JPS6122003B2 - - Google Patents

Info

Publication number
JPS6122003B2
JPS6122003B2 JP6608083A JP6608083A JPS6122003B2 JP S6122003 B2 JPS6122003 B2 JP S6122003B2 JP 6608083 A JP6608083 A JP 6608083A JP 6608083 A JP6608083 A JP 6608083A JP S6122003 B2 JPS6122003 B2 JP S6122003B2
Authority
JP
Japan
Prior art keywords
temperature
furnace
brick
silica
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6608083A
Other languages
Japanese (ja)
Other versions
JPS59193208A (en
Inventor
Takehiro Horio
Zensaku Ayuba
Katsumi Nakamoto
Kosuke Okuda
Shoji Hanabusa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6608083A priority Critical patent/JPS59193208A/en
Publication of JPS59193208A publication Critical patent/JPS59193208A/en
Publication of JPS6122003B2 publication Critical patent/JPS6122003B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B9/00Stoves for heating the blast in blast furnaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【発明の詳細な説明】 本発明は、改修等で高炉を一時休止している期
間において熱風炉の保温方法に関し、その目的は
熱風炉を該期間中保温するにあたり、炉内珪石煉
瓦の損傷を防止しながら最小限の燃料で熱風炉を
保温する方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for keeping a hot blast furnace warm during a period when the blast furnace is temporarily suspended for repairs, etc., and its purpose is to prevent damage to the silica bricks inside the blast furnace in order to keep the hot blast furnace warm during the period. This is a method to keep a hot air stove warm with the minimum amount of fuel while preventing

周知のごとく、たとえば高炉用熱風炉は燃焼、
即ち蓄熱操作と送風、即ち放熱操作とを繰返しな
がら、複数の熱風炉を順次切替えて、高炉に高温
空気を連続的に供給するものである。
As is well known, for example, hot blast furnaces for blast furnaces burn
That is, while repeating heat storage operation and air blowing, that is, heat dissipation operation, a plurality of hot blast furnaces are sequentially switched to continuously supply high temperature air to the blast furnace.

而して改修等で高炉を一時休止する場合には、
該高炉への高温空気の供給は不要となるので、一
般に熱風炉も休止することになるが、熱風炉が設
備的に健全であれば当然高炉の再稼動後に熱風炉
を該高炉の用に供すべく再使用することになる。
そこで熱風炉を再使用にそなえて休止するに際し
て、熱風炉を煉瓦損傷が起きない温度レベルに該
期間中保温するか、または冷却中に煉瓦損傷が起
きないよう留意しながら常温まで冷却させて完全
に休止するかの二者択一となる。
Therefore, if the blast furnace is temporarily suspended due to repairs, etc.,
Since it is no longer necessary to supply high-temperature air to the blast furnace, the hot blast furnace will generally be shut down, but if the hot blast furnace is in good condition, it will naturally be used for the blast furnace after the blast furnace is restarted. It will be reused as much as possible.
Therefore, when shutting down a hot-blast stove in preparation for reuse, it is necessary to keep the hot-blast stove at a temperature level that will not cause damage to the bricks during the period, or to completely cool it down to room temperature while being careful not to damage the bricks during cooling. There are two options: suspend the program.

この場合、熱風炉の要部を構成する珪石煉瓦は
第1図のイ〜ハに示すごとく575℃未満の温度範
囲で、その鉱物成分の変態を内在する各鉱物成分
はイ石英、ロクリストバライト、ハトリジマイト
の変態膨張曲線を示す。熱風炉の降温または昇温
時にこれらの変態点を通過するときに珪石煉瓦は
急激な収縮または膨張をし、このため575℃を境
に上下する降温及び昇温をくり返せば煉瓦の亀裂
損傷が避けられないものとされていた。このこと
から、従来は石英の変態点である575℃以上の、
例えば600℃程度以上の比較的高温度で熱風炉を
保温するのが通常であつた。
In this case, the silica bricks constituting the main part of the hot stove are heated in a temperature range of less than 575°C as shown in Figure 1, A to C, and the mineral components that undergo transformation are quartz, locristobalite, The transformation expansion curve of Hatridymite is shown. Silica bricks undergo rapid contraction or expansion when passing through these transformation points when the temperature is lowered or raised in a hot air stove, and therefore, if the temperature is repeatedly lowered and raised above and below 575°C, cracks and damage to the bricks may occur. It was considered inevitable. For this reason, conventionally, quartz has a temperature of 575℃ or higher, which is the transformation point of quartz.
For example, it was common to keep hot air stoves at a relatively high temperature of about 600°C or higher.

