL-lysine salt can be intravenously injected, and the administration in a high dose is possible without causing gastrointestinal disorder such as a drug for internal use. Therefore, the compound is prefered.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、アセチルサリチル酸(アスピリン)又はその
塩を有効成分とする癌免疫療法増強剤、特に静注用癌免
疫療法増強剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a cancer immunotherapy enhancer containing acetylsalicylic acid (aspirin) or a salt thereof as an active ingredient, particularly to an intravenous cancer immunotherapy enhancer.

〔発明の背景〕[Background of the invention]

一般に、自己由来の腫瘍に対して、宿主はしばしばそれ
を認識し、免疫学的に拒絶排除する能力をもっているに
もかかわらず、腫瘍は異物として排除されることなく発
育する。即ち、腫瘍がその固有の抗原性を有していなが
ら、宿主の免疫応答を引き起こしにくいことはよく知ら
れたことである。例えば、腫瘍細胞は増殖のためにリン
パ球マクロファージあるいは生体の炎症反応を弱める物
質を分泌していることが知られており、そのため腫瘍組
織内のマクロファージの活性は弱(、細胞障害性も低い
ことがあげられる。この原因の一つとしてプロスタグラ
ンジンの免疫系への関与が考えられる。なぜならプロス
タグランジンは免疫抑制的に作用するため、腫瘍もしく
は腫瘍の周囲に浸潤してくるマクロファージがプロスタ
グランジンを分泌することにより、腫瘍が宿主の免疫応
答の攻撃からのがれることは充分に考えられることであ
る。
In general, although the host often recognizes autologous tumors and has the ability to immunologically reject and eliminate them, the tumors grow without being eliminated as foreign substances. That is, it is well known that tumors have inherent antigenicity but are difficult to provoke host immune responses. For example, it is known that tumor cells secrete substances that weaken the inflammatory response of lymphocytes and macrophages in order to proliferate, and therefore the activity of macrophages within tumor tissues is weak (and their cytotoxicity is also low). One of the reasons for this is thought to be the involvement of prostaglandins in the immune system.Because prostaglandins act in an immunosuppressive manner, macrophages infiltrating the tumor or around the tumor may be affected by prostaglandins. It is quite conceivable that tumors may escape attack by the host's immune response by secreting Gins.

一方、プロスタグランジンは細胞性免疫、液性免疫に対
して抑制的に働くことが知られている。
On the other hand, prostaglandins are known to have a suppressive effect on cell-mediated immunity and humoral immunity.

プロスタグランジンの作用としては、例えばマイトジェ
ンによるリンパ球幼若化反応抑制(Smith。
The action of prostaglandins includes, for example, suppression of mitogen-induced lymphocyte blastogenesis (Smith).

J、 H,: J、 C1tn、Invest、、 5
0.442 (1971) )、リンフ才力イン産生抑
制(Rappaport+ R,S、 : J。
J, H,: J, C1tn, Invest,, 5
0.442 (1971)), inhibition of lymphoid production (Rappaport+ R,S,: J.

Exp、 Med、、 155,943 (1982)
 ) 、細胞障性T細胞の抑制、抗体依存性細胞障害(
APCC)の抑制、NK細胞の誘導及び活性の抑制(B
runda+ M、J、 ;J、 Immunol、、
 124.2Ei82 (1980) )などがあげら
れる。
Exp, Med, 155,943 (1982)
), suppression of cytotoxic T cells, antibody-dependent cytotoxicity (
APCC), NK cell induction and activity inhibition (B
runda+ M, J, ;J, Immunol,,
124.2Ei82 (1980)).

一般にプロスタグランジンは全身への作用はほとんどな
く、生合成されたその場で作用する局所伝達物質である
と理解されている。それゆえ、免疫系においてもプロス
タグランジンは免疫応答がなされる場で作られ、そこの
免疫担当細胞に作用することにより免疫応答に関与して
いるものと推測される。そこで、免疫応答の場において
、負の方向に働きかけるプロスタグランジンを、免疫賦
活剤等のBRMを用いる癌免疫療法(一般に、BRMは
宿主の免疫機能を正の方向に向がわせる)を実施する場
合、腫瘍局所において減少させることができれば、癌免
疫療法の効果は強化されることになるものと予想される
Generally, prostaglandins have little effect on the whole body and are understood to be local transmitters that are biosynthesized and act on the spot. Therefore, it is assumed that prostaglandins are produced in the immune system as well, and are involved in the immune response by acting on the immunocompetent cells there. Therefore, in the field of immune response, cancer immunotherapy using BRM such as an immunostimulant (generally, BRM directs the host's immune function in a positive direction) is implemented to suppress prostaglandins that act in a negative direction. In this case, if it can be reduced locally in the tumor, it is expected that the effect of cancer immunotherapy will be enhanced.

