JPS61219399A - Determination of base sequence in nucleic acid - Google Patents

Determination of base sequence in nucleic acid

Info

Publication number
JPS61219399A
JPS61219399A JP6066585A JP6066585A JPS61219399A JP S61219399 A JPS61219399 A JP S61219399A JP 6066585 A JP6066585 A JP 6066585A JP 6066585 A JP6066585 A JP 6066585A JP S61219399 A JPS61219399 A JP S61219399A
Authority
JP
Japan
Prior art keywords
dna
nucleic acid
double
molecular weight
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6066585A
Other languages
Japanese (ja)
Inventor
Yoshinori Harada
義則 原田
Hideki Kanbara
秀記 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6066585A priority Critical patent/JPS61219399A/en
Publication of JPS61219399A publication Critical patent/JPS61219399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:Only monostrand part in a specific DNA complex is treated with an enzyme to allow the double-strand part to remain unreacting and the hydrolyzate are subjected to separation depending upon molecular weight whereby the titled sequence is decided simply in a usual laboratory. CONSTITUTION:A replicative form of M13 phage DNA (a') of a cloning vector and human lymphocyte DNA (a) are treated with restriction enzymes, respectively to effect recombination and transduction to obtain a temperature (e) in the reaction for synthesizing the complementary chain to the single strand DNA. Then, 4 kinds of complementary chain corresponding to nucleotides constituting the DNA are synthesized to prepare a temperature DNA-complementary DNA complex (f). Then, a nuclease is allowed to act on only the single strand DNA to allow the double-strand part to remain unreacting (g). The resultant DNA fragment mixture is subjected to electrophoresis is to effect separation depending upon molecular weights, the separated DNAs are dyed with silver to read the image of electrophoretic separation whereby the initial sequence of DNA (b') is decided.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、核酸の分析方法に係り、特に非放射性標識に
好適な、核酸断片の調製を可能とする核酸塩基配列決定
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for analyzing nucleic acids, and particularly to a method for determining nucleic acid base sequences that enables the preparation of nucleic acid fragments suitable for non-radioactive labeling.

〔発明の背景〕[Background of the invention]

従来の核酸塩基配列決定法の1つに、チェーンターミネ
ータ法がある(細胞工学、VO/、、1.A11pp、
93〜101 (1982))。第1図に、従来方式に
よる塩基配列決定法の模式図を示す。拳法では、それぞ
れ異なる4種の相補鎖伸長停止試薬(ddA 、 dd
e 、 ddG 、 ddT )を含む4種の相補鎖合
成反応(b)の生成物(C)に対し、ホルムアミドを添
加したり、加熱等の変性処理(d)を施し、デオキシリ
ボ核酸(以下、DNAという)をすべて1本鎖としてか
ら各反応生成物毎に異なる泳動路で電気泳動分離する(
e)。鋳型DNAは、分子量が大きい(約25万ドルト
ン)のでほとんど泳動されずに試料注入部にとどまるが
、相補鎖DNA断片は分子量が小さい(350〜35,
000ドルトン程度)ので、その分子量に応じた距離だ
け泳動する。その結果、1塩基ずつ鎖長の異なるDNA
断片として、分子量分離がなされるので、これを分子量
の小さい順に解釈して行けばDNAの塩基配列を読み取
れる。
One of the conventional nucleic acid base sequencing methods is the chain terminator method (Cell Engineering, VO/, 1.A11pp,
93-101 (1982)). FIG. 1 shows a schematic diagram of a conventional base sequencing method. In Kenpo, four different types of complementary strand elongation termination reagents (ddA, dd
The product (C) of the complementary strand synthesis reaction (b) containing four types of complementary strand synthesis reactions (e, ddG, ddT) is subjected to denaturation treatment (d) such as adding formamide or heating to obtain deoxyribonucleic acid (hereinafter referred to as DNA). ) are all made into single strands, and each reaction product is electrophoretically separated in a different migration path (
e). Template DNA has a large molecular weight (approximately 250,000 daltons) and therefore remains in the sample injection area without being migrated, whereas complementary strand DNA fragments have a small molecular weight (approximately 350 to 35,000 daltons).
000 daltons), so it migrates a distance corresponding to its molecular weight. As a result, DNAs with different chain lengths for each base
Since the fragments are separated by molecular weight, the base sequence of the DNA can be read by interpreting the fragments in descending order of molecular weight.

