JPS61218723A - Inertia supercharging controller of engine - Google Patents

Inertia supercharging controller of engine

Info

Publication number
JPS61218723A
JPS61218723A JP60060438A JP6043885A JPS61218723A JP S61218723 A JPS61218723 A JP S61218723A JP 60060438 A JP60060438 A JP 60060438A JP 6043885 A JP6043885 A JP 6043885A JP S61218723 A JPS61218723 A JP S61218723A
Authority
JP
Japan
Prior art keywords
intake
engine
cylinder
pipe
stroke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60060438A
Other languages
Japanese (ja)
Inventor
Hidekazu Suzuki
秀和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP60060438A priority Critical patent/JPS61218723A/en
Publication of JPS61218723A publication Critical patent/JPS61218723A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/021Resonance charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0242Fluid communication passages between intake ducts, runners or chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0252Multiple plenum chambers or plenum chambers having inner separation walls, e.g. comprising valves for the same group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0268Valves
    • F02B27/0273Flap valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0294Actuators or controllers therefor; Diagnosis; Calibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To improve engine efficiency, by providing a communication path in each intake system, which performs inertia supercharging by dividing into two groups the intake system of an engine having plural cylinders, and setting an opening and closing valve, provided in the communication path, to be opened about in the center of an intake stroke so as to reduce a large negative pressure generated in this timing of the intake stroke. CONSTITUTION:An engine 3, having plural cylinders 2, is divided into two blocks B1, B2 forming in every block independently intake systems 4A, 4B, and their upstream joins together forming an intake pipe 4. The engine, providing a communication pipe 5 communicating with each intake system 4A and 4B, there provides an opening and closing valve 6 which synchronously opens and closes with a rotation of the engine. Each intake system has a shape suitable for inertia supercharging, but the intake system, increasing the pressure in the end of an intake stroke in each cylinder 2 but largely decreasing the pressure reversely in about the center of the intake stroke, generates a large pumping loss. An inertia supercharging controller, setting the opening and closing valve 6 to be opened in the timing such as in said intake stroke and unbalancing an intake pulsation, prevents the pressure from decreasing.

Description

【発明の詳細な説明】 技術分野 本発明は、エンジンの慣性過給制御装置に係り、特に吸
気管長を一時的に変化させて共振状態を崩し、慣性過給
中のボンピングロスを減少させ、燃費の向上を図った慣
性過給制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to an engine inertia supercharging control device, and in particular, temporarily changes the intake pipe length to break the resonance state, reduce pumping loss during inertia supercharging, and improve fuel efficiency. The present invention relates to an inertial supercharging control device with improved performance.

従来技術 第5図において、慣性過給を行って、同調しているとき
のシリンダ内圧力は二点鎖線で示すように変化し、また
吸気管内(吸気弁直前)圧力は実線で示すように一定の
振幅及び周期で変動している。そしてこのように同調(
共振)しているときは、慣性効果によって吸気弁が閉じ
る時期の吸気管内圧力が高く、このため多くの空気がシ
リンダ内に入る。
Prior Art In Fig. 5, when inertia supercharging is performed and synchronization is performed, the pressure inside the cylinder changes as shown by the two-dot chain line, and the pressure inside the intake pipe (just before the intake valve) remains constant as shown by the solid line. It fluctuates in amplitude and period. And tune like this (
(resonance), the pressure inside the intake pipe is high when the intake valve closes due to the inertia effect, so a lot of air enters the cylinder.

しかし吸気行程中央付近(クランク回転角θ−430°
付近)においては、点Aの如く吸気管内圧力が最も低い
ため、シリンダ内圧力も当然低くなっている。これをP
v線図で示すと、第4図に点B、C,D、Bを結ぶ実線
で囲まれたガス交換行程となり、点りにおける圧力が極
端に低いため、過給中における有効な仕事面積である該
ガス交換行程面積が狭くなり、ボンピングロスが大きく
なっていることがわかる。これが従来「慣性過給はボン
ピングロスが大きい。」と言われている理由である。
However, near the center of the intake stroke (crank rotation angle θ - 430°)
Since the pressure in the intake pipe is the lowest at the point A, the pressure in the cylinder is also naturally low. P this
When shown in a v-diagram, the gas exchange process is surrounded by a solid line connecting points B, C, D, and B in Figure 4, and since the pressure at the point is extremely low, the effective work area during supercharging is It can be seen that a certain gas exchange stroke area becomes narrower and the pumping loss becomes larger. This is the reason why it is conventionally said that ``inertial supercharging has a large pumping loss.''