さて、前述したように、担癌生体が自己の癌に対し、免
疫学的に応答していることは動物実験のみならず人の癌
についても証明されている。にもかかわらず、癌細胞が
なぜこのような生体の免疫学的監視によって異物として
認識され、拒絶、排除されないかといった問題に対し、
Currieは抗原と宿主の問題を取り上げている(C
urrie、 G、A、 :Immunologica
l escape of tumors、 Curre
nt top−ics in immunology 
5eries  2. Cancer and the
immune response、 T and A 
Con5table Ltd、、 Fid−ingbr
agh、 1974. p、55. )。
Now, as mentioned above, it has been proven not only in animal experiments but also in human cancer that cancer-bearing organisms respond immunologically to their own cancer. However, in response to the question of why cancer cells are not recognized as foreign substances and rejected and eliminated by such immunological surveillance of the living body,
Currie addresses the issue of antigens and hosts (C
urrie, G.A.: Immunologica
l escape of tomorrows, Curre
nt top-ics in immunology
5eries 2. Cancer and the
immune response, T and A
Con5table Ltd,, Fid-ingbr
agh, 1974. p.55. ).

即ち、腫瘍細胞の側からみれば、抗原性の差異による免
疫学的選択、少数個の腫瘍細胞が生体の免疫応答をくぐ
りぬ・ける現象、腫瘍抗原のmodu−1ationや
sheddingなどが考えられ、一方宿主の免疫応答
性の側からみれば、免疫学的寛容、免疫学的不応答など
である。これら諸要因がからみあって免疫学監視から腫
瘍細胞の回避、つまりは腫瘍の増殖をもたらすものと言
える。また、癌患者の免疫能が検索されるにつれ、その
細胞性および液性免疫能が特異的にも、非特異的にも低
下しており、さらに腫瘍の進行増殖により著明に助長さ
れることが明らかになってきている。このような担癌患
者の免疫能の抑制に腫瘍抗原によって誘導される抑制性
(サプレッサー)免疫細胞(マクロファージ、T細胞な
ど)が大きく関与していると理解されており、これらサ
プレッサー免疫細胞より分泌されるプロスフグラジンが
少なからず関与していることが明らかになっている。そ
こで、効果的な癌免疫療法を期待する場合、担癌患者の
サプレッサー免疫細胞の機能を選択的に阻止することが
できれば、即ち負の免疫調節の解除、もしくは減弱した
場における癌免疫療法は、それが依然存在する場におけ
る癌免疫療法より治療効果が増強されることが予想され
る。
That is, from the perspective of tumor cells, immunological selection based on antigenic differences, the phenomenon in which a small number of tumor cells evade the body's immune response, modulation and shedding of tumor antigens, etc. can be considered. On the other hand, from the perspective of host immune responsiveness, there are immunological tolerance, immunological non-responsiveness, etc. It can be said that the combination of these factors leads to the evasion of tumor cells from immunological surveillance, which in turn leads to tumor growth. In addition, as the immune capacity of cancer patients is investigated, it has been found that their cellular and humoral immune capacities are decreased both specifically and non-specifically, and that this is significantly exacerbated by the progressive growth of tumors. is becoming clear. It is understood that suppressor immune cells (macrophages, T cells, etc.) induced by tumor antigens are largely involved in suppressing the immune function of cancer-bearing patients. It has become clear that prosufugladin, which is used in the treatment of cancer, is involved to a large extent. Therefore, when expecting effective cancer immunotherapy, if it is possible to selectively block the function of suppressor immune cells in cancer-bearing patients, that is, cancer immunotherapy in a place where negative immune regulation is canceled or weakened, would be possible. It is expected that the therapeutic effect will be enhanced compared to cancer immunotherapy where it is still present.