たとえば特公昭50−29803号公報にあるよう
に、熱風炉をあたかも操業しているような状態即
ち燃焼と送風の両操作を交互に行う熱風炉の保温
方法が行われていた。
For example, as described in Japanese Patent Publication No. 50-29803, a method of keeping a hot-blast stove warm has been used in which the hot-blast stove is operated as if it were operating, that is, the combustion and blowing operations are alternately performed.

しかしながらこの従来の方法では 熱風炉内部蓄熱室の珪石煉瓦の下端温度を
600℃程度以上に維持するために蓄熱室上部は
相当高温たとえば1100℃程度に維持しなければ
ならないので鉄皮からの熱損失が大きい。
However, with this conventional method, the temperature at the bottom of the silica brick in the heat storage chamber inside the hot air stove cannot be adjusted.
In order to maintain the temperature above about 600°C, the upper part of the heat storage chamber must be maintained at a fairly high temperature, for example, about 1100°C, so there is a large amount of heat loss from the iron shell.

放熱操作時には1000℃程度の高温空気を大気
に放散することになる。
During heat dissipation operations, high-temperature air of approximately 1000℃ is dissipated into the atmosphere.

その結果熱風炉の保温のためのエネルギー及び
費用は莫大なものとなり、長期間この方法で熱風
炉を保温維持することは省エネルギーの見地から
大きな障害となる。
As a result, the energy and cost required to keep the hot air stove warm is enormous, and keeping the hot air stove warm for a long period of time in this manner poses a major obstacle from the standpoint of energy conservation.

本発明は、これらの従来法の欠点を除去した熱
風炉の保温方法であり、炉内の珪石煉瓦やチエツ
カー受金物等を損傷させることなく少量の燃料ガ
スで熱風炉の保温を可能ならしめたものである。
The present invention is a heat insulation method for a hot air stove that eliminates the drawbacks of these conventional methods, and makes it possible to keep a hot air stove warm with a small amount of fuel gas without damaging the silica bricks, checker metal fittings, etc. inside the furnace. It is something.

本発明の要旨は (1) 高炉休止中の熱風炉の保温に際して、熱風
炉々壁珪石煉瓦の温度の最も低い部分の温度を
300℃以上575℃未満の範囲内で、且つ該部分の
煉瓦の炉内側面の最高と最低の温度差を400℃
以下に保持することを特徴とする熱風炉の保温
方法にある。
The gist of the present invention is (1) when maintaining the temperature of the hot blast furnace while the blast furnace is inactive, the temperature of the lowest temperature part of the silica stone brick wall of the hot blast furnace is
Within the range of 300℃ or more and less than 575℃, and the temperature difference between the highest and lowest temperature of the inner side of the brick in the area is 400℃
There is a method of keeping a hot air stove warm, which is characterized by keeping the heat as follows.

以下本発明を詳しく説明する。第2図は外燃式
熱風炉の全体構造を示す正面断面図、第3図は内
燃式熱風炉の全体構造を示す正面断面図、第4図
は内燃式熱風炉の水平断面図である。
The present invention will be explained in detail below. FIG. 2 is a front sectional view showing the overall structure of an external combustion hot air stove, FIG. 3 is a front sectional view showing the overall structure of an internal combustion hot air stove, and FIG. 4 is a horizontal sectional view of the internal combustion hot air stove.