この慣性過給を行っているときの吸気管内の圧力の変動
は、ピストンの運動に起因する加振力による圧力変化に
よって生じ、その固有振動数は、吸気管の長さEl、吸
気管断面積F、シリンダの行程容積Vs  (第3図参
照)で決まるが、従来の慣性過給を行うエンジンにおい
ては、これらの各パラメータが共振中に変化しないため
、吸気行程の中央付近では常に吸気管内圧力及びシリン
ダ内圧力が最も低くなり、従ってボンピングロスが大き
く、燃費が悪くなるという欠点があった。
Fluctuations in the pressure inside the intake pipe during this inertial supercharging are caused by pressure changes due to the excitation force caused by the movement of the piston, and its natural frequency is determined by the length El of the intake pipe, the cross-sectional area of the intake pipe F is determined by the stroke volume of the cylinder Vs (see Figure 3), but in conventional inertial supercharging engines, these parameters do not change during resonance, so the pressure inside the intake pipe is always constant near the center of the intake stroke. Also, the internal cylinder pressure is the lowest, resulting in a large pumping loss and poor fuel efficiency.

目  的 本発明は、上記した従来技術の欠点を除くためになされ
たものであって、その目的とするところは、複数の気筒
のブロックごとに少なくとも2分割された吸気管の双方
に連通ずる連通管内に該連通管を開閉し得るロータリ弁
を設け、該ロータリ弁を何れかの気筒が吸気行程中央付
近にあるときに必ず開くようなタイミングで回転させる
ことによって、慣性過給を行っているエンジンの吸気行
程中央付近において一時的に吸気管の長さを変化させて
共振状態を崩し、吸気管内圧力及びシリンダ内圧力を上
昇させ、ボンピングロスを減少させることであり、また
これによって出力の増大と燃費の向上を図ることである
。また他の目的は、吸気管の長さを実際には何ら変化さ
せることなく、クランクシャフトの回転と同期して一方
向に連続回転するロータリ弁によって該吸気管の長さを
実質的に変化させることにより、往復動する弁機構や複
雑な弁機構を追加してシリンダ内行程容積を変化させる
必要性をなくしつつ慣性過給中におけるボンピングロス
を減少させることである。
Purpose The present invention has been made to eliminate the drawbacks of the prior art described above, and its purpose is to provide a communication system that communicates with both of the intake pipes divided into at least two parts for each block of a plurality of cylinders. An engine that performs inertial supercharging by installing a rotary valve in the pipe that can open and close the communication pipe, and rotating the rotary valve at a timing that always opens when any cylinder is near the center of the intake stroke. The purpose is to temporarily change the length of the intake pipe near the center of the intake stroke to break the resonance state, increase the pressure in the intake pipe and the pressure in the cylinder, and reduce the pumping loss. The goal is to improve fuel efficiency. Another object is to substantially change the length of the intake pipe by means of a rotary valve that continuously rotates in one direction in synchronization with the rotation of the crankshaft, without actually changing the length of the intake pipe in any way. By doing so, it is possible to reduce the pumping loss during inertial supercharging while eliminating the need to add a reciprocating valve mechanism or a complicated valve mechanism to change the cylinder stroke volume.

