JPS61219711A - Separation and concentration of carbon monoxide - Google Patents

Separation and concentration of carbon monoxide

Info

Publication number
JPS61219711A
JPS61219711A JP60062258A JP6225885A JPS61219711A JP S61219711 A JPS61219711 A JP S61219711A JP 60062258 A JP60062258 A JP 60062258A JP 6225885 A JP6225885 A JP 6225885A JP S61219711 A JPS61219711 A JP S61219711A
Authority
JP
Japan
Prior art keywords
solvent
stripper
liquid
organic solvent
reboiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062258A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuo
松尾 宣雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60062258A priority Critical patent/JPS61219711A/en
Publication of JPS61219711A publication Critical patent/JPS61219711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To enable sufficient liberation of CO from absorbing liquid contg. CO at relatively low temp. by using liquid absorbent comprising copper chloride, an oxyacid deriv. of P, and a solvent having higher b.p. than water, and separating CO from the org. solvent in a condenser. CONSTITUTION:Second liquid solvent 20 is fed in the liquid state to a reboiler 11 where it is evaporated to be transformed easily to vapor by being heated at a temp. necessary for liberation of CO and above the b.p. of water, and the vapor is fed to the bottom of a stripper 3. The bottom temp. of the stripper is held at a specified temp. by the second liquid solvent, and the second liquid solvent rises through the stripper 3 in the vapor state and CO contained in large amt. in the liquid flowing down the stripper is liberated. The vapor of the second liquid solvent discharged from the stripper 3 is cooled and liquefied in a condenser 9. After separating CO 8, the second liquid solvent is fed to the reboiler 3 again through a line 10'. Since in this case, the second liquid solvent is used circulatorily through a reboiler 11, stripper 3, condenser 9 and the reboiler 11, there is almost no change in the compsn. of the first solvent in the liquid absorbent at the inlet and outlet of the stripper 3. Thus, a stable condition is maintained.

Description

【発明の詳細な説明】 (発明の利用分野) 本発明は一酸化炭素の分離濃縮方法に関し、特に塩化銅
とリンの酸素酸誘導体と有機溶媒とからなる一酸化炭素
(以下、COと記す)吸収液を用いてCOを分離濃縮す
る際の放散塔におけるストリッピングの改良に関するも
のである。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a method for separating and concentrating carbon monoxide, and in particular to a method for separating and concentrating carbon monoxide (hereinafter referred to as CO) made of copper chloride, an oxyacid derivative of phosphorus, and an organic solvent. This invention relates to an improvement in stripping in a stripping tower when separating and concentrating CO using an absorption liquid.