それぞれの図において1は蓄熱室、2は燃焼
室、3は混冷室、4はドーム連絡管、5は熱風連
絡管、6はバーナー、7は煙道弁、8は送風弁、
9は熱風弁、10はガス弁、11はエア弁、12
は冷風弁、13は鉄皮、14はチエツカー受金
物、15は蓄熱室ドーム、16は燃焼室ドーム、
17は内燃式熱風炉のドーム、18は壁部であ
る。
In each figure, 1 is a heat storage chamber, 2 is a combustion chamber, 3 is a mixed cooling chamber, 4 is a dome connecting pipe, 5 is a hot air connecting pipe, 6 is a burner, 7 is a flue valve, 8 is a blower valve,
9 is a hot air valve, 10 is a gas valve, 11 is an air valve, 12
1 is a cold air valve, 13 is an iron shell, 14 is a checker bracket, 15 is a heat storage chamber dome, 16 is a combustion chamber dome,
17 is a dome of the internal combustion type hot air stove, and 18 is a wall portion.

このような構成の熱風炉において鉄皮内張りお
よび蓄熱室内チエツカー煉瓦に珪石煉瓦を使用し
ている範囲は斜線を施した範囲である。熱風炉壁
部に例をとれば高炉への送風を休止し、熱風炉を
保温するには、通常操業状態から降温して定めら
れた範囲に低温に維持するのであるが、降温過程
でも定められた範囲に低温に維持する過程でも、
保温時には熱風炉外部への熱放散があるので、間
欠的あるいは連続的に熱風炉に熱を供給する。ま
た熱放散は熱供給条件や外気条件によつて変動す
る。従つて、煉瓦内の温度も常に変動している。
煉瓦の炉外側面は一般に断熱煉瓦を通して熱放散
するが、炉内側面の受熱状態は直接燃焼等の熱供
給条件によつて変動を受けるので、一般には、炉
内側面の温度の変化量及び変化速度の方が、炉外
側面のそれらより大きい。
The shaded area is the area in which silica bricks are used for the iron shell lining and the checker bricks in the heat storage chamber in a hot air stove with such a configuration. For example, in the case of the wall of a hot-blast furnace, in order to stop air blowing to the blast furnace and keep the hot-blast furnace warm, the temperature must be lowered from the normal operating state and maintained at a low temperature within a predetermined range. Even in the process of maintaining the temperature within a certain range,
During heat retention, heat is dissipated to the outside of the hot air stove, so heat is supplied to the hot air stove intermittently or continuously. Furthermore, heat dissipation varies depending on heat supply conditions and outside air conditions. Therefore, the temperature inside the brick is also constantly changing.
Heat is generally dissipated from the outer side of the furnace through the insulating bricks, but the heat receiving state of the inner side of the furnace varies depending on the heat supply conditions such as direct combustion. The velocities are greater than those on the outer surface of the furnace.