構成 要するに本発明は、複数の気筒を有し慣性過給を行うよ
うにしたエンジンにおいて、該複数気筒に吸気するため
の吸気管が気筒のブロックごとに少なくとも2分割され
てなり、該2分割された吸気管の双方に連通ずる連通管
を設け、該連通管内に該連通管を開閉し得るロータリ弁
を設け、該ロータリ弁が前記各気筒における吸気行程中
央付近で開くように回転させるように構成したことを特
徴とするものである。
Configuration In short, the present invention provides an engine having a plurality of cylinders and performing inertial supercharging, in which an intake pipe for intake air into the plurality of cylinders is divided into at least two parts for each block of cylinders, and the two parts are divided into two parts. A communication pipe that communicates with both of the intake pipes is provided, a rotary valve capable of opening and closing the communication pipe is provided in the communication pipe, and the rotary valve is rotated so as to open near the center of the intake stroke of each cylinder. It is characterized by the fact that

以下本発明を図面に示す実施例に基いて説明する6本発
明に係るエンジンの慣性過給制御装置1は、複数の気筒
2を有し、慣性過給を行うようにしたエンジン3におい
て、該複数気筒2に吸気するための吸気管4が気筒2の
ブロックB+ 、Bzごとに少なくとも2分割されてな
り、該2分割された吸気管4A、4Bの双方に連通ずる
連通管5を設け、該連通管内に該連通管を開閉し得るロ
ータリ弁6を設け、該ロータリ弁が各気筒2における吸
気行程中央付近で開くように回転させるように構成した
ものである。
The present invention will be described below based on embodiments shown in the drawings. 6 An engine inertial supercharging control device 1 according to the present invention is applicable to an engine 3 having a plurality of cylinders 2 and configured to perform inertial supercharging. The intake pipe 4 for intake air into the plurality of cylinders 2 is divided into at least two parts for each block B+ and Bz of the cylinder 2, and a communication pipe 5 is provided to communicate with both of the divided intake pipes 4A and 4B. A rotary valve 6 capable of opening and closing the communicating pipe is provided in the communicating pipe, and the rotary valve is configured to be rotated so as to open near the center of the intake stroke of each cylinder 2.

第1図に示すエンジン3は、6気筒のエンジンであるた
め、気筒2のブロックB、は3気筒であり、ブロックB
8も同様に3気筒である。そして吸気管4の分割された
吸気管4Aは図中左から3番目までの気筒の吸気を担当
し、吸気管4Bは左から4番目乃至6番目の気筒2に対
する吸気を担当するように構成されている。連通管5は
、第2図に拡大して示すように、吸気管4Aと4Bに連
通して設けられており、ロータリ弁6の外周部6aが隙
間なく回転できるようにした円弧面5aと吸気管4A、
4Bの内部に夫々開口する開口部5b、5cとからなる
。そして開口部5bの肩部5dと開口部5Cの肩部5e
とがロータリ弁6の開かれている角度αを決定すること
になる。即ち肩部5d、5eとロータリ弁6の回転中心
Oとを夫々結ぶ直線で挾まれた範囲が角度αであって、
この角度αの範囲にロータリ弁がある場合に連通管5が
吸気管4A、4Bに対して開かれるように構成したもの
である。そしてロータリ弁6は回転軸8に固着されてお
り、該回転軸は第3図に示すように、クランクシャフト
9と破線で示すように機械的に連結されており、該クラ
ンクシャフトと一定の回転比で回転するように構成され
ている。
Since the engine 3 shown in FIG. 1 is a 6-cylinder engine, block B of cylinder 2 is a 3-cylinder engine, and block B
8 also has three cylinders. The divided intake pipe 4A of the intake pipe 4 is configured to be in charge of intake air to the third cylinder from the left in the figure, and the intake pipe 4B is configured to be in charge of intake air to the fourth to sixth cylinders 2 from the left. ing. As shown in an enlarged view in FIG. 2, the communication pipe 5 is provided to communicate with the intake pipes 4A and 4B, and is connected to an arcuate surface 5a that allows the outer circumference 6a of the rotary valve 6 to rotate without any gap. tube 4A,
It consists of openings 5b and 5c opening into the inside of 4B, respectively. A shoulder 5d of the opening 5b and a shoulder 5e of the opening 5C.
determines the open angle α of the rotary valve 6. That is, the range between the straight lines connecting the shoulders 5d, 5e and the rotation center O of the rotary valve 6 is the angle α,
The communication pipe 5 is configured to be opened to the intake pipes 4A and 4B when the rotary valve is located within the range of this angle α. The rotary valve 6 is fixed to a rotating shaft 8, and as shown in FIG. It is configured to rotate at a ratio.