(発明の背景) 吸収法によるco分離プロセスは、銅−塩化アルミ法お
よび本出願人が開発した塩化銅とリンの酸素酸誘導体と
有機溶媒とからなる吸収液を用いる方法(特開昭57−
19013号)等があるが、吸収液が異なるのみで、プ
ロセスの基本構成は第4図に示すようにほぼ同一である
。すなわち、COを含有する原料ガス2は、吸収塔lで
吸収液と接触し、Coガスを吸収分離後、オフガス19
として廃棄される。COを吸収した吸収液は、導管4を
通り、熱交換器5で加熱され、導管6を経て放散塔(以
下、ストリッパと称することがある)3に導入され、こ
こでCoガスを放出する。このC6ガス中には、吸収液
蒸気およびミストが含有されるので、導管7から凝縮s
9に導入して冷却し、Coガス8と吸収液10とを分離
回収している。ストリッピング3には、リボイラ11が
付設されている。リボイラ11は、ストリッパ3の塔頂
から流下した液13をスチーム14等の加熱媒体で加熱
し、加熱された吸収液および吸収液成分の蒸気をストリ
ンパ3の底部に戻し、Coガスの分離のために熱源にす
るとともに、Coガスのキャリアガスとして利用してい
る。一方、ストリッパ3を出た吸収液はストレーナ3を
通り、ポンプ22により熱交換器5に送られ、ここで冷
却された後さらに冷却器18で冷却され、吸収塔1に戻
される。
(Background of the Invention) The CO separation process by the absorption method is based on the copper-aluminum chloride method and the method using an absorption liquid consisting of copper chloride, an oxyacid derivative of phosphorus, and an organic solvent developed by the applicant (Japanese Patent Application Laid-Open No. 1986-1999-1).
No. 19013), etc., but the basic structure of the process is almost the same, as shown in FIG. 4, except that the absorption liquid is different. That is, the raw material gas 2 containing CO comes into contact with the absorption liquid in the absorption tower 1, and after absorbing and separating the Co gas, the off-gas 19
will be discarded as The absorption liquid that has absorbed CO passes through a conduit 4, is heated by a heat exchanger 5, and is introduced through a conduit 6 into a stripping tower (hereinafter sometimes referred to as a stripper) 3, where Co gas is released. This C6 gas contains absorption liquid vapor and mist, so it condenses from the conduit 7.
Co gas 8 and absorption liquid 10 are separated and recovered. A reboiler 11 is attached to the stripping 3. The reboiler 11 heats the liquid 13 flowing down from the top of the stripper 3 with a heating medium such as steam 14, and returns the heated absorption liquid and the vapor of the absorption liquid components to the bottom of the stripper 3 for separation of Co gas. In addition to being used as a heat source, it is also used as a carrier gas for Co gas. On the other hand, the absorption liquid leaving the stripper 3 passes through the strainer 3, is sent to the heat exchanger 5 by the pump 22, is cooled here, is further cooled by the cooler 18, and is returned to the absorption tower 1.

このような吸収操作において、プロセスの運転コスト、
すなわちCoガス分離回収コストの大略50〜70%は
、リボイラ11におけるスチーム14のコストによって
占められ、コスト低減のためにはスチームの14の消費
量を減らすことが必要である。
In such absorption operations, the operating costs of the process,
That is, approximately 50 to 70% of the Co gas separation and recovery cost is accounted for by the cost of the steam 14 in the reboiler 11, and in order to reduce costs, it is necessary to reduce the consumption of the steam 14.

ストリッパ3において、Coガスを吸収液から追い出す
キャリアガスとしてはスチームを用いることが望ましい
が、本発明に用いる吸収液では、多量の水分が存在する
と銅の沈澱を引き起こし、吸収液の劣化につながるため
使用することができず、このため吸収液の蒸発成分、例
えばトルエン(沸点110℃)を用いているが、沸点が
高いためにリボイラ11におけるスチームコストが高く
なるという欠点がある。
In the stripper 3, it is desirable to use steam as a carrier gas for expelling Co gas from the absorption liquid. However, in the absorption liquid used in the present invention, the presence of a large amount of moisture causes precipitation of copper, leading to deterioration of the absorption liquid. For this reason, an evaporated component of the absorption liquid, such as toluene (boiling point 110° C.), is used, but this has the disadvantage that the steam cost in the reboiler 11 increases due to its high boiling point.