本発明においては、プロスタグランジン合成抑制剤の一
つであるアスピリンに注目し、とりわけアスピリンの内
服薬で知られているような胃腸粘膜障害を惹起すること
なく長期連用に耐え、しかも効率的な癌組織や癌周辺組
織内への薬剤の移行を可能ならしめる静脈内投与可能な
アスピリンを後記実施例で示されるような形態に調製し
、試験例で示されるように免疫賦活剤を用いる癌免疫療
法に併用したところ、各々単独投与群に比べ、腫瘍の増
殖を阻止する高い有効性が見い出され、本製剤を人体に
使用した場合における有用性が示唆された。
In the present invention, we focused on aspirin, which is one of the prostaglandin synthesis inhibitors, and in particular, we focused on aspirin, which can withstand long-term use without causing gastrointestinal mucosal damage as is known from oral aspirin drugs, and is effective in cancer treatment. Cancer immunotherapy using intravenously administrable aspirin, which allows the drug to migrate into tissues and tissues surrounding cancer, prepared in the form shown in the examples below, and an immunostimulant as shown in the test examples. When these drugs were used in combination, they were found to be more effective in inhibiting tumor growth than when each was administered alone, suggesting the usefulness of this preparation when used in humans.

本発明にて使用されるアスピリンおよびその塩としては
、塩基性物質、とりわけ塩基性アミノ酸と塩を形成しも
のが好ましい。特に好ましくは、アスピリン−DL−リ
ジン塩である。かかる塩は、水溶性となり、静注可能で
あり、内服薬で知られているような胃腸障害を惹起する
ことなく、大量投与が可能である。
Aspirin and its salts used in the present invention are preferably those that form a salt with a basic substance, especially a basic amino acid. Particularly preferred is aspirin-DL-lysine salt. Such salts are water-soluble, can be injected intravenously, and can be administered in large amounts without causing the gastrointestinal disorders known from oral medications.

本発明における癌免疫療法に使用される免疫賦活剤とし
ては、BCGワクチン(ツベルクリン)、コリネバクテ
リウム パルバム(Corynebacteriump
 a r V u II s百日咳ワクチン、ムラニル
ジペプタイド(MDP ) 、ビシバニ −ル、クレス
チン等を挙げることができる。
The immunostimulants used in cancer immunotherapy in the present invention include BCG vaccine (tuberculin), Corynebacterium parvum
Examples include AR Vu IIs pertussis vaccine, muranyl dipeptide (MDP), bisibanil, and krestin.

本発明癌免疫療法増強剤は、アスピリン、その塩を適当
かつ常用の製薬上許容されるキャリア配合することによ
って調製されれ、経口的または非経口的に投与される。
The cancer immunotherapy enhancer of the present invention is prepared by incorporating aspirin or a salt thereof with a suitable and commonly used pharmaceutically acceptable carrier, and is administered orally or parenterally.

剤層としては、注射剤(特に、静脈注射剤)、錠剤、散
剤、カプセル剤などが例示される。
Examples of the drug layer include injections (especially intravenous injections), tablets, powders, capsules, and the like.

アスピリン、その塩は、たとえば静注の場合、通常20
〜125mg/kgを免疫賦活剤と共に投与されるが、
免疫賦活剤の種類、年齢、体重、処置すべき症状の重度
など′によってその投与量は変わり得る。
Aspirin, its salts, for example, when administered intravenously, usually
~125 mg/kg is administered with immunostimulants, but
The dosage may vary depending on the type of immunostimulant, age, body weight, severity of the symptoms to be treated, etc.

試験例1 動物として、6〜7週令、体重17〜19g。Test example 1 Animals are 6-7 weeks old and weigh 17-19 g.

雄性C57’BL/6マウスを用い、同系マウスで側腹
部継代を行っているLee+is肺腫瘍(3LL)を腹
部皮下へ移植した(5X105)、腫瘍移植の4日前お
よび直後にBCG (乾燥ワクチン)の5mg(5X1
07)、あるいはC,parvum (加熱死菌、5X
10B)をマウス腹腔内へ投与した。
Using male C57'BL/6 mice, Lee+is lung tumors (3LL), which had been passaged in the flank in syngeneic mice, were subcutaneously implanted into the abdomen (5X105), and BCG (dried vaccine) was administered 4 days before and immediately after tumor implantation. 5mg (5X1
07), or C. parvum (heat-killed bacteria, 5X
10B) was intraperitoneally administered to mice.