例えば第1図に示す6気筒エンジンの場合には該エンジ
ンが4サイクルエンジンであればクランクシャフト9の
2回転に6回の吸気行程が存在し、またロータリ弁6は
1/2回転ごとに連通管5を開くので、ロータリ弁6を
クランクシャフト9の3/2倍の速さで回転させれば、
各気筒2の吸気行程においては必ずロータリ弁6が連通
管5を吸気管4A、4Bに対して開くようにすることが
できる。従って6気筒の4サイクルエンジンの場合にお
いては、第3図に破線で示すクランクシャフト9とロー
タリ弁6の回転軸8との機械的な駆動機構10は、クラ
ンクシャフト9に対してロータリ弁6を3/2倍の速さ
で回転させるような機構であればどΦようなものであっ
てもよい。
For example, in the case of a 6-cylinder engine shown in FIG. 1, if the engine is a 4-cycle engine, there are 6 intake strokes for every 2 revolutions of the crankshaft 9, and the rotary valve 6 is opened every 1/2 revolution. Since the pipe 5 is opened, if the rotary valve 6 is rotated at 3/2 times the speed of the crankshaft 9,
During the intake stroke of each cylinder 2, the rotary valve 6 can always open the communication pipe 5 to the intake pipes 4A, 4B. Therefore, in the case of a 6-cylinder 4-stroke engine, a mechanical drive mechanism 10 between the crankshaft 9 and the rotating shaft 8 of the rotary valve 6, shown in broken lines in FIG. Any mechanism may be used as long as it rotates at 3/2 times the speed.

なお第3図に示すエンジン3においては、11はシリン
ダ、12はピストン、13はコンロッド、14は吸気弁
、15は排気弁、16はロッカアーム、18は該ロッカ
アームの支点、19はブツシュロッド、20はタペット
、21は排気弁駆動カム、22はカムシャフト、23は
カムシャフトギヤ、24はクランクシャフトギヤであり
、これらは公知の構成であるので説明を省略する。
In the engine 3 shown in FIG. 3, 11 is a cylinder, 12 is a piston, 13 is a connecting rod, 14 is an intake valve, 15 is an exhaust valve, 16 is a rocker arm, 18 is a fulcrum of the rocker arm, 19 is a bushing rod, and 20 is a The tappet, 21 is an exhaust valve driving cam, 22 is a camshaft, 23 is a camshaft gear, and 24 is a crankshaft gear, and since these are of known construction, their explanation will be omitted.

作用 本発明は、上記のように構成されており、以下その作用
について説明する。第1図から第3図において、クラン
クシャフト9が矢印Eの方向に回転すると、ピストン1
2はコンロッド13を介して矢印Gの如く下降し、エン
ジン3の何れかの気筒2は吸気行程となり、第3図に示
す位相においては、クランクシャフト9はその回転角θ
が約430eの位置にある。この場合において、ロータ
リ弁6が第3図に示すようにちょうど吸気管4A、4B
に対して直交する位置にタイミングを合わせておく。こ
のようにタイミングを合わせることによって何れかの気
筒2において吸気行程が行われ、そのクランク回転角θ
が約430°の場合において該ロータリ弁が最大限連通
管5を開くように構成する。このようにしておいて、ロ
ータリ弁6をクランクシャフト9の3/2倍で回転させ
ることにより、6気筒の4サイクルエンジン3において
は、クランクシャフト9の2回転に6回の吸気行程が存
在し、またロータリ弁6は1/2回転ごとに連通管5を
開くので、ちょうどクランクシャフト9の2回転に6回
連通管5が開かれることになり、何れの気筒の吸気行程
においても必ずその中央付近でロータリ弁6が連通管5
を開くようにすることができる。
Function The present invention is constructed as described above, and its function will be explained below. 1 to 3, when the crankshaft 9 rotates in the direction of arrow E, the piston 1
2 descends as shown by the arrow G via the connecting rod 13, any cylinder 2 of the engine 3 enters the intake stroke, and in the phase shown in FIG.
is located at approximately 430e. In this case, as shown in FIG.
Adjust the timing to a position perpendicular to . By adjusting the timing in this way, the intake stroke is performed in one of the cylinders 2, and the crank rotation angle θ is
The rotary valve is configured to open the communication pipe 5 to the maximum extent when the angle is about 430°. In this way, by rotating the rotary valve 6 at 3/2 times the rotation speed of the crankshaft 9, in the 6-cylinder 4-stroke engine 3, there are 6 intake strokes per 2 rotations of the crankshaft 9. In addition, since the rotary valve 6 opens the communication pipe 5 every 1/2 rotation, the communication pipe 5 is opened exactly 6 times in every 2 revolutions of the crankshaft 9, and the center is always opened during the intake stroke of any cylinder. Nearby, the rotary valve 6 connects to the communication pipe 5.
can be opened.