これを改善するために、本発明者等は、トルエンのかわ
りにメチルエチルケトン(MEK、沸点80℃)のよう
な低沸点の溶媒を用い、該溶媒の沸点より5〜30℃高
い温度でCoガスを放出させることを提案したが(特開
昭57−48328号)、比較的低温度(85〜105
℃)ではCoガスを十分放散させることができず、また
原料ガス中に含まれている水分が吸収液中に蓄積し、該
吸収液中の銅の沈澱を引き起こして劣化するという問題
がある。また吸収液中のMEKは、110℃前後の高温
度では大量の蒸気を発生し、ストリッパ3から吸収塔1
へ循環する吸収液中にリンの酸素酸誘導体が高濃度で存
在することになり、このため吸収液が高粘性となり、ポ
ンプ22の前のストレーナ23で閉塞を起こし、運転停
止に至ることがある。また、MEKの大量の蒸発により
、消費スチームもトルエン使用時の約2.5倍必要とな
り、望ましい方法ではないことが明らかになった。さら
に、キャリアガスとして水素、塩素系のガス状物質を用
いる提案もなされているが(特開昭57−086210
号)、生成した使用ガスとキャリアガスをガス状で分離
することが困難であり、実用的ではない。
In order to improve this, the present inventors used a low boiling point solvent such as methyl ethyl ketone (MEK, boiling point 80 °C) instead of toluene, and injected Co gas at a temperature 5 to 30 °C higher than the boiling point of the solvent. It has been proposed (Japanese Unexamined Patent Publication No. 57-48328) to release it at a relatively low temperature (85 to 105
C), the Co gas cannot be sufficiently diffused, and the moisture contained in the raw material gas accumulates in the absorption liquid, causing precipitation of copper in the absorption liquid and causing deterioration. In addition, MEK in the absorption liquid generates a large amount of steam at a high temperature of around 110°C, and from the stripper 3 to the absorption tower 1.
Oxygen acid derivatives of phosphorus are present in a high concentration in the absorption liquid that circulates to the pump, resulting in a high viscosity of the absorption liquid, which may cause blockage in the strainer 23 in front of the pump 22, leading to the shutdown of the pump. . Furthermore, due to the large amount of evaporation of MEK, the amount of steam consumed was approximately 2.5 times that required when toluene was used, and it became clear that this was not a desirable method. Furthermore, there have been proposals to use hydrogen or chlorine-based gaseous substances as a carrier gas (Japanese Patent Laid-Open No. 57-086210
No.), it is difficult to separate the generated use gas and carrier gas in gaseous form, and it is not practical.

(発明の目的) 。(Object of the invention).

本発明の目的は、上記従来技術の欠点をなくし、比較的
低温度でCOを含む吸収液からCoガスを十分に放散さ
せることができるCOの濃縮分離方法を提供することに
ある。
An object of the present invention is to provide a method for concentrating and separating CO, which eliminates the drawbacks of the above-mentioned conventional techniques and can sufficiently dissipate Co gas from an absorption liquid containing CO at a relatively low temperature.

(発明の概要) 本発明は、塩化銅とリンの酸素酸誘導体と有機溶媒(第
1有機溶媒と称する)とからなる吸収液を用いて被処理
ガス中の一酸化炭素を吸収した後、該吸収液中の一酸化
炭素を放散塔でストリッピングにより放散させた後、さ
らに凝縮器で有機溶媒から一酸化炭素を分離する方法に
おいて、前記第1有機溶媒として水よりも沸点の高い溶
媒を用い、かつ放散塔において水よりも沸点の低い第2
有機溶媒を添加し、105℃以上でストリッピング操作
を行なうことを特徴とするものである。
(Summary of the Invention) The present invention absorbs carbon monoxide in a gas to be treated using an absorption liquid consisting of an oxyacid derivative of copper chloride and phosphorus and an organic solvent (referred to as a first organic solvent). In the method of dissipating carbon monoxide in the absorption liquid by stripping in a dispersion tower, and then separating carbon monoxide from the organic solvent in a condenser, a solvent having a boiling point higher than water is used as the first organic solvent. , and a second substance having a boiling point lower than that of water in the stripping tower.
This method is characterized by adding an organic solvent and performing a stripping operation at 105° C. or higher.