従来は、合成反応試薬中に32p、3jSなどで放射性
標識した基質を加える(第1図ではA)ことで、相補鎖
DNAt−放射化し、オートラジオグラフィーにより高
感度で泳動分離帯を検出、同定(〜数Pg/泳動分離帯
)していた。本操作は、非密封放射性同位体匣用の化学
トレーサー実験となるので、実施区域廃棄等に強い制限
が加わり、DNA塩基配列決定の簡便化、迅速化の障害
となっていた。また、第1図(e)に括弧付き泳動分離
帯として示したように、低分子量のいくつかのDNA断
片は、標識化合物を取り込まないために放射活性を持た
ないので、オートラジオグラフィーでは検出できない。
Conventionally, complementary strand DNA was activated by adding a substrate radioactively labeled with 32p, 3jS, etc. to the synthesis reaction reagent (A in Figure 1), and the electrophoretic separation band was detected and identified with high sensitivity by autoradiography. (~several Pg/separation zone). Since this operation was a chemical tracer experiment using an unsealed radioactive isotope box, strong restrictions were placed on the disposal of the area where it would be carried out, which was an obstacle to simplifying and speeding up DNA sequencing. In addition, as shown in Figure 1(e) as a bracketed electrophoresis band, some DNA fragments with low molecular weights do not incorporate labeled compounds and therefore do not have radioactivity, so they cannot be detected by autoradiography. .

以上、2つの難点を排除するためには、試料を放射化せ
ずに、DNA泳動分離帯を直接高感度で検出できればよ
い。非放射化DNA検出法としては、銀染色法、エチジ
ウムプロミド等の蛍光色素による蛍光染色法があるが、
いずれも2本鎖DNAに対しては、高い感度(1〜5n
g)を有すが1本鎖DNAに対しては、1桁程度感度が
悪いので、従来のチェーンターミネータ法の場合の様に
1本鎖としてDNA断片が分離されている場合には、適
用できなかった。
In order to eliminate the above two drawbacks, it is sufficient to be able to directly detect the DNA migration separation zone with high sensitivity without activating the sample. Non-activated DNA detection methods include silver staining and fluorescent staining using fluorescent dyes such as ethidium bromide.
Both have high sensitivity (1 to 5n) for double-stranded DNA.
g), but it is about an order of magnitude less sensitive for single-stranded DNA, so it cannot be applied when DNA fragments are separated as single-stranded, as in the case of the conventional chain terminator method. There wasn't.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、チェーンターミネータ法による核酸塩
基配列決定に銀染色法、蛍光染色法等の核酸検出法を適
用するに際し、検出法の能力を最大限に発揮させるため
、従来法では、1本鎖DNAとして泳動分離していたD
NA断片を、2本鎖DNAとして泳動分離することを可
能とする方法を提供することにある。
The purpose of the present invention is to maximize the ability of the detection method when applying nucleic acid detection methods such as silver staining and fluorescent staining to nucleic acid base sequencing using the chain terminator method. D was separated by electrophoresis as stranded DNA.
The object of the present invention is to provide a method that enables electrophoretic separation of NA fragments as double-stranded DNA.

〔発明の概要〕[Summary of the invention]

チェーンターミネータ法による核酸塩基配列決定法は、
原理的には電気泳動法により分子量分離したDNA断片
の相対的位置関係を何らかの方法で明らかにしさえすれ
ば、塩基配列を決定できるので、従来の放射線検出法の
代りとして取扱いが簡単な銀染色法、蛍光染色法などの
非放射線による直接検出法にも適用可能である。
Nucleic acid base sequencing method using chain terminator method is
In principle, the base sequence can be determined as long as the relative positional relationship of DNA fragments separated by molecular weight by electrophoresis is clarified by some method, so silver staining is an easy-to-handle alternative to conventional radiation detection methods. It is also applicable to non-radiation direct detection methods such as fluorescent staining.