クランクシャフト9が矢印Eの方向に回転するとクラン
クシャフトギヤ24によってカムシャフトギヤ23が矢
印Hの方向に・回転し、カムシャフト22及び排気弁駆
動カム21が同方向に回転して、タペット20.ブツシ
ュロッド19及びロッカアーム16を介して排気弁15
は完全に閉じている。
When the crankshaft 9 rotates in the direction of arrow E, the camshaft gear 23 is rotated by the crankshaft gear 24 in the direction of arrow H, the camshaft 22 and the exhaust valve driving cam 21 rotate in the same direction, and the tappet 20. Exhaust valve 15 via bushing rod 19 and rocker arm 16
is completely closed.

このような吸気行程においてロータリ弁6が連通管5を
開くことによって吸気管4A又は4Bの実質的な長さ!
、が一時的に長くなることになるため、吸気管4の長さ
1.%吸気管断面積F、シリンダの行程容積V、で決ま
るピストン12の運動に起因する加振力によって生じる
圧力変化の共振は一時的に共振状態から非共振状態に移
行することとなり、この吸気行程中央付近における吸気
管内圧力及びシリンダ内圧力が一時的に上昇することに
なる。
In such an intake stroke, the rotary valve 6 opens the communication pipe 5, thereby increasing the substantial length of the intake pipe 4A or 4B!
, becomes temporarily longer, so the length of the intake pipe 4 is 1. The resonance of the pressure change caused by the excitation force caused by the movement of the piston 12, which is determined by the % intake pipe cross-sectional area F and the stroke volume V of the cylinder, temporarily shifts from a resonant state to a non-resonant state, and this intake stroke The pressure in the intake pipe and the pressure in the cylinder near the center will temporarily increase.

例えば第5図において吸気管内圧力は実線で示す状態か
ら破線で示す状態に変化し、吸気行程中央付近における
点Aはより上方の点A′に移動し、この吸気行程中央付
近における吸気管内圧力が上昇するものである。従って
これを第4図に示すpv線図で考察すると、過給による
吸気の押込み仕事を示す面積は曲線B、 C,D、 B
であったものが破線で示すように点りが点D′に移動す
るため点B、C,D’、Bで示す面積となり、実線で示
す面積と一部に破線を加えて示す面積との差の分だけ過
給による押込み仕事の面積が増大することになる。これ
によってポンピングロスが減少し、エンジン3の出力が
増大し、また燃費を向上させることができる。
For example, in FIG. 5, the pressure inside the intake pipe changes from the state shown by the solid line to the state shown by the broken line, and point A near the center of the intake stroke moves to point A' above, and the pressure inside the intake pipe near the center of this intake stroke changes. It is something that rises. Therefore, when considering this using the pv diagram shown in Figure 4, the areas showing the pushing work of intake air due to supercharging are curves B, C, D, and B.
Since the dot moves to point D' as shown by the broken line, the area becomes the area shown by points B, C, D', and B, which is the area shown by the solid line and the area shown by adding the broken line. The area of pushing work due to supercharging increases by the difference. This reduces pumping loss, increases the output of the engine 3, and improves fuel efficiency.