本発明においては、上記第1有機溶媒が沸点110〜1
50℃を有するもの、特にトルエンであり、第2有機溶
媒が沸点79〜90℃を有するもの、特にベンゼン、メ
チルエチルケトンおよびトリクレン(トリクロルエチレ
ン)から選ばれた少なくとも一種の溶媒であり、かつ第
2有機溶媒はりボイラを経由した後、ストリンパに供給
することが望ましい。上記第2有機溶媒の添加量は、第
1有機溶媒に対して25重量%以下とすることが好まし
い。また第2有機溶媒は、リボイラ、ストリッパおよび
凝縮器を循環させ、繰返し使用することが望ましい。
In the present invention, the first organic solvent has a boiling point of 110 to 1
50° C., especially toluene, and the second organic solvent has a boiling point of 79 to 90° C., especially at least one solvent selected from benzene, methyl ethyl ketone, and trichlorethylene. It is desirable to supply the solvent to the stripper after passing through the boiler. The amount of the second organic solvent added is preferably 25% by weight or less relative to the first organic solvent. Further, it is desirable that the second organic solvent be repeatedly used by circulating it through the reboiler, stripper, and condenser.

以下、本発明を図面に示す実施例によりさらに詳細に説
明する。
Hereinafter, the present invention will be explained in more detail with reference to embodiments shown in the drawings.

(発明の実施例) 第1図は、本発明の一実施例を示すCOO縮分離方法の
装置系統図である。この装置は、リボイラ11に第2溶
媒液20の供給ラインを設け、該ラインに凝縮器9から
の第2溶媒液の再循環ライン10°を設けた以外は、第
4図の従来装置と同様な構成である。第2溶媒液20は
、リボイラ11に液状で供給され、リポイラ11でCO
放出に必要な温度で、かつ水の沸点以上の温度(105
℃以上)で容易に加熱気化され、蒸気となり、ストリッ
パ3の底部へ供給され、該ストリッパ底部の温度を所定
温度に保持するとともに、蒸気状でストリンパ3内を上
昇し、該ストリッパ流下液中に多量に含まれているCo
ガスを放出させる。ストリッパ3を出た第2溶媒蒸気は
凝縮器9で冷却液化され、該Coガス8が分離された後
、第2溶媒液は再循環ライン10°を通って再びリボイ
ラ3に供給される。この場合、第2溶媒は、リボイラ1
1、ストリッパ3、凝縮器9およびリボイラ11と循環
使用されるので、吸収液中の第1溶媒の組成は、ストリ
ッパ3の入口、出口でほとんど変化せず、安定した状態
を保持することができる。
(Embodiment of the Invention) FIG. 1 is an apparatus system diagram of a COO condensation separation method showing an embodiment of the present invention. This apparatus is similar to the conventional apparatus shown in FIG. 4, except that the reboiler 11 is provided with a supply line for the second solvent liquid 20, and this line is provided with a recirculation line 10° for the second solvent liquid from the condenser 9. It is a composition. The second solvent liquid 20 is supplied in liquid form to the reboiler 11, where the CO
At the temperature necessary for release and above the boiling point of water (105
℃ or above), becomes steam, is supplied to the bottom of the stripper 3, maintains the temperature at the bottom of the stripper at a predetermined temperature, and rises inside the stripper 3 in vapor form, into the liquid flowing down the stripper. Contains a large amount of Co
Release gas. The second solvent vapor leaving the stripper 3 is cooled and liquefied in a condenser 9, and after the Co gas 8 is separated, the second solvent liquid is supplied to the reboiler 3 again through the recirculation line 10°. In this case, the second solvent is the reboiler 1
1. Since the stripper 3, the condenser 9, and the reboiler 11 are used in circulation, the composition of the first solvent in the absorption liquid hardly changes at the inlet and outlet of the stripper 3, and can be maintained in a stable state. .