これを第5図及び第6図に示す。第5図は、第
2,3,4図の壁部18を拡大したものであり、
19は珪石煉瓦、20は断熱煉瓦、21は炉内、
22は外気、13は鉄皮を示す。この珪石煉瓦1
9の温度変化状態を第6図に示す。第6図で23
は珪石煉瓦19の炉内側面24は炉外側面25は
平均温度分布で炉内側面温度T1、炉外側面温度
T1′である。この状態から熱を放散量より多く供
給した場合、26の熱供給後の温度分布に示すよ
うに炉内側面が昇温する。やがて熱供給を中断す
るか減らすと27の放熱後の温度分布になる。
T2,T3はそれぞれの炉内側面の温度で、T2′,
T3′はそれぞれの炉外側面の温度である。熱風炉
保温時には多少なりとも上記のような温度変化が
くり返される。その変化量は一般に炉内側面が大
きい。このために該珪石煉瓦の厚さ方向、即ち温
度勾配のある方向で壁部では一般に半径方向に引
張応力が発生する。この応力は、温度変化速度と
温度変化量即ち珪石煉瓦の炉内側面の温度差とに
よつて大きく影響される。この引張応力の発生傾
向について本発明者等は種々と調査・解析し、外
燃式熱風炉の場合、第7図に例示したような結果
を得た。第7図の横軸は炉壁珪石煉瓦の炉外側面
温度、縦軸は珪石煉瓦に発生する引張応力であ
る。
This is shown in FIGS. 5 and 6. FIG. 5 is an enlarged view of the wall portion 18 in FIGS. 2, 3, and 4.
19 is a silica brick, 20 is an insulation brick, 21 is inside the furnace,
22 represents the outside air, and 13 represents the iron skin. This silica brick 1
FIG. 6 shows the temperature change state of No. 9. 23 in Figure 6
The inner furnace side surface 24 and the furnace outer surface surface 25 of the silica brick 19 are average temperature distributions, with the furnace inner surface temperature T 1 and the furnace outer surface temperature T 1 .
T 1 ′. If more heat is supplied than the amount of heat dissipated from this state, the temperature of the inner side surface of the furnace increases as shown in the temperature distribution after heat supply in 26. When the heat supply is eventually interrupted or reduced, the temperature distribution after heat dissipation becomes 27.
T 2 and T 3 are the temperature of the inner side of each furnace, and T 2 ′,
T 3 ′ is the temperature of each furnace outer surface. When keeping warm in a hot air stove, the temperature changes described above are repeated to some extent. The amount of change is generally large on the inner side of the furnace. For this reason, tensile stress is generally generated in the wall portion in the radial direction in the thickness direction of the silica brick, that is, in the direction where there is a temperature gradient. This stress is greatly influenced by the rate of temperature change and the amount of temperature change, that is, the temperature difference on the inner side surface of the silica brick. The present inventors conducted various investigations and analyzes regarding the tendency of this tensile stress to occur, and obtained results as illustrated in FIG. 7 in the case of an external combustion type hot blast stove. In FIG. 7, the horizontal axis represents the temperature of the outer surface of the furnace wall silica brick, and the vertical axis represents the tensile stress generated in the silica brick.

第5図中、曲線イ,ロは珪石煉瓦の炉内側面の
温度差ΔTが50℃のときの引張応力の発生傾向を
示すもので、曲線イは珪石煉瓦の炉内側面の温度
変化速度vが25℃/hrのとき、曲線ロは100℃/
hrのときを示す。曲線ハ,ニは温度差ΔTが200
℃のときの引張応力の発生傾向を示すもので曲線
ハは温度変化速度vが25℃/hr、曲線ニは50℃/
hrのときを示す。曲線ホ,ヘは温度差ΔTが400
℃のときの引張応力の発生傾向を示すもので、曲
線ホは温度変化速度vが25℃/hr、曲線ヘは50
℃/hrのときを示す。
In Figure 5, curves A and B show the tendency of tensile stress to occur when the temperature difference ΔT on the inner side of the silica brick is 50°C, and curve A shows the rate of temperature change v on the inner side of the silica brick. When is 25℃/hr, curve B is 100℃/hr
Indicates when hr. Curves C and D have a temperature difference ΔT of 200
It shows the tendency of tensile stress to occur when the temperature is 25°C/hr.
Indicates when hr. Curves E and F have a temperature difference ΔT of 400
It shows the tendency of tensile stress to occur when the temperature is 25°C/hr for curve H and 50°C/hr for curve H.
Shown in °C/hr.

これらの曲線は個々の熱風炉で煉瓦単体の大き
さその他の煉瓦の構成が若干異なるので、若干異
なつた値となるが、内燃式熱風炉でもほぼ同一で
ある。曲線トは煉瓦の物性から定まる煉瓦自体の
許容引張強さ平均値を示し、曲線チは安全率を考
慮して定めた発生引張応力の管理限界値を示す。
These curves have slightly different values because the size of each brick and other brick configurations are slightly different for each hot air stove, but they are almost the same for internal combustion hot air stoves. Curve G indicates the average allowable tensile strength of the brick itself determined from the physical properties of the brick, and curve H indicates the control limit value of the generated tensile stress determined by taking into account the safety factor.