なお第2図においてロータリ弁6は角度αの範囲におい
て連通管5を開くが、この角度αは任意に変えることが
でき、エンジン3の仕様によってどのように変えること
もできることは明らかである。またクランクシャフト9
とロータリ弁6との回転比はエンジン3の気筒数又は4
サイクルか2サイクルかによっても異なるものであるた
め、必ずしもクランクシャフト9の3/2倍の回転速度
で回転させるようにする必要はなく、要するに各気筒の
吸気行程中央付近において必ずこのロータリ弁6が開く
ような回転速度に設定しておけばよいことは明らかであ
る。
In FIG. 2, the rotary valve 6 opens the communication pipe 5 within the range of angle α, but it is clear that this angle α can be changed arbitrarily, and can be changed in any way depending on the specifications of the engine 3. Also crankshaft 9
The rotation ratio between the rotary valve 6 and the rotary valve 6 is equal to the number of cylinders of the engine 3 or 4.
Since it differs depending on whether it is a cycle or a two-cycle, it is not necessarily necessary to rotate the crankshaft 9 at 3/2 times the rotational speed.In other words, the rotary valve 6 is always rotated near the center of the intake stroke of each cylinder. It is obvious that the rotation speed should be set so that the opening occurs.

効果 本発明は、上記のように構成され、作用するものである
から、複数の気筒ののブロックごとに少なくとも2分割
された吸気管の双方に連通ずる連通管内に該連通管を開
閉し得るロータリ弁を設け、該ロータリ弁を何れかの気
筒が吸気行程中央付近にあるときに必ず開くようなタイ
ミングで回転させるようにしたので、慣性過給を行って
いるエンジンの吸気行程中央付近において一時的に吸気
管の長さを変化させて共振状態を崩し、吸気管内圧力及
びシリンダ内圧力を上昇させることができ、ポンピング
ロスを減少させることができる効果がある。またこの結
果出力の増大と燃費の向上を図ることができる効果が得
られる。また吸気管の長さを実際には何ら変化させるこ
となく、クランクシャフトの回転と同期して一方向に連
続回転するロータリ弁によって該吸気管の長さを実質的
に変化させるようにしたので、往復動する弁機構や複雑
な弁機構を追加してシリンダ内行程容積を変化させる必
要性をなくしつつ慣性過給中におけるボンピングロスを
減少させることができる効果がある。
Effects Since the present invention is configured and operates as described above, a rotary rotor capable of opening and closing the communication pipe is provided in the communication pipe that communicates with both of the intake pipes divided into at least two parts for each block of a plurality of cylinders. A valve is provided, and the rotary valve is rotated at a timing that always opens when any cylinder is near the center of the intake stroke. By changing the length of the intake pipe, the resonance state can be broken, the pressure inside the intake pipe and the pressure inside the cylinder can be increased, and pumping loss can be reduced. Further, as a result, the effect of increasing output and improving fuel efficiency can be obtained. Furthermore, without actually changing the length of the intake pipe, the length of the intake pipe is substantially changed by a rotary valve that continuously rotates in one direction in synchronization with the rotation of the crankshaft. This has the effect of reducing the pumping loss during inertial supercharging while eliminating the need to add a reciprocating valve mechanism or a complicated valve mechanism to change the cylinder stroke volume.