第2図は、本発明方法による吸収液のCOO収性能に対
する温度依存性を示すものであるが、第2溶媒としてベ
ンゼン添加15%、トリクレン添加20%、およびME
K添加15%のいずれに場合もストリンパの操作温度は
105℃以上あれば、COO収量がほぼゼロ、すなわち
Coガスを十分放出させることができる。なお、第2溶
媒としてトルエン等の水より沸点め高い溶媒のみを使用
した場合には、Coガスを十分放出させるには、トルエ
ンの沸点(約110℃)以上の120〜125℃の温度
が必要になり、さらにストリンパ3における吸収液の性
状が入口と出口で変化することになり、好ましくない。
Figure 2 shows the temperature dependence of the COO yield of the absorption liquid according to the method of the present invention, with the addition of benzene at 15%, trichlene addition at 20%, and ME as the second solvent.
In either case of K addition of 15%, if the operating temperature of the stripper is 105° C. or higher, the COO yield is almost zero, that is, Co gas can be sufficiently released. Note that when only a solvent with a boiling point higher than water, such as toluene, is used as the second solvent, a temperature of 120 to 125 °C, which is higher than the boiling point of toluene (about 110 °C), is required to sufficiently release Co gas. Furthermore, the properties of the absorbed liquid in the strimper 3 change between the inlet and the outlet, which is undesirable.

次に、第3図は、吸収液中の第1溶媒としてトルエンを
用い、該トルエン濃度を徐々に減少させ、その減少分だ
け第2溶媒としてベンゼンを添加した場合のストリッパ
3の適性運転温度およびリボイラスチーム使用量を示し
たものである0図中、30の破線は第2溶媒として第1
溶媒であるトルエン溶媒を単独で使用した場合、32は
第2溶媒としてベンゼンまたはMEKを添加した場合、
34は同様にトリクレンを添加した場合を示す。
Next, FIG. 3 shows the appropriate operating temperature of the stripper 3 when toluene is used as the first solvent in the absorption liquid, the toluene concentration is gradually decreased, and benzene is added as the second solvent by the amount of the decrease. In Figure 0, which shows the amount of reboiler steam used, the broken line at 30 indicates the amount of reboiler steam used as the second solvent.
When the toluene solvent as the solvent is used alone, 32 is when benzene or MEK is added as the second solvent,
34 similarly shows the case where trichlene was added.

図から、ベンゼンの添加量が増加するに従って、ストリ
ンパの安定適性運転温度は徐々に低下し、また第1溶媒
量の25%量のベンゼン(第2溶媒)を添加することに
より、第1溶媒単独の場合と比べて約15〜20℃スト
リッパの運転温度を低下させることができ、またリボイ
ラに供するスチーム量をCO生生成適当り約0.15 
kg低減することができる。これは、リボイラ供給スチ
ームの約10%に相当し、全ユーティリティーコストの
7%に相当する。また第2溶媒のベンゼンを15%添加
することにより、ストリンパ運転温度を約10〜15%
低下させることができ、スチーム量はCOO成量(n?
)当たり約0.1瞳低減することができる。なおベンゼ
ンの添加量を25%を超えて添加し、かつ運転温度をさ
らに低下させると、00回収率が低くなり、吸収液中に
沈澱を生じ、運転の継続が困難になることがわかった。
From the figure, as the amount of benzene added increases, the stable and suitable operating temperature of the stripper gradually decreases, and by adding benzene (second solvent) in an amount of 25% of the amount of the first solvent, The operating temperature of the stripper can be lowered by about 15 to 20 degrees Celsius compared to the case of
kg can be reduced. This represents about 10% of the reboiler supply steam and 7% of the total utility costs. In addition, by adding 15% of benzene as the second solvent, the stripper operating temperature can be increased by about 10 to 15%.
The amount of steam can be reduced to the amount of COO (n?
) can be reduced by about 0.1 pupil. It has been found that if the amount of benzene added exceeds 25% and the operating temperature is further lowered, the 00 recovery rate decreases, precipitation occurs in the absorption liquid, and it becomes difficult to continue the operation.

これは、前述のように吸収液中の水分の放散が十分に行
なわれず、吸収液中に蓄積するため、吸収液の性能が低
下したためであることがわかった。
It was found that this was because, as mentioned above, water in the absorbent was not sufficiently dissipated and accumulated in the absorbent, resulting in a decrease in the performance of the absorbent.

一方、吸収液に対するベンゼン混入による影響を調べた
結果、第3図に示すように吸収温度によって所定の吸収
容量が得られることが確認された。
On the other hand, as a result of investigating the influence of benzene mixing on the absorption liquid, it was confirmed that a predetermined absorption capacity can be obtained depending on the absorption temperature, as shown in FIG.