また、実施例1に示した静注アスピリン製剤を注射用蒸
留水で溶解し、アセチルサリチル酸に換算してマウスあ
たり3.6mg (180mg/kg)および0、36
mg (18n+g/kg)を1日1回静脈内投与し、
またアスピリンは1%コーンスターチゲルに懸濁し、マ
ウスあたり3.6mg (180mg/kg)および0
、36mg (18mg/kg)を1日1回経日没与し
た。
In addition, the intravenous aspirin preparation shown in Example 1 was dissolved in distilled water for injection, and the amount was 3.6 mg (180 mg/kg) per mouse in terms of acetylsalicylic acid.
mg (18n+g/kg) administered intravenously once a day,
Aspirin was also suspended in 1% cornstarch gel at a dose of 3.6 mg (180 mg/kg) per mouse and 0.
, 36 mg (18 mg/kg) was given once a day in the sun.

そして、経時的にマウスの腫瘍の大きさおよび体重を測
定した。
The tumor size and body weight of the mice were then measured over time.

第1表は3LL移植20日後の結果を示したものである
Table 1 shows the results 20 days after 3LL transplantation.

これからも明らかなように、3LLに対しアスピリン及
びその塩が抗腫瘍作用を有していることが明らかになっ
たが、BCG又はC,parvumといった免疫賦活剤
と併用した場合、これら各々単独投与群に比べ、抗腫瘍
効果が著明に増強されることが明らかとなった。更に、
静注アスピリン塩投与群と経口アスピリン投与群とを比
較した場合、抗腫瘍効果においては大差は認められなか
ったが、20日間の連続投与においては、経口アスピリ
ンの副作用の一つとしての胃腸粘膜障害がその原因の一
つとして考えられる解剖所見が得られた。
As is clear from this, it has become clear that aspirin and its salts have antitumor effects on 3LL, but when used in combination with immunostimulants such as BCG or C, parvum, each of these alone administered groups It was revealed that the antitumor effect was markedly enhanced compared to the previous study. Furthermore,
When comparing the intravenous aspirin salt administration group and the oral aspirin administration group, no major difference was observed in antitumor effects; however, after continuous administration for 20 days, gastrointestinal mucosal damage, which is one of the side effects of oral aspirin, was observed. Anatomical findings were obtained that suggest that this may be one of the causes.

一方、静注アスピリン塩投与群においては、軽微な体重
増加抑制側向が認められただけであった。
On the other hand, in the intravenous aspirin salt administration group, only a slight lateral inhibition of weight gain was observed.

第1表 一群4匹として3LL腫瘍移植後治療 を開始し、26日目の結果を示す。Table 1 Treatment after 3LL tumor transplantation with 4 animals per group The results on the 26th day are shown.

第1表の説明 ao;生理食塩液(対照) ali静注アスピリン−DL−リジン塩  3.6 m
gc2 ;                 0.3
6mga3;経口アスピリン         3・5
 mgaq i                 0
.36m’gba;BCG             
 5  mgbl ;BCG (5,mg) +静注アスピリンーDL−リジン塩 3.6 mgb2
 B BCG (5mg) +静注アスピリンーDL−リジン塩 0.36mgb3
 ; BCG (5mg)十経ロアスピリン 3.6 
mgbs i        +         0
.36mgc O; C,parvum (5x 10
8)c 1 ; C,parvum (5x 108)
+静注アスピリンーDL−リジン塩 3.6 mgc 
2 ; C,parvum (5x 108)+静注ア
スピリンーDL−リジン塩 0.36mgc 3. ;
 C,parvum (5x 108)+経口アスピリ
ン       3.6 mgC4i C,parvu
mτS x 108)+経口アスピリン       
Q、36mg静注アスピリン塩、経口アスピリンともに
、マウス−匹あたりに投与したアセチルサリチル酸に換
算した値を示している。また、癌免疫ワクチンとしての
B C0% C,parvumはマウス−匹あたりに投
与した量を示している。
Explanation of Table 1 ao; Physiological saline (control) ali Intravenous aspirin-DL-lysine salt 3.6 m
gc2; 0.3
6mga3; Oral aspirin 3.5
mgaq i 0
.. 36m'gba; BCG
5 mgbl; BCG (5, mg) + intravenous aspirin-DL-lysine salt 3.6 mgb2
B BCG (5mg) + intravenous aspirin-DL-lysine salt 0.36mgb3
; BCG (5mg) 10-day loaspirin 3.6
mgbs i + 0
.. 36mgc O; C, parvum (5x 10
8) c 1 ; C, parvum (5x 108)
+ Intravenous aspirin - DL-lysine salt 3.6 mgc
2; C, parvum (5x 108) + intravenous aspirin-DL-lysine salt 0.36 mgc 3. ;
C,parvum (5x 108) + oral aspirin 3.6 mgC4i C,parvu
mτS x 108) + oral aspirin
Q. For both 36 mg intravenous aspirin salt and oral aspirin, the values are shown in terms of acetylsalicylic acid administered per mouse. Moreover, B C0% C, parvum as a cancer immunovaccine indicates the amount administered per mouse.