ところで、従来のチェーンターミネータ法では、電気泳
動分離帯中に含まれるDNA断片はすべて1本鎖である
。一方、銀染色法、蛍光染色法は、2本鎖DNAに対し
ては11−1On/泳動帯の感度を有すが、1本鎖DN
Aに対しては、1桁悪い感度しか有さないと見積られて
いる(蛋白質・核酸・酵素、Vot27.410 、p
pl −3。
By the way, in the conventional chain terminator method, all DNA fragments contained in the electrophoretic separation zone are single-stranded. On the other hand, silver staining and fluorescent staining have a sensitivity of 11-1 On/migratory band for double-stranded DNA, but for single-stranded DNA
It is estimated that the sensitivity is one order of magnitude worse for A (Proteins/Nucleic Acids/Enzymes, Vot27.410, p.
pl-3.

(1982)’ Biochem、13iophys、
3es、 Commun、。
(1982)' Biochem, 13iophys,
3es, Commun.

VoZ、102+pp53−58 (1981))。VoZ, 102+pp53-58 (1981)).

それ故、検出法を非放射性方式に変えて、充分な染色濃
度、蛍光強度を得るため1本鎖DNAを2本鎖DNA化
することが有効である。本発明では、相補鎖合成反応時
に生ずる2本鎖DNAを、鋳型DNAの1本鎖部分とを
切断した後泳動分離したことで、非放射性検出方式によ
るDNA断片の高感度検出を可能とした。
Therefore, it is effective to change the detection method to a non-radioactive method and convert single-stranded DNA into double-stranded DNA in order to obtain sufficient staining density and fluorescence intensity. In the present invention, the double-stranded DNA generated during the complementary strand synthesis reaction is electrophoretically separated after being cut from the single-stranded portion of the template DNA, thereby making it possible to detect DNA fragments with high sensitivity using a non-radioactive detection method.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図により説明する。まず
、クローニングベクターである複製聾M137アージD
NA (mpll)(a’)′t−制限酵素BamHI
で消化し開裂した後(b’) 、当部位にヒトリンパ球
由来のD N A(a)t BamHIで消化したDN
A断片(b)t−、クローニングし、組換体DNA(C
) を作製した。これを塩化カルシウム法にて、大腸菌
(JM103 )体内に導入し形質転換菌(d)を得た
An embodiment of the present invention will be described below with reference to FIG. First, the cloning vector Duplicate Deaf M137AgeD
NA (mplll) (a')'t-restriction enzyme BamHI
After digestion and cleavage with (b'), human lymphocyte-derived DNA (a) was added to this site.
A fragment (b) t-, cloned and recombinant DNA (C
) was created. This was introduced into Escherichia coli (JM103) using the calcium chloride method to obtain a transformed bacterium (d).

形質転換菌eTY培地、2−で培養し、菌体外に分泌さ
れる感染型M13mpHの組換体(e)を回収した(約
10μg〜2pmot)。
The transformed bacteria were cultured in eTY medium 2-, and the recombinant (e) of the infectious type M13 mpH secreted outside the cells was recovered (approximately 10 μg to 2 pmot).

本DNAは、1本鎖DNAで、相補鎖合成反応時の鋳型
となる。
This DNA is single-stranded DNA and serves as a template during complementary strand synthesis reaction.

次の相補鎖合成反応に先立ち、まず、塩基配列決定する
ためクローニングしたDNA(bl)の上流域に特異的
に対合するオリゴヌクレオチド(〜10 pmot )
をアニーリングする(第1図(a))。
Prior to the next complementary strand synthesis reaction, first, an oligonucleotide (~10 pmot) that specifically pairs with the upstream region of the cloned DNA (bl) for base sequencing is prepared.
is annealed (Fig. 1(a)).

次にDNAを構成する4種のヌクレオチドに対応する4
種の相補鎖合成反応を行い、末端に相補鎖合成停止剤を
結合した種々の長さの相補鎖DNAを合成する( (f
) )。
Next, 4, which corresponds to the four types of nucleotides that make up DNA.
Complementary strand synthesis reaction of seeds is carried out to synthesize complementary strand DNA of various lengths with a complementary strand synthesis terminator attached to the end ((f
) ).