(発明の効果) 本発明によれば、塩化銅とリンの酸素酸誘導体とトルエ
ン等の有機溶媒からなる吸収液に対し、ベンゼン等の水
の沸点以下の第2溶媒を25%以下の量で添加すること
により、吸収液の沈澱を生じず、吸収液中に水の蓄積を
起こすことなく、ストリッパの適性運転温度を、例えば
約15℃低下させることができ、またリポイラのスチー
ム消費量も例えば約15%まで低減させることができる
(Effects of the Invention) According to the present invention, a second solvent such as benzene having a temperature below the boiling point of water is added in an amount of 25% or less to an absorption liquid consisting of copper chloride, an oxyacid derivative of phosphorus, and an organic solvent such as toluene. By adding, the suitable operating temperature of the stripper can be lowered, for example by about 15° C., without precipitation of the absorption liquid and without water accumulation in the absorption liquid, and the steam consumption of the repoiler can also be reduced, for example. It can be reduced to about 15%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のCOの分離吸収方法の装置構成゛を
示す図、第2図は、本発明による吸収液のCO吸収性能
の温度依存性を表わす線図、第3図は、本発明における
ストリンパの適性運転温度を表わす線図、第4図は、従
来のCO分分離吸収方法装置構成を示す図である。 1・・・吸収塔、2・・・原料ガス、3・・・ストン・
ソバ04・・・吸収液導管、5・・・熱交換器、6・・
・吸収液導管、7.8・・・COガス、9・・・凝縮器
、10・・・(回収液)、10°・・・第2溶媒液、1
3・・・吸収液、14・・・スチーム、15・・・ドレ
ン、16.17・・・吸収液、1日・・・冷却器、19
・・・オフガス、20・・・第2溶媒液、21・・・ス
チーム、22・・・ポンプ、23・・・ストレーナ。 代理人 弁理士 川 北 武 長 第1図 第2図 吸収lA度
FIG. 1 is a diagram showing the equipment configuration of the CO separation and absorption method of the present invention, FIG. 2 is a diagram showing the temperature dependence of the CO absorption performance of the absorbing liquid according to the present invention, and FIG. FIG. 4, which is a diagram showing the appropriate operating temperature of the stripper in the invention, is a diagram showing the configuration of a conventional CO separation and absorption method device. 1... Absorption tower, 2... Raw material gas, 3... Stone...
Soba 04... Absorption liquid conduit, 5... Heat exchanger, 6...
- Absorption liquid conduit, 7.8... CO gas, 9... Condenser, 10... (Recovered liquid), 10°... Second solvent liquid, 1
3...Absorption liquid, 14...Steam, 15...Drain, 16.17...Absorption liquid, 1st...Cooler, 19
...Off gas, 20.. Second solvent liquid, 21.. Steam, 22.. Pump, 23.. Strainer. Agent Patent Attorney Takenaga Kawakita Figure 1 Figure 2 Absorption 1A degree

Claims (3)