第7図から明らかなように煉瓦自体の温度が低
いほど、また煉瓦自体の温度変化速度が大きいほ
ど、また珪石煉瓦の炉内側面の温度差ΔTが大き
いほど、炉壁珪石煉瓦に発生する引張応力は大き
な値となる。当然のことながら煉瓦に発生する引
張応力が許容引張応力を超えると煉瓦は厚み方向
(半径方向に略直角に)で引き裂かれ複数個に分
断される。
As is clear from Fig. 7, the lower the temperature of the brick itself, the faster the rate of temperature change of the brick itself, and the larger the temperature difference ΔT between the inner sides of the silica brick, the more the tensile force generated in the silica brick of the furnace wall. The stress becomes a large value. Naturally, when the tensile stress generated in the brick exceeds the allowable tensile stress, the brick is torn in the thickness direction (approximately perpendicular to the radial direction) and divided into multiple pieces.

そして破片が脱落し煉瓦積みを損傷することと
なる。しかし第7図から理解されるように、熱風
炉の保温時の炉壁珪石煉瓦の炉外側面の温度(第
7図横軸の温度)に対して該珪石煉瓦の温度変化
速度と炉内側面の温度差がある条件内にあれば煉
瓦に発生する引張応力は許容引張応力値あるいは
管理限界値以内にあるので煉瓦損傷は起らない。
たとえば575℃程度以上の温度範囲では実作業上
採用し得るすべての条件内において発生引張応力
は管理限界値以内にあり、煉瓦損傷の危険性はな
い。また300℃程度未満の温度範囲ではかなり制
限された条件内でないと煉瓦損傷の危険性があ
り、300℃から575℃程度の温度範囲では各条件の
組合せでたとえば炉内側面の温度差ΔTが400℃
以内であると煉瓦損傷を避けることが可能であ
る。
Debris then falls off and damages the brickwork. However, as can be understood from Fig. 7, the rate of temperature change of the silica brick and the inner surface of the silica brick with respect to the temperature of the outer side of the furnace wall silica brick (temperature on the horizontal axis in Fig. 7) during heat retention of the hot stove. If the temperature difference is within a certain condition, the tensile stress generated in the brick is within the allowable tensile stress value or control limit value, so no damage to the brick occurs.
For example, in a temperature range of about 575°C or higher, the generated tensile stress is within control limits under all conditions that can be used in actual work, and there is no risk of damage to the bricks. In addition, in the temperature range of less than 300℃, there is a risk of brick damage unless it is within very limited conditions, and in the temperature range of 300℃ to 575℃, for example, the temperature difference ΔT on the inner side of the furnace can be 400℃ ℃
It is possible to avoid damage to the bricks within this range.

以上壁部分の例の説明であるが、ドーム部分の
内張り珪石煉瓦も、言うまでもなく、基本的に壁
部煉瓦と同一の設計に基づくものであり、上記壁
煉瓦と同一の保温方法を適用してよい。
The above is an explanation of an example of a wall part, but needless to say, the silica bricks lining the dome part are basically based on the same design as the wall bricks, and the same heat insulation method as for the wall bricks is applied. good.

また、珪石製チエツカー煉瓦にあつては前記炉
壁煉瓦における温度勾配をもつ方向は、上下方向
であることは上下方向に燃焼ガスや送風が通過す
ることから明らかである。従つて、チエツカー煉
瓦においては煉瓦の温度の最も低い部分の温度を
300℃から575℃程度の範囲内に保ち、煉瓦毎の上
下方向の温度差を一定範囲内に保持することが肝
要である。該一定範囲は壁煉瓦の場合と同様に
400℃以下に定めればよい。
Further, in the case of silica checker bricks, it is clear that the direction in which the temperature gradient in the furnace wall bricks is vertical is the vertical direction, since combustion gas and air flow pass in the vertical direction. Therefore, for checker bricks, the temperature of the lowest temperature part of the brick is
It is important to maintain the temperature between 300℃ and 575℃, and to maintain the temperature difference between the top and bottom of each brick within a certain range. This certain range is the same as in the case of wall bricks.
It is sufficient to set the temperature to 400℃ or less.