これら一部、2本鎖、残りは1本鎖の鋳IJII DN
A−−一相補鎖DNA複合体(f)に対し、1本鎖DN
Aのみを特異的に切断するDNA消化酵素:81ヌクレ
アーゼ1ユニーツトを作用させると、(g)に示す通シ
、低分子量のモノヌクレオチド、あるいは、ジヌクレオ
チドに分解される。しかし2本鎖部分は、未消化のまま
残る。
Some of these are double-stranded, the rest are single-stranded IJII DN.
A-- Single complementary strand DNA complex (f), single strand DNA
When treated with one unit of DNA-digesting enzyme 81 nuclease that specifically cleaves only A, it is degraded into low-molecular-weight mononucleotides or dinucleotides as shown in (g). However, the double-stranded portion remains undigested.

このように処理されたDNA断片混合物(全量1μg)
を、厚さ0.5間、泳動路中7flの12%ポリアクリ
ルアミドゲル電気泳動にかけ、分子量分離しDNAを銀
染色で染色すると、(h)に示すように、細分化された
鋳型DNAを先頭にした1塩基対ずつ長さの異なる2本
鎖DNA断片の電気泳動分離像が得られるので、これを
解読し、挿入DNA (bl)の塩基配列を決定するこ
とができる。
DNA fragment mixture treated in this way (total amount 1 μg)
was subjected to 12% polyacrylamide gel electrophoresis with a thickness of 0.5 mm and 7 fl in the migration channel, molecular weight separation was performed, and the DNA was stained with silver staining. As shown in (h), the fragmented template DNA was stained at the beginning. Electrophoretic separation images of double-stranded DNA fragments differing in length by one base pair can be obtained, which can be decoded to determine the base sequence of the inserted DNA (bl).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2本鎖DNA断片混合物を、その鎖長
に応じて分子量分離できるので、銀染色法、蛍光色素染
色法などの非放射性DNA検出法の検出能力を充分に発
揮させることができる。また32P、”Sなどの非密封
放射性同位体をDNAの標識物として使用することなく
DNAの塩基配列を決定できるので、これを、通常の実
験施設内で簡便に行うことができると同時に、実験者に
放射線障害を与えるおそれが全く無いという効果がある
According to the present invention, a double-stranded DNA fragment mixture can be separated by molecular weight according to the chain length, so that the detection ability of non-radioactive DNA detection methods such as silver staining and fluorescent dye staining can be fully utilized. can. In addition, since the base sequence of DNA can be determined without using unsealed radioactive isotopes such as 32P and "S" as labels for DNA, this can be easily carried out in ordinary laboratory facilities, and at the same time The effect is that there is no risk of radiation damage to people.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、放射性標識化合物を使用した従来のチェーン
ターミネータ法による核酸塩基配列決定法の模式図、第
2図は、本発明を採用した改良チェー/ターミネータ法
の手順を示す模式図である。 ヘ               ヘ        
       噂IJ               
  %                 。 一一
FIG. 1 is a schematic diagram of a nucleic acid base sequencing method using a conventional chain terminator method using a radiolabeled compound, and FIG. 2 is a schematic diagram showing the procedure of the improved chain terminator method employing the present invention. He he
rumor IJ
%. 11

Claims (1)

