JPS61219207A - Cmos differential amplifier - Google Patents

Cmos differential amplifier

Info

Publication number
JPS61219207A
JPS61219207A JP60059974A JP5997485A JPS61219207A JP S61219207 A JPS61219207 A JP S61219207A JP 60059974 A JP60059974 A JP 60059974A JP 5997485 A JP5997485 A JP 5997485A JP S61219207 A JPS61219207 A JP S61219207A
Authority
JP
Japan
Prior art keywords
transistor
mos transistors
mos
channel
differential amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60059974A
Other languages
Japanese (ja)
Inventor
Shingo Aizaki
相崎 伸吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60059974A priority Critical patent/JPS61219207A/en
Publication of JPS61219207A publication Critical patent/JPS61219207A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain stable CMOS differential amplifiers without damaging the responding speed against the variation of transistor capability in the manufacturing process, by inputting an activating signal in a gate terminal and connecting the 6th MOS transistor, whose conductive channel is different from those of the 1st-3rd MOS transistors, between drain terminals of the 4th and 5th MOS transistors. CONSTITUTION:When an activating signal (phi) is 'H' level and a CMOS differential amplifier is activated, the amplifier has a differential amplifying function as conventional ones have, since a P-channel MOS transistor Q16 is in its 'OFF' condition. When the activating signal (phi) is 'L' level and the CMOS differential amplifier is inactivated, the P-channel MOS transistor Q16 is set to its 'ON' condition. Therefore, a node N and output signal OUT are maintained at equal potential even when a difference exists between the transistor capabilities between P-channel MOS transistors Q11 and Q12 and N-channel MOS transistors Q13 and Q14. Therefore, if the activating signal (phi) is changed from the 'L' level to the 'H' level and the differential amplifying operation of the amplifier is started at times t1 and t2, the responding speed is not delayed, because the node N and output signal OUT always change from the equal potential.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はCMOB差動増幅器に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a CMOB differential amplifier.

〔従来の技術〕[Conventional technology]

第3図はこの種のCMOS差動増差動器の従来例の回路
図で、このCMOB差動増幅器はゲート端子に差動入力
信号IN、INがそれぞれ印加され差動対を構成するN
チャネルMO8)クンジスタQ1@ * Qs4と、ソ
ース端子がグランド端子GND K接続され、ゲート端
子に入力する活性化信号φが@H−レベルになり、CM
OB差動増幅器が動作すると飽和領域で動作し定電流源
になるNチャネルMO8)ランジスタQts  と、ソ
ース端子が電源端子Vcc tc接続され、一対の負荷
素子を構成するPfヤネルトランジスタQ□柘雪とから
構成されている。NチャネルMO8トランジスタQss
のドレイン端子とNチャネルMO8)ランジスタQts
*Qtaのソース端子が接続されて差動増幅回路が構成
され、一方、PチャネルMOS )ランジスタC15t
eQttは、各ゲート端子がPチャネルMO8)ランジ
スタQts  のドレイン端子と接続されて一種のカレ
ン)1ラーとなり能動負荷回路になる。PチャネルMO
B )ランジスタQll  とNチャネルMOS )ラ
ンジスタQts  の各ドレイン端子およびPチャネル
MO8)ランジスタQ11  とNチャネルMOS )
ランジスタQ14  の各ドレイン端子が接続されてお
り、逆相の差動入力信号IN、INがNチャネルMOS
 +−ランジスタQlll I (ltaのゲート端子
に印加された場合、NチャネルMOS )ランジスタ%
eQsのオン抵抗に差が生じ、NチャネルMOS )ラ
ンジスタQtseQtteQimの差動増幅動作と共に
、PチャネルMO8)ランジスタQtt eQt*のカ
レントミラー効果により、差動入力信号INと同相の出
力信号OUTが高利得で得られる。
FIG. 3 is a circuit diagram of a conventional example of this type of CMOS differential amplifier/differential amplifier. This CMOB differential amplifier has differential input signals IN and IN applied to its gate terminals, respectively, and N which forms a differential pair.
Channel MO8) Kunjistor Q1@* Qs4 and the source terminal are connected to the ground terminal GND K, and the activation signal φ input to the gate terminal becomes @H- level, and the CM
When the OB differential amplifier operates, it operates in the saturation region and becomes a constant current source. An N-channel MO transistor Qts that operates in the saturation region and becomes a constant current source, and a Pf Yarnel transistor Q It consists of N-channel MO8 transistor Qss
drain terminal of N-channel MO8) transistor Qts
*The source terminal of Qta is connected to configure a differential amplifier circuit, while the P-channel MOS) transistor C15t
Each gate terminal of eQtt is connected to the drain terminal of a P-channel MO8) transistor Qts, and becomes a kind of Karen)1ler, forming an active load circuit. P channel MO
B) Transistor Qll and N-channel MOS) Each drain terminal of transistor Qts and P-channel MO8) Transistor Q11 and N-channel MOS)
The drain terminals of transistor Q14 are connected, and the differential input signals IN and IN of opposite phases are connected to the N-channel MOS transistor Q14.
+- transistor Qllll I (N-channel MOS when applied to the gate terminal of lta) transistor %
A difference occurs in the on-resistance of eQs, and together with the differential amplification operation of the N-channel MOS transistor QtseQtteQim, the output signal OUT in phase with the differential input signal IN has a high gain due to the current mirror effect of the P-channel MO8) transistor Qtt eQt*. It can be obtained with