本発明は以上のような知見にもとずいてなされ
たものであり、本発明法によれば熱風炉を長期間
にわたつて保温する際の熱風炉内珪石煉瓦の保温
温度を、従来法による場合より低い575℃未満か
ら300℃程度の温度範囲となすことができ、保温
のための燃料使用量を大巾に削減することができ
る。また保温温度が低いので保温期間中チエツカ
ー受金物などの冷却操作も必要なく、作業的にも
極めて簡単になるという効果がある。
The present invention has been made based on the above knowledge, and according to the method of the present invention, when keeping a hot blast stove warm for a long period of time, the heat retention temperature of the silica bricks in the hot blast stove is lower than that of the conventional method. The temperature range can be from less than 575 degrees Celsius to about 300 degrees Celsius, which is lower than in the conventional case, and the amount of fuel used for heat insulation can be significantly reduced. In addition, since the heat retention temperature is low, there is no need to cool the checker holder etc. during the heat retention period, making the work extremely simple.

なお300℃程度の低い温度まで降下したときに
炉壁やドーム部に珪石煉瓦が収縮して炉円周方向
に引張応力が発生することにより、煉瓦積みのモ
ルタル目地強度が煉瓦強度より低いために、モル
タル目地が先行して引き割れることがある。しか
しこの場合の目地の引き割れの巾は収縮率からみ
て全周合計の0.05〜0.1%程度で、実績的には円
周で10ケ所程度の引き割れとなるので1ケ所の割
れ巾は極めて小さいものであり、この程度の引き
割れは、熱風炉を再稼動のため昇温する際に閉鎖
し、煉瓦積みの機能は実用上なんら損なわれるこ
とはない。
Furthermore, when the temperature drops to as low as 300℃, the silica bricks contract in the furnace walls and dome, creating tensile stress in the furnace circumferential direction, which causes the strength of the mortar joints in the brickwork to be lower than the strength of the bricks. , the mortar joints may crack first. However, in this case, the width of the crack at the joint is about 0.05 to 0.1% of the total circumference in terms of shrinkage rate, and in actual practice, there are about 10 cracks around the circumference, so the width of the crack at one place is extremely small. However, cracks of this magnitude can be closed when the hot stove is heated up for restarting, and the functionality of the brickwork will not be impaired in any way.

次に本発明の実施例について述べる。 Next, embodiments of the present invention will be described.