【特許請求の範囲】[Claims] (1)塩化銅とリンの酸素酸誘導体と有機溶媒(第1有
機溶媒と称する)とからなる吸収液を用いて被処理ガス
中の一酸化炭素を吸収した後、該吸収液中の一酸化炭素
を放散塔でストリッピングにより放散させた後、さらに
凝縮器で有機溶媒から一酸化炭素を分離する方法におい
て、前記第1有機溶媒として水よりも沸点の高い溶媒を
用い、かつ放散塔において水よりも沸点の低い第2有機
溶媒を添加し、105℃以上でストリッピング操作を行
なうことを特徴とする一酸化炭素の分離濃縮方法。
(1) After absorbing carbon monoxide in the gas to be treated using an absorption liquid consisting of an oxygen acid derivative of copper chloride and phosphorus and an organic solvent (referred to as the first organic solvent), the monoxide in the absorption liquid is In a method in which carbon is stripped by stripping in a stripping tower and then carbon monoxide is further separated from an organic solvent in a condenser, a solvent having a boiling point higher than water is used as the first organic solvent, and water is stripped in the stripping tower. A method for separating and concentrating carbon monoxide, which comprises adding a second organic solvent having a boiling point lower than that of the organic solvent and performing a stripping operation at 105°C or higher.
(2)特許請求の範囲(1)において、第1有機溶媒が
トルエンであり、第2有機溶媒がベンゼン、メチルエチ
ルケトンおよびトリクレンから選ばれた少なくとも一種
の溶媒であり、かつ第2有機溶媒はりボイラを経由した
後、放散塔に供給されることを特徴とする一酸化炭素の
分離濃縮方法。
(2) In claim (1), the first organic solvent is toluene, the second organic solvent is at least one solvent selected from benzene, methyl ethyl ketone, and trichlene, and the second organic solvent is a boiler. A method for separating and concentrating carbon monoxide, which is characterized in that carbon monoxide is supplied to a stripping tower after passing through the carbon monoxide.
(3)特許請求の範囲(2)において、第2有機溶媒を
リボイラ、放散塔および凝縮器を循環させ、繰返し使用
することを特徴とする一酸化炭素の分離濃縮方法。
(3) A method for separating and concentrating carbon monoxide according to claim (2), characterized in that the second organic solvent is circulated through a reboiler, a stripping tower, and a condenser and used repeatedly.
JP60062258A 1985-03-27 1985-03-27 Separation and concentration of carbon monoxide Pending JPS61219711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062258A JPS61219711A (en) 1985-03-27 1985-03-27 Separation and concentration of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062258A JPS61219711A (en) 1985-03-27 1985-03-27 Separation and concentration of carbon monoxide

Publications (1)

Publication Number Publication Date
JPS61219711A true JPS61219711A (en) 1986-09-30

Family

ID=13194939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062258A Pending JPS61219711A (en) 1985-03-27 1985-03-27 Separation and concentration of carbon monoxide

Country Status (1)

Country Link
JP (1) JPS61219711A (en)

Similar Documents

Publication Publication Date Title
EP0207490B1 (en) Method for purification of ethylene oxide
US3349544A (en) Gas drying process
US4162145A (en) Regeneration of liquid absorbents
US3192128A (en) Process for purifying aqueous hydrochloric acid
US5066314A (en) Method of removal of acid components from a gas
US2812830A (en) Dehydration of gases
JP2857993B2 (en) Method for continuous production of aqueous formaldehyde solution
JPS61219711A (en) Separation and concentration of carbon monoxide
JP2001081479A (en) Method and apparatus for purifying coke oven gas
JPS6252609B2 (en)
JPS62103072A (en) Method of purifying ethylene oxide
US6132688A (en) Method and apparatus for treating exhaust gas from a semiconductor fabrication machine
BR112015018268B1 (en) continuous process for preparing acrolein
US5429667A (en) Process for the recovery of carbon disulfide from a steam/carbon disulfide mixture
US3607003A (en) Method of removing acetone and acidic gases from gaseous mixtures
JP4326281B2 (en) Method and system for dehumidifying exhaust gas
JPS62143808A (en) Separation and recovery of carbon monoxide
JPH08127573A (en) Recovery of ethylene oxide
JPS6354411B2 (en)
KR100503349B1 (en) Apparatus for removing Naphthalene from Coke oven use light oil and ethanol
SU449068A1 (en) The method of polymerization of gaseous olefins
JPH01203021A (en) Carbon monoxide separation process solvent recovery process
JP2003047823A (en) Method for removing solvent from solvent-containing gas
EP0027805A1 (en) Improved process for removal and recovery of vinyl chloride monomer from vent gas stream in polyvinyl chloride plant.
JP2000104079A (en) Method for removing ammonia from coke oven gas