〔発明が解決しようとする問題点3 次に、製造工程のマスクの目金せずれ等によるトランジ
スタ能力のバラツキが上述の従来の0MO8て説明する
[Problem to be Solved by the Invention 3] Next, the variation in transistor performance due to misalignment of the mask during the manufacturing process will be explained with reference to the above-mentioned conventional 0MO8.

仮に、PチャネルMO8)ランジスタQn  のトラン
ジスタ能力が、PチャネルMO8)ランジスタQltに
比べ低下した場合につき、節点N、出力信号OUTの電
位に着目して説明する。先ず、活性化信号φがII、ル
ベルの非活性状態(to≦時刻1+ <時刻11)では
、差動入力信号IN、INが等電位であっても、出力信
号OUTは節点Nに比べ高電位差動増幅動作が開始され
た場合について述べる。
Suppose that the transistor capability of the P-channel MO8) transistor Qn is lower than that of the P-channel MO8) transistor Qlt, and this will be explained by focusing on the potential of the node N and the output signal OUT. First, when the activation signal φ is II and the level is inactive (to≦time 1+ <time 11), even if the differential input signals IN and IN are at the same potential, the output signal OUT has a high potential difference compared to the node N. A case will be described in which the dynamic amplification operation is started.

差動入力信号INが差動入力信号INに比べ高電位側に
変化した場合は、出力信号OUTは節点NK比べさらに
高電位に変化するために応答速度が遅れることはない、
一方、差動入力信号INが差動入力信号INK比べ低電
位側に変化した場合(時刻t)tg)は、出力信号OU
Tは、節点NK比べて高電位から等電位を経て低電位に
変化する。従つ【、出力信号OUTが節点N、と等電位
になり、アンバランス電位ΔVを打ち消すまでの時間へ
Tだけ応答速度が遅れる。
When the differential input signal IN changes to a higher potential than the differential input signal IN, the output signal OUT changes to a higher potential than the node NK, so there is no delay in response speed.
On the other hand, when the differential input signal IN changes to a lower potential side than the differential input signal INK (time t), the output signal OU
T changes from a high potential to an equal potential to a low potential compared to the node NK. Therefore, the response speed is delayed by T until the output signal OUT becomes equal in potential to the node N and cancels the unbalanced potential ΔV.

以上、PチャネルMO8)ランジスタQll  のトラ
ンジスタ能力が低下した場合を説明してきたが、差動対
を構成するNチャネルMOS )ランジスタQll、9
14間、能動負荷回路を構成するPfヤネルMO8トラ
ンジスタQIIQI!間のトランジスタ能力に差異が生
じた場合も同様に応答速度の遅れを引き起こすことは明
らかである。
So far, we have explained the case where the transistor performance of the P-channel MO8) transistor Qll has decreased.
During the period of 14, the Pf Janel MO8 transistor QIIQI which constitutes the active load circuit! It is clear that a difference in transistor capability between the two also causes a delay in response speed.

本発明の目的は、製造工程上のトランジスタ能力のバラ
ツキに対し、応答速度を損なうことなく安定なCMOS
差動増幅器を提供することである。
An object of the present invention is to provide a stable CMOS structure that can withstand variations in transistor performance during the manufacturing process without sacrificing response speed.
An object of the present invention is to provide a differential amplifier.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ゲート端子を入力とし差動対を構成する第1
.第2のMOS )ランジスタと、ゲート端子に活性化
信号を入力し、定電流源を構成する第3のMOS )ラ
ンジスタと、第1.第2.第3のMOS )ランジスタ
と導通チャネルが異なり、一対の負荷素子を構成する第
4.第°5のMOS )ランジスタを構成要素とし、第
1.第2のMOS )ランジスタのソース端子が第3の
MOSトランジスタのドレイン端子と共通に接続され、
第1.第2のMOSトランジスタのドレイン端子が第4
.第5のMOSトランジスタのドレイン端子と各々接続
され、第4、第5のMOS トランジスタのゲート端子
が第1のMOS )ランジスタのドレイン端子に共通に
接続されたCMOS差動増幅器において、ゲート端子に
前記活性化信号を入力し、第1.第2および第3とする
The present invention provides a first
.. a second MOS) transistor, a third MOS) transistor which inputs an activation signal to its gate terminal and constitutes a constant current source; Second. 3rd MOS) The transistor and conduction channel are different, and the 4th MOS constitutes a pair of load elements. The fifth MOS) has a transistor as a component, and the first MOS. The source terminal of the second MOS transistor is commonly connected to the drain terminal of the third MOS transistor,
1st. The drain terminal of the second MOS transistor is the fourth
.. In a CMOS differential amplifier, the gate terminals of the fourth and fifth MOS transistors are connected to the drain terminals of the first MOS transistor, respectively, and the gate terminals of the fourth and fifth MOS transistors are commonly connected to the drain terminal of the first MOS transistor. Input the activation signal and select the 1st. 2nd and 3rd.