高炉の送風を休止した直後の熱風炉は炉内温度
もまた高く、ドーム部で約1100℃、蓄熱室珪石煉
瓦積み部下端近傍の炉壁煉瓦炉外側面でも約800
℃の温度がある。降温の初期段階で炉内の温度が
高い間は蓄熱室上部の熱が下方に伝わつてチエツ
カー受金物等の温度が上昇するので、この間たと
えば、特公昭51−23252号公報にあるように冷却
用空気によりチエツカー受金物等を冷却する必要
がある。時間が経過し蓄熱量が減少して蓄熱室珪
石煉瓦積み部下端近傍の炉壁煉瓦炉外側や珪石チ
エツカー煉瓦下端面の温度が最低300℃実際には
炉周方向での測温点は1ないし3個所であること
及び測温誤差を考慮して測温値で350から400℃に
したときに降温を終了し、以後はこのときの温度
レベルで、所定の温度範囲以内に保温する。前記
降温中に炉壁煉瓦炉外側面の温度が550℃付近に
達したころにはチエツカー受金物等の温度は強制
冷却をしなくても350℃程度以下になり、金物の
座屈限界温度外である。以後の保温期間におい
て、350℃から400℃の煉瓦温度を維持するために
は少量の燃料ガスの燃焼のみを維続すれば良い。
本発明方法を実際の熱風炉の保温に適用した結
果、従来法の基準では加熱面積80000m2級の熱風
炉1基あたりCOG約600Nm2/hrの燃料を必要と
するのに対して、本発明法では約200Nm2/hrで
すみ燃料使用量は約1/3に低減できた。
Immediately after the blowing of the blast furnace is stopped, the temperature inside the hot blast furnace is high, about 1100℃ at the dome, and about 800℃ at the outer side of the furnace wall near the lower end of the silica brickwork in the heat storage chamber.
There is a temperature of ℃. While the temperature inside the furnace is high at the initial stage of cooling, the heat in the upper part of the heat storage chamber is transmitted downward and the temperature of the checker holder etc. increases. It is necessary to cool the checker holder etc. with air. As time passes, the amount of heat storage decreases, and the temperature on the outside of the furnace wall brick furnace near the lower end of the silica brickwork in the heat storage room and on the lower end surface of the silica checker brick reaches a minimum of 300°C.Actually, there are only 1 or 2 temperature measurement points in the furnace circumferential direction. Taking into consideration the fact that there are three locations and the temperature measurement error, the temperature reduction ends when the measured temperature reaches 350 to 400 degrees Celsius, and from then on, the temperature is kept within the predetermined temperature range at this temperature level. By the time the temperature of the outside surface of the furnace wall and brick furnace reached around 550℃ during the temperature drop, the temperature of the checker bracket, etc., would drop to about 350℃ or less even without forced cooling, and the metal would be outside the buckling limit temperature. It is. During the subsequent heat retention period, in order to maintain the brick temperature between 350°C and 400°C, it is only necessary to continue burning a small amount of fuel gas.
As a result of applying the method of the present invention to the heat insulation of an actual hot air stove, it was found that the standard of the conventional method required fuel of about 600 Nm 2 /hr of COG per class 2 hot blast stove with a heating area of 80,000 m. With this method, the fuel consumption was reduced to approximately 1/3 at approximately 200Nm 2 /hr.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は珪石の変態膨張曲線を示す図、第2図
は外燃式熱風炉の全体構造を示す正面断面図、第
3図は内燃式熱風炉の全体構造を示す正面断面
図、第4図は内燃式熱風炉の構造を示す水平断面
図、第5図は壁部18の拡大図、第6図は壁部珪
石煉瓦温度分布図、第7図は炉壁珪石煉瓦の温度
条件と応力の関係を示す図である。 1……蓄熱室、2……燃焼室、3……混冷室、
4……ドーム連絡管、5……熱風連絡管、6……
バーナー、7……煙道弁、8……送風弁、9……
熱風弁、10……ガス弁、11……エア弁、12
……冷風弁、13……鉄皮、14……チエツカー
受金物、15……蓄熱室ドーム、16……燃焼室
ドーム、17……内燃式熱風炉のドーム、18…
…壁部、19……珪石煉瓦、20……断熱煉瓦、
21……炉内、22……外気、23……珪石煉瓦
の炉内側面、24……珪石煉瓦の炉外側面、25
……平均温度分布、26……熱供給後の温度分
布。
Figure 1 is a diagram showing the transformation expansion curve of silica stone, Figure 2 is a front sectional view showing the overall structure of an external combustion hot blast stove, Figure 3 is a front sectional view showing the overall structure of an internal combustion hot blast stove, and Figure 4 is a front sectional view showing the overall structure of an internal combustion hot blast stove. The figure is a horizontal sectional view showing the structure of an internal combustion hot air stove, Figure 5 is an enlarged view of the wall 18, Figure 6 is a temperature distribution diagram of the wall silica brick, and Figure 7 is the temperature conditions and stress of the furnace wall silica brick. FIG. 1... Heat storage chamber, 2... Combustion chamber, 3... Mixed cooling chamber,
4...Dome connecting pipe, 5...Hot air connecting pipe, 6...
Burner, 7... Flue valve, 8... Ventilation valve, 9...
Hot air valve, 10... Gas valve, 11... Air valve, 12
...Cold air valve, 13...Iron shell, 14...Checker bracket, 15...Regenerator dome, 16...Combustion chamber dome, 17...Dome of internal combustion hot air stove, 18...
…Wall portion, 19…silica brick, 20…insulation brick,
21...Furnace inside, 22...Outside air, 23...Furnace inner side of silica brick, 24...Furnace outer side of silica brick, 25
... Average temperature distribution, 26 ... Temperature distribution after heat supply.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉休止中の熱風炉の保温に際して、熱風
炉々壁珪石煉瓦の温度の最も低い部分の温度を
300℃以上575℃未満の範囲内で、且つ該部分の煉
瓦の炉内側面の最高と最低の温度差を400℃以下
に保持することを特徴とする熱風炉の保温方法。
1. When keeping the hot blast furnace warm while the blast furnace is idle, the temperature of the lowest temperature part of the silica stone bricks on the walls of the hot blast furnace should be
A method for keeping a hot air stove warm, characterized by maintaining the temperature difference between the highest and lowest temperature of the inner side of the brick in the range of 300°C or higher and lower than 575°C to 400°C or lower.
JP6608083A 1983-04-14 1983-04-14 Heat insulating method of hot blast stove Granted JPS59193208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6608083A JPS59193208A (en) 1983-04-14 1983-04-14 Heat insulating method of hot blast stove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6608083A JPS59193208A (en) 1983-04-14 1983-04-14 Heat insulating method of hot blast stove