試験例2 動物は7〜9週令、体重18〜20g、雄性C3H/H
eNマウスを用い、同系マウスで腹腔内にて継代を行っ
ているX5563骨髄腫細胞を腹部皮下へ移植した(5
X10S)。腫瘍移植の4日前および直後にBCG(乾
燥ワクチン)の5mg(5X107>、あるいはCop
arvum (加熱死菌、5X10”)をマウス腹腔内
へ投与した。また、実施例1で示した製剤を注射用蒸留
水で溶解し、アセチルサリチル酸に換算してマウスあた
り3.6mg (180ll1g/ kg)および0.
36+ng (18mg/kg)を1日1回静脈内投与
し、アスピリンは1%コーンスターチゲルに懸濁し、マ
ウスあたり3.6o+g(180mg/ kg)および
0.36mg (18mg/kg)を1日1回経日没与
した。そして、経時的にマウスの腫瘍の大きさおよび体
重を測定した。
Test Example 2 Animals were 7-9 weeks old, weighed 18-20 g, and were male C3H/H.
Using eN mice, X5563 myeloma cells that had been passaged intraperitoneally in syngeneic mice were transplanted subcutaneously into the abdomen (5
X10S). 5 mg (5X107) of BCG (dried vaccine) or Cop 4 days before and immediately after tumor implantation.
arvum (heat-killed bacteria, 5 x 10") was intraperitoneally administered to mice. In addition, the formulation shown in Example 1 was dissolved in distilled water for injection to give a solution of 3.6 mg per mouse (180 ml 1 g/kg) in terms of acetylsalicylic acid. ) and 0.
36+ng (18mg/kg) intravenously once daily, aspirin suspended in 1% cornstarch gel, 3.6o+g (180mg/kg) and 0.36mg (18mg/kg) once daily per mouse. The sun set. The tumor size and body weight of the mice were then measured over time.

第2表は腫瘍移植30日・後の結果を示したものである
。結果からも明らかなように、X5563骨髄腫細胞に
対し、静注アスピリン塩と免疫賦活剤であるBCGある
いはC,parvumと併用した場合、各々単独投与群
に比べ、腫瘍増殖抑制作用が増強されることが解った。
Table 2 shows the results 30 days after tumor implantation. As is clear from the results, when intravenous aspirin salt and immunostimulant BCG or C,parvum are used in combination against X5563 myeloma cells, the tumor growth suppressive effect is enhanced compared to the group administered with each alone. I understand that.

また、静注アスピリン塩と経口アスピリン投与群を比較
した場合、抗腫瘍作用増強効果においては、2投与群間
に大差を認めなかったが、30日間の連続投与において
は、経口投与マウスでは体重増加抑制傾向が認められた
が、静注投与群においては、そのような傾向は認められ
なかった。
In addition, when comparing the intravenous aspirin salt and oral aspirin administration groups, there was no significant difference in the antitumor effect enhancement effect between the two administration groups, but after continuous administration for 30 days, the oral administration mice increased body weight. A suppressive tendency was observed, but no such tendency was observed in the intravenous administration group.

(以下余白) 第2表 一群4匹としてX5563骨髄腫移植後治療を開始し、
30日口の結果を示す。
(Margin below) Table 2 Treatment started after X5563 myeloma transplant with 4 animals per group.
The results after 30 days are shown.