活性化信号φがIL″レベルでCMOS差動増幅器が非
活性になると第6のMOS トランジスタがオン状態に
なるため、第1.第2のMOS )ランジスタ間、第4
.第5のMOS トランジスタ間のトランジスタ能力に
差異があっても、節点Nと出力信号OUTは等電位に保
たれる。したがって、活性化信号゛φが1Lルベルから
IHルベルに変化し、差動増幅動作が開始されると節点
Nと出力信号OUTは常に等電位から変化することにな
り、応答速度の遅れはない。
When the activation signal φ is at IL'' level and the CMOS differential amplifier becomes inactive, the sixth MOS transistor is turned on.
.. Even if there is a difference in transistor ability between the fifth MOS transistors, the node N and the output signal OUT are kept at the same potential. Therefore, when the activation signal φ changes from the 1L level to the IH level and the differential amplification operation is started, the node N and the output signal OUT always change from the same potential, and there is no delay in response speed.

〔実施例〕〔Example〕

本発明の実施例について図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.

第1図は本発明によるCMOS差動増幅器の一実施例の
回路図である。
FIG. 1 is a circuit diagram of an embodiment of a CMOS differential amplifier according to the present invention.

本実施例のCMOS差動増幅器は、第2図の従来例にお
いて、節点Nと出力信号OUT間に、ゲート端子に活性
化信号φ、を与えたPチャネルMO8)う先ず、活性化
信号φがlHルベルでCMOS差動増幅器が活性化され
た場合はPチャネルMO8トランジスタQ、・ がオフ
状態であるから、従来例と同様に差動増幅機能を有する
ことは明らかである。
In the CMOS differential amplifier of this embodiment, in the conventional example shown in FIG. 2, the activation signal φ is applied to the gate terminal between the node N and the output signal OUT. When the CMOS differential amplifier is activated at the lH level, the P-channel MO8 transistors Q, .

次に、活性化信号φが”LルベルでCMOS差動増幅器
が非活性になるとPl−ヤネルMO8)ランジスタQl
ll がオン状態になる。従って、PチャネルMO8)
ランジメタ9116911間、NチャネルMO8)ラン
ジスタQss、Q鏝間のトランジスタ能力に差異があっ
ても節点Nと出力信号OUTは等電位に保たれる。
Next, when the activation signal φ is "L level" and the CMOS differential amplifier becomes inactive, the transistor Ql
ll turns on. Therefore, P channel MO8)
Even if there is a difference in transistor ability between the transistors 9116911, N-channel MO8) transistors Qss, and the transistor Qss, the node N and the output signal OUT are kept at the same potential.

ルに変化し、差動増幅動作が開始されると、節点Nと出
力信号OUTは常に等電位から変化するために応答速度
の遅れはない。
When the differential amplification operation is started, the node N and the output signal OUT always change from an equal potential, so there is no delay in response speed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート端子に活性化信号
を入力し、第1.第2および第3のMO8工程上のトラ
ンジスタ能力のバラツキに対し応答速度の遅れない安定
なCMOS増幅器を構成できる効果かある。
As explained above, in the present invention, an activation signal is input to the gate terminal, and the first . This has the effect of making it possible to construct a stable CMOS amplifier with no delay in response speed against variations in transistor performance in the second and third MO8 processes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるCMOS差動増幅器の一実Qst
 * Ql! * Ql。・・・・・・PチャネルMO
B )ランジスタ。 Qss *Qba * Qss・・・・・・Nチャネル
MOB )ランジスタ。 IN、 IN・旧・・・・・差動入力信号。 OUT ・・・・・・・・・・・・出力信号。 N・・・・・・・・・・・・節 点。 4・・・・・・・・・・・・活性化信号。 Vcc・・・・・・・・・電波端子。 GND・・・・・・・・・グランド端子。
FIG. 1 shows an example of a CMOS differential amplifier according to the present invention.
* Ql! * Ql. ...P channel MO
B) Langister. Qss *Qba *Qss...N-channel MOB) transistor. IN, IN/Old...Differential input signal. OUT ・・・・・・・・・・・・Output signal. N・・・・・・・・・Node Point. 4・・・・・・・・・Activation signal. Vcc...... Radio terminal. GND・・・・・・Ground terminal.