Publications (2)

Publication Number Publication Date
JPS59193208A JPS59193208A (en) 1984-11-01
JPS6122003B2 true JPS6122003B2 (en) 1986-05-29

Family

ID=13305512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6608083A Granted JPS59193208A (en) 1983-04-14 1983-04-14 Heat insulating method of hot blast stove

Country Status (1)

Country Link
JP (1) JPS59193208A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100529109C (en) * 2004-02-23 2009-08-19 技术资源有限公司 Direct smelting plant and process
CN111996324A (en) * 2020-09-30 2020-11-27 宝钢湛江钢铁有限公司 High-temperature stable hot blast stove

Also Published As

Publication number Publication date
JPS59193208A (en) 1984-11-01

Similar Documents

Publication Publication Date Title
US4542888A (en) Adding to silica refractory structures
JPS6122003B2 (en)
FI97477B (en) Method and apparatus for hot repairing coke oven flues
JP3478009B2 (en) Heating furnace with regenerative burner
CN114350877B (en) Hot-blast stove baking method
CN111088411B (en) Air convection heat preservation method for blast furnace hot blast stove
KR100447892B1 (en) The exchangeable connecting pipe of hot stove having cooling ability
JPS5940882B2 (en) hot air stove
CN1049691C (en) Life-prolonging method for ceramic combustor of hot-blast stove
JP2000104107A (en) Method for changing brick in burner part of combustion chamber in hot blast stove and its device
JPS6114204B2 (en)
JP2802447B2 (en) How to keep hot stove warm
JPS6020994A (en) Drying and temperature rise in start of operation of dry coke quencher
US1104448A (en) Regenerative open-hearth furnace.
US500387A (en) Blast-furnace
CN204779642U (en) Hot -air furnace
JPS6226442Y2 (en)
JPS6160783A (en) Repair of flue bottom of coke oven
JPS63286505A (en) Heat reserving method for hot blast stove
JPS5877513A (en) Heat insulating method for hot stove
JPH044366B2 (en)
JPH09202908A (en) Method for holding heat in hot stove
JPS59145716A (en) Cooling method of hot stove
JPH03202412A (en) Operation of hot air stove for blast furnace
JPS5887233A (en) Continuous annealing furnace