第2表の説明 ao;生理食塩液(対照) al ;静注アスピリン         3.6 m
ga2i    〃0.36mg a3;経口アスピリン         3.6 vg
a4;                 0.36n
+gbo;BCG              5  
mgbl; BCG (5mg)十静注アスピリン 3
.6 mgb2i                 
0.36mg+ b3 HBCG (5mg)十経ロアスピリン 3.6
 mgb4 i                 0
.36mg+ CD ; C,parvum (5x 108)c 1
 ; C,parvum (5x 108)+静注アス
ピリン       3.6 mgC2; C,par
vum (5x 108)+静注アスピリン     
  0.36mgc 3 ; C,parvum (5
x 108)+経口アスピリン      3.6 m
gC4i Coparvum (5x 10日)+経口
アスピリン       0.36mg6、補正の内容 (1)願書の発明の名称を別紙のとおりに訂正する。。
Explanation of Table 2 ao; Physiological saline (control) al; Intravenous aspirin 3.6 m
ga2i 〃0.36mg a3; Oral aspirin 3.6 vg
a4; 0.36n
+gbo;BCG 5
mgbl; BCG (5mg) intravenous aspirin 3
.. 6 mgb2i
0.36mg+ b3 HBCG (5mg) 10-day loaspirin 3.6
mgb4 i 0
.. 36mg+ CD; C, parvum (5x 108)c 1
; C, parvum (5x 108) + IV aspirin 3.6 mg C2; C, par
vum (5x 108) + IV aspirin
0.36mgc3; C, parvum (5
x 108) + oral aspirin 3.6 m
gC4i Coparvum (5x 10 days) + oral aspirin 0.36mg6, Contents of amendment (1) The title of the invention in the application is corrected as shown in the attached sheet. .

(2)明細書第2頁、第2〜3行の[・リンパ球マクロ
ファージ」を「リンパ球やマクロファージの活性」に訂
正する。
(2) On page 2 of the specification, lines 2-3, [-lymphocytes and macrophages] should be corrected to "activities of lymphocytes and macrophages."

(3)同書第6頁、第16行の「ピシハニ −ル」を「
ピシハニール」に訂正する。
(3) “Pishhanil” on page 6, line 16 of the same book is changed to “
Corrected to "Pishihanil".

(4)同書第6頁、最終行の「調製されれ」を「調製さ
れ」に訂正する。
(4) On page 6 of the same book, in the last line, "prepared" is corrected to "prepared".

Claims (2)

【特許請求の範囲】[Claims] (1)アセチルサリチル酸およびその塩から選ばれる少
なくとも一種を有効成分とする癌免疫療法増強剤。
(1) A cancer immunotherapy enhancer containing at least one selected from acetylsalicylic acid and its salts as an active ingredient.
(2)静脈内投与製剤の形態にある特許請求の範囲第(
1)項記載の癌免疫療法増強剤。
(2) Claim No. (2) in the form of an intravenous preparation
1) Cancer immunotherapy enhancer according to item 1).
JP59141081A 1984-07-06 1984-07-06 Enhancer for cancer immunotherapy Granted JPS6122018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141081A JPS6122018A (en) 1984-07-06 1984-07-06 Enhancer for cancer immunotherapy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141081A JPS6122018A (en) 1984-07-06 1984-07-06 Enhancer for cancer immunotherapy

Publications (2)

Publication Number Publication Date
JPS6122018A true JPS6122018A (en) 1986-01-30
JPH047725B2 JPH047725B2 (en) 1992-02-12

Family

ID=15283765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141081A Granted JPS6122018A (en) 1984-07-06 1984-07-06 Enhancer for cancer immunotherapy

Country Status (1)