Claims (1)

【特許請求の範囲】[Claims] ゲート端子を入力とし差動対を構成する第1、第2のM
OSトランジスタと、ゲート端子に活性化信号を入力し
、定電流源を構成する第3のMOSトランジスタと、第
1、第2、第3のMOSトランジスタと導通チャネルが
異なり、一対の負荷素子を構成する第4、第5のMOS
トランジスタを構成要素とし、第1、第2のMOSトラ
ンジスタのソース端子が第3のMOSトランジスタのド
レイン端子と共通に接続され、第1、第2のMOSトラ
ンジスタのドレイン端子が第4、第5のMOSトランジ
スタのドレイン端子と各々接続され、第4、第5のMO
Sトランジスタのゲート端子が第1のMOSトランジス
タのドレイン端子に共通に接続されたCMOS差動増幅
器において、ゲート端子に前記活性化信号を入力し、第
1、第2および第3のMOSトランジスタと導通チャネ
ルの異なる第6のMOSトランジスタが第4、第5のM
OSトランジスタのドレイン端子間に接続されているこ
とを特徴とするCMOS差動増幅器。
The first and second M, which form a differential pair with the gate terminal as input,
The OS transistor, a third MOS transistor that inputs an activation signal to its gate terminal and forms a constant current source, and the first, second, and third MOS transistors have different conduction channels and form a pair of load elements. 4th and 5th MOS
The source terminals of the first and second MOS transistors are commonly connected to the drain terminals of the third MOS transistor, and the drain terminals of the first and second MOS transistors are connected to the fourth and fifth MOS transistors. The fourth and fifth MOs are connected to the drain terminals of the MOS transistors respectively.
In a CMOS differential amplifier in which the gate terminals of the S transistors are commonly connected to the drain terminals of the first MOS transistors, the activation signal is input to the gate terminals, and conduction is established with the first, second, and third MOS transistors. A sixth MOS transistor with a different channel is connected to the fourth and fifth MOS transistors.
A CMOS differential amplifier characterized in that it is connected between drain terminals of an OS transistor.
JP60059974A 1985-03-25 1985-03-25 Cmos differential amplifier Pending JPS61219207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60059974A JPS61219207A (en) 1985-03-25 1985-03-25 Cmos differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60059974A JPS61219207A (en) 1985-03-25 1985-03-25 Cmos differential amplifier

Publications (1)

Publication Number Publication Date
JPS61219207A true JPS61219207A (en) 1986-09-29

Family

ID=13128650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60059974A Pending JPS61219207A (en) 1985-03-25 1985-03-25 Cmos differential amplifier

Country Status (1)

Country Link
JP (1) JPS61219207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317000B1 (en) 2000-10-05 2001-11-13 Texas Instruments Incorporated Overload recovery circuit and method
US6703900B2 (en) 2002-06-05 2004-03-09 Texas Instruments Incorporated Fast, stable overload recovery circuit and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317000B1 (en) 2000-10-05 2001-11-13 Texas Instruments Incorporated Overload recovery circuit and method
US6703900B2 (en) 2002-06-05 2004-03-09 Texas Instruments Incorporated Fast, stable overload recovery circuit and method

Similar Documents

Publication Publication Date Title
US4697112A (en) Current-mirror type sense amplifier
US4267517A (en) Operational amplifier
US4484148A (en) Current source frequency compensation for a CMOS amplifier
US4284957A (en) CMOS Operational amplifier with reduced power dissipation
US6316997B1 (en) CMOS amplifiers with multiple gain setting control
US4874969A (en) High speed CMOS comparator with hysteresis
JPH0616571B2 (en) Current amplifier
US4736117A (en) VDS clamp for limiting impact ionization in high density CMOS devices
US6005439A (en) Unity gain signal amplifier
US7521994B2 (en) Three-stage amplifier
JP2578594B2 (en) Comparator circuit for comparing a pair of differential inputs and providing a digital output
US4443717A (en) High resolution fast diode clamped comparator
US4914400A (en) Differential amplifier circuit improved to shorten a circuit recovery time thereof
EP0160035B1 (en) High efficiency igfet operational amplifier
JPS6122494A (en) Active pull-up circuit
JPS61219207A (en) Cmos differential amplifier
US5424681A (en) Wide range operational amplifier
US4431971A (en) Dynamic operational amplifier
JPH0471365B2 (en)
JPS59119589A (en) Differential amplifier
JPH044768B2 (en)
JPH0449808B2 (en)
JPH021408B2 (en)
JPS61131606A (en) Differential amplifier circuit
JPS59156012A (en) Operational amplifier