【図面の簡単な説明】 図面は本発明の実施例に係り、第1図は慣性過給制御装
置を装着した吸気管及びエンジンの概略平面図、第2図
はエンジンの慣性過給制御装置の要部拡大横断面図、第
3図は慣性過給制御装置を装着したエンジンの概略図、
第4図は本発明の効果を示すPV線図、第5図はシリン
ダ内圧力及び吸気管内圧力を示す線図である。 1はエンジンの慣性過給制御装置、2は気筒、3はエン
ジン、4.4A、4Bは吸気管、5は連通管、6はロー
タリ弁、B+、Bzは気筒のブロックである。 第1図 第2図 へ←−h孔3Kに川骨
[BRIEF DESCRIPTION OF THE DRAWINGS] The drawings relate to embodiments of the present invention, and FIG. 1 is a schematic plan view of an intake pipe and engine equipped with an inertial supercharging control device, and FIG. 2 is a schematic plan view of an engine inertial supercharging control device. An enlarged cross-sectional view of the main parts, Figure 3 is a schematic diagram of the engine equipped with an inertial supercharging control device,
FIG. 4 is a PV diagram showing the effects of the present invention, and FIG. 5 is a diagram showing cylinder internal pressure and intake pipe internal pressure. 1 is an inertial supercharging control device for the engine, 2 is a cylinder, 3 is an engine, 4.4A and 4B are intake pipes, 5 is a communication pipe, 6 is a rotary valve, and B+ and Bz are cylinder blocks. To Figure 1 Figure 2 ← - River bone in hole 3K

Claims (1)

【特許請求の範囲】[Claims] 複数の気筒を有し慣性過給を行うようにしたエンジンに
おいて、該複数気筒に吸気するための吸気管が気筒のブ
ロックごとに少なくとも2分割されてなり、該2分割さ
れた吸気管の双方に連通する連通管を設け、該連通管内
に該連通管を開閉し得るロータリ弁を設け、該ロータリ
弁が前記各気筒における吸気行程中央付近で開くように
回転させるように構成したことを特徴とするエンジンの
慣性過給制御装置。
In an engine that has a plurality of cylinders and performs inertial supercharging, the intake pipe for intake air into the plurality of cylinders is divided into at least two parts for each cylinder block, and the intake pipe is divided into two parts. A communicating pipe is provided, a rotary valve capable of opening and closing the communicating pipe is provided in the communicating pipe, and the rotary valve is configured to be rotated so as to open near the center of the intake stroke of each cylinder. Engine inertial supercharging control device.
JP60060438A 1985-03-25 1985-03-25 Inertia supercharging controller of engine Pending JPS61218723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60060438A JPS61218723A (en) 1985-03-25 1985-03-25 Inertia supercharging controller of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60060438A JPS61218723A (en) 1985-03-25 1985-03-25 Inertia supercharging controller of engine

Publications (1)

Publication Number Publication Date
JPS61218723A true JPS61218723A (en) 1986-09-29

Family

ID=13142272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60060438A Pending JPS61218723A (en) 1985-03-25 1985-03-25 Inertia supercharging controller of engine

Country Status (1)

Country Link
JP (1) JPS61218723A (en)

Similar Documents

Publication Publication Date Title
US5491977A (en) Engine using compressed air
CN1965150B (en) Valve gear for multi-cylinder internal combustion engine
US4163438A (en) Rotary valve timing apparatus
US4932378A (en) Intake system for internal combustion engines
JPH0225005B2 (en)
JPH05118208A (en) Continuously variable valve timing mechanism of internal combustion engine
JP2000145418A (en) Intake/exhaust mechanism of internal combustion engine
US11274552B2 (en) Engine crank and connecting rod mechanism
JPS61218723A (en) Inertia supercharging controller of engine
JP2002227667A (en) Variable valve device for internal combustion engine
JPH07293214A (en) Valve device for internal combustion engine
JP2010249111A (en) Internal combustion engine
US10605178B2 (en) Four-stroke internal combustion engine including variable compression ratio and a vehicle
JPS58148227A (en) Intake device of multi-cylinder engine
EP0643206A1 (en) Internal combustion engine
JP2002285857A (en) Piston drive for internal combustion engine
JP2003120346A (en) Intake device for four-stroke internal combustion engine
JP3536519B2 (en) Intake valve control device and control method for internal combustion engine
JP3624540B2 (en) Engine intake system
KR970001461B1 (en) Internal combustion engine of oscillating piston engines
US20220220906A1 (en) Valve control apparatus for engine
JPH04187805A (en) Internal combustion engine
JPH0823294B2 (en) Engine intake system
JPH01316A (en) engine intake system
JPS61106908A (en) Intake and exhaust mechanism in engine