Country Link
JP (1) JPS6122018A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0914778A1 (en) * 1997-08-15 1999-05-12 Consolidated Nutrition, L.C. Oral administration of bacteria at a concentration which produces cell-mediated immunity and weight in certain animals
WO2003028757A1 (en) * 2001-09-28 2003-04-10 Haruo Sugiyama Novel method of inducing antigen-specific t cells
WO2003028758A1 (en) * 2001-09-28 2003-04-10 Haruo Sugiyama Novel method of inducing antigen-specific t cells
US7030212B1 (en) 1998-07-31 2006-04-18 Haruo Sugiyama Tumor antigen based on products of the tumor suppressor gene WT1
US8105604B2 (en) 2001-03-22 2012-01-31 International Institute Of Cancer Immunology, Inc. WT1 modified peptide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0914778A1 (en) * 1997-08-15 1999-05-12 Consolidated Nutrition, L.C. Oral administration of bacteria at a concentration which produces cell-mediated immunity and weight in certain animals
US7030212B1 (en) 1998-07-31 2006-04-18 Haruo Sugiyama Tumor antigen based on products of the tumor suppressor gene WT1
US7390871B2 (en) 1998-07-31 2008-06-24 International Institute Of Cancer Immunology, Inc. Tumor antigen based on products of the tumor suppressor gene WT1
US7517950B2 (en) 1998-07-31 2009-04-14 International Institute Of Cancer Immunology, Inc. Tumor antigen based on products of the tumor suppressor gene WT1
US7608685B1 (en) 1998-07-31 2009-10-27 International Institute Of Cancer Immunology, Inc. Tumor antigen based on products of the tumor suppressor gene WT1
US8105604B2 (en) 2001-03-22 2012-01-31 International Institute Of Cancer Immunology, Inc. WT1 modified peptide
WO2003028757A1 (en) * 2001-09-28 2003-04-10 Haruo Sugiyama Novel method of inducing antigen-specific t cells
WO2003028758A1 (en) * 2001-09-28 2003-04-10 Haruo Sugiyama Novel method of inducing antigen-specific t cells
US8735357B2 (en) 2001-09-28 2014-05-27 International Institute Of Cancer Immunology, Inc. Method of inducing antigen-specific T cells

Also Published As

Publication number Publication date
JPH047725B2 (en) 1992-02-12

Similar Documents

Publication Publication Date Title
EP0726772B1 (en) A method for sensitization of cancer cells for killer cell mediated lysis
JP3140021B2 (en) Pharmaceutical composition containing TNF inhibitor
Hadden Immunodeficiency and cancer: prospects for correction
Haba et al. Selective suppression of t‐cell activity in tumor‐bearing mice and its improvement by lentinan, a potent anti‐tumor polysaccharide
EP0116693B1 (en) An immunopotentiator having spermidine or its pharmacologically acceptable salt as active ingredient
Schultz et al. Augmentation of specific macrophage-mediated cytotoxicity: correlation with agents which enhance antitumor resistance
WO2023134202A1 (en) Use of capsular polysaccharide a from bacteroides fragilis and immune checkpoint inhibitors in preparation of drugs for treating digestive system tumors
Rios et al. Comparative effect of Mycobacterium bovis-and neuraminidase-treated tumor cells on the growth of established methylcholanthrene fibrosarcomas in syngeneic mice
JPS6122018A (en) Enhancer for cancer immunotherapy
Youn et al. Inhibition of C3H/He mouse mammary tumor growth by combined treatment with cyclophosphamide and polyadenylic-polyuridylic acid
Larionov Some biological and clinical results from the investigations of the chloroethylamines as anti-tumour drugs
EP0081882A1 (en) Medicine having transplant rejection and/or immunological inflammation inhibiting activities, as well as a method for inhibiting transplant rejection and/or immunological inflammation
Fisher et al. Further observations concerning effects of antilymphocyte serum on tumor growth: with special reference to allogeneic inhibition
JPH045005B2 (en)
EP0352609B1 (en) Use of adenosine derivatives in preparing pharmaceutical compositions possessing immunostimulant activity
Drews Immunostimulation: clinical and experimental perspectives
OKURA et al. Effect of forphenicinol on the production of Ia-positive macrophages in mice with or without L1210 leukemia and on the growth of L1210 in immunized mice
Pomeroy et al. Phenotypes, proliferative responses, and suppressor function of lung lymphocytes during Toxoplasma gondii pneumonia in mice
Sparks et al. Effect of Bacillus Calmette-Guerin on immunosuppression from cyclophosphamide, methotrexate, and 5-fluorouracil
WO2000032212A1 (en) Lak activity potentiator orginating in shiitake mushroom hyphae extract and lak activity potentiating preparations containing the same
Brenner Interleukin 2 and the treatment of leukemia and lymphoma
JPWO2001070251A1 (en) Anticancer composition
EP0058857A2 (en) Hepatosin, process for preparing it and therapeutical composition containing hepatosin
Golub et al. Stimulation of lymphocytes in vitro to reactions against cultured Burkitt’s lymphoma cells
Hinev et al. BLADDER CANCER IMMUNOTHERAPY