【特許請求の範囲】 1、チェーンターミネータ法による核酸塩基配列決定に
おいて、相補鎖合成反応により生成する鋳型デオキシリ
ボ核酸と相補鎖デオキシリボ核酸との複合体に対し、複
合体の1本鎖部分のみを細分化する酵素を作用させ、2
本鎖部分を未反応のまま残し、これを分子量分離するこ
とを特徴とする核酸塩基配列決定法。 2、特許請求の範囲第1項に記載の核酸塩基配列決定法
において、電気泳動法により2本鎖デオキシリボ核酸の
分子量分離を行い、銀染色法あるいは、蛍光染色法によ
り、デオキシリボ核酸断片を含む、電気泳動分離帯の検
出を行うことを特徴とする核酸塩基配列決定法。
[Claims] 1. In nucleic acid base sequencing by the chain terminator method, only the single-stranded portion of the complex is subdivided into a complex of a template deoxyribonucleic acid and a complementary strand deoxyribonucleic acid generated by a complementary strand synthesis reaction. 2.
A nucleic acid base sequencing method characterized by leaving the full-stranded portion unreacted and separating it by molecular weight. 2. In the nucleic acid base sequencing method according to claim 1, the molecular weight of double-stranded deoxyribonucleic acid is separated by electrophoresis, and deoxyribonucleic acid fragments are included by silver staining or fluorescent staining. A nucleic acid base sequencing method characterized by detecting electrophoretic separation zones.
JP6066585A 1985-03-27 1985-03-27 Determination of base sequence in nucleic acid Pending JPS61219399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6066585A JPS61219399A (en) 1985-03-27 1985-03-27 Determination of base sequence in nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6066585A JPS61219399A (en) 1985-03-27 1985-03-27 Determination of base sequence in nucleic acid

Publications (1)

Publication Number Publication Date
JPS61219399A true JPS61219399A (en) 1986-09-29

Family

ID=13148852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6066585A Pending JPS61219399A (en) 1985-03-27 1985-03-27 Determination of base sequence in nucleic acid

Country Status (1)

Country Link
JP (1) JPS61219399A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308998A (en) * 1987-01-14 1993-11-22 Univ Harvard Dna sequencing
EP0610615A1 (en) * 1993-02-10 1994-08-17 Promega Corporation Non-radioactive DNA sequencing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05308998A (en) * 1987-01-14 1993-11-22 Univ Harvard Dna sequencing
EP0610615A1 (en) * 1993-02-10 1994-08-17 Promega Corporation Non-radioactive DNA sequencing

Similar Documents

Publication Publication Date Title
Syvānen et al. Fast quantification of nucleic acid hybrids by affinity-based hybrid collection
Maat et al. A method for sequencing restriction fragments with dideoxynucleoside triphosphates
Kanter et al. Analysis of restriction fragment length polymorphisms in deoxyribonucleic acid (DNA) recovered from dried bloodstains
EP0349024B1 (en) A method for the simultaneous determination of dna sequence variations at a large number of sites, and a kit therefor
EP0381693B1 (en) Method for rapid base sequencing in dna and rna
US5633129A (en) Electrophoretic detection and separation of mutant DNA using replaceable polymer matrices
Cossu et al. Rh D/d genotyping by quantitative polymerase chain reaction and capillary zone electrophoresis
GB2155176A (en) Sequencing DNA
Akusjärvi et al. Sequence analysis of adenovirus DNA: IV. The genomic sequences encoding the common tripartite leader of late adenovirus messenger RNA
Spiegelman et al. Role of the 21,000 molecular weight polypeptide of Bacillus subtilis RNA polymerase in RNA synthesis.
Chen et al. Identification of DNA molecules by pre-column hybridization using capillary electrophoresis
Peake The polymerase chain reaction.
Aquadro et al. RFLP analysis using heterologous probes
Felmlee et al. Capillary electrophoresis of DNA potential utility for clinical diagnoses
Dorit et al. Direct DNA sequencing of PCR products
Comincini et al. Characterization of bovine microsatellites by silver staining
JPH1146800A (en) Analysis of oligonucleotide
JPS61219399A (en) Determination of base sequence in nucleic acid
Takahashi-Fujii et al. Practical application of fluorescence-based image analyzer for PCR single-stranded conformation polymorphism analysis used in detection of multiple point mutations.
JPS60161559A (en) Apparatus for determining arrangement of base of nucleic acid
Wimmer et al. Identification of amplifications, deletions and methylation changes in cancer by means of two-dimensional analysis of genomic digests: application to neuroblastoma
Perego et al. Separation of oligonucleotides of identical size, but different base composition, by free zone capillary electrophoresis in strongly acidic, isoelectric buffers
CA2331742A1 (en) Methods for quantitating low level modifications of nucleotide sequences
Zhong et al. Multiplexed capillary electrophoresis for DNA sequencing with ultra violet absorption detection
Liu et al. Denaturation fingerprinting: two related mutation detection methods especially advantageous for high G